【精品】四年级下册奥数试题-第十一课时 巧妙求和(二) 全国通用
- 格式:doc
- 大小:29.50 KB
- 文档页数:5
巧妙求和
基本概念
1 数列:若干个数排成一列,称为数列
2 项:数列中的每一个数
首项:数列中的第一项
末项:数列中的最后一项
项数:数列中项的个数
3 等差数列:从第二项开始,后项与前项之差都相等的数列
公差:后项与前项的差
4 等差数列求和
通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
求和公式:总和=(首项+末项)×项数÷2
例1:数列4,10,16,22…52共有多少项?
例2:等差数列9,12,15,18…,2004,这个数列共有多少项?
例3:等差数列1000,993,986,979,…20,这个数列共有多少项?
例4:已知等差数列3,7,11,15,…,则该等差数列第100项是多少?
例5:求等差数列1,6,11,16,…的第61项。
例6:求等差数列307,304,301,298,…第99项。
例7:有这样一列数:1,2,3,4,…98,99,100.请求出这列数各项相加之和。
例8:求等差数列2,4,6,…48,50的和。
例9:用简便方法计算(100+102+104+...+200)-(1+5+9+13+ (97)
作业:
1.3+5+7+9+…+63
2.100+110+120+…+350
3.160+154+148+…+16
4.2+3-4+5+6-7+8+9-10+11+12-13+…+101+102-103。
四年级奥数第11讲巧妙(qiǎomiào)求和(教师版)xλ掌握(zhǎngwò)等差数列的基本概念,首项(shǒu xiànɡ)、末项、公差等;λ掌握(zhǎngwò)等差数列的常用公式,并能灵活运用。
一、数列(shùliè)的概念按一定顺序排成的一列数叫做数列。
数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。
数列中共有的项的个数叫做项数。
如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列二、等差数列与公差一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。
三、常用公式等差数列的总和=(首项+末项)项数 2项数=(末项-首项)÷公差+1末项=首项+公差⨯(项数-1)首项=末项-公差⨯(项数-1)公差=(末项-首项)÷(项数-1)等差数列(奇数个数)的总和=中间项⨯项数中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.考点一:等差数列的基本(jīběn)认识例1、下面(xiàmian)的数列中,哪些(nǎxiē)是等差数列?若是,请指明(zhǐmíng)公差,若不是(bù shi),则说明理由。
①6,10,14,18,22, (98)②1,2,1,2,3,4,5,6;③ 1,2,4,8,16,32,64;④ 9,8,7,6,5,4,3,2;⑤3,3,3,3,3,3,3,3;⑥1,0,1,0,l,0,1,0;【考点】等差数列的基本认识【解析】①是,公差d=4.②不是,因为数列的第3项减去第2项不等于数列的第2项减去第1项.③不是,因为4-2≠2-1.④是,公差d=l.⑤是,公差d=0.⑥不是,因为第1项减去第2项不等于第2项减去第3项。
四年级巧妙求和奥数题摘要:一、巧妙求和的概念二、例题1:刘俊读一本长篇小说三、例题2:等差数列的求和四、练习题:等差数列的求和五、举一反三- 巧妙求和(一)微课视频六、小学四年级奥数题及答案:求和正文:一、巧妙求和的概念巧妙求和是奥数中的一种解题方法,它主要涉及到对数字的合理分组和配对,以便顺利解决一些有关自然数的计算问题。
这种方法需要根据题目的具体特点来运用,让问题得以顺利解决。
二、例题1:刘俊读一本长篇小说刘俊第一天读30 页,从第二天起,他每天读的页数都前一天多3 页,第11 天读了60 页,正好读完。
这本书共有多少页?【思路导航】此题可以运用巧妙求和的方法解决。
首先,将刘俊读书的天数分组,第一天单独一组,剩下的天数为一组。
然后,根据每天读书的页数,将每组的页数配对,即第一天的30 页和第11 天的60 页配对,剩下的天数的页数互相配对。
最后,将配对后的页数相加,即可得到这本书的总页数。
三、例题2:等差数列的求和有一个等差数列:2.5,8,11,...,101。
这个等差数列共有多少项?【思路导航】此题可以运用等差数列的求和公式解决。
首先,根据等差数列的性质,可以求出公差为4。
然后,根据等差数列的求和公式:Sn = n * (a1 + an) / 2,其中Sn 为等差数列的和,n 为项数,a1 为首项,an 为末项。
将已知的首项、末项和公差代入公式,即可求得项数n。
四、练习题:等差数列的求和1.等差数列中,首项为1,末项为39,公差为2。
这个等差数列共有多少项?2.等差数列的首项为3,公差为4,项数为100。
求第100 项的数值。
【参考答案】1.等差数列共有20 项。
2.第100 项的数值为397。
五、举一反三- 巧妙求和(一)微课视频微信公众号:小学数学奥数课堂六、小学四年级奥数题及答案:求和求和:(中等难度) 如图1-1 所示的表中有55 个数,那么它们的和加上多少才等于1994?【参考答案】1 + 7 + 13 + 19 + 25 + 31 + 37 + 43 + 49 + 55 + 61 +2 + 8 + 14 + 20 + 26 + 32 + 38 + 44 + 50 + 56 + 62 +3 + 9 + 15 + 21 + 27 + 33 +39 + 45 + 51 + 57 + 63 + 10 + 16 + 22 + 28 + 34 + 40 + 46 + 52 + 58 + 64 + 11 + 17 + 23 + 29 + 35 + 41 + 47 + 53 + 59 + 65 = 1994 【总结】本文通过四年级巧妙求和奥数题的例子,介绍了巧妙求和的概念和应用。
四年级奥数B版巧妙求和(一)姓名( ) 11基础卷1、有一个等差数列:9、12、15、18、…、2004,这个数列共有多少项?2、已知等差数列:1000、993、986、979、…、20,这个数列共有多少项?3、求等差数列:l、6、1l、16、…的第61项。
4、求等差数列:307、304、301、298、…的第99项。
5、计算:4+5+6+7+8+…+806、计算:11+12+13+…-+200四年级奥数B版巧妙求和(一)姓名( ) 12提高卷1、计算:3+5+7+9+ (93)2、计算:100+110+120+…+3503、计算:160+154+148+…+164、简便方法计算:( 100+102+104+...+200)-(1+5+9+13+ (97)5、用简便方法计算:2+3-4+5+6-7+8+9-10+11+12-13+…+101+102-1036、用简便方法计算:2005+2004-2003+2002+2001+1999+1998-1997+…+1006+1005-1004四年级奥数B版变化规律(一)姓名( ) 13基础卷1、两个数相加,一个加数增加9,另一个加数增加18,和起什么变化?2、两个数相加,如果一个加数减少7,要使和增加7,另一个加数应如何变化?3、两个数相加,如果一个加数减少4,要使和减少9,另一个加数应如何变化?4、两个数相加,如果一个加数增加11,要使和减少5,另一个加数应如何变化?5、两数相减,若被减数减少6,减数减少7,差有何变化?6、两数相减,若被减数增加8,减数减少18,差有何变化?四年级奥数B版变化规律(一)姓名( ) 14提高卷1、两数相减,被减数减少15,要使差减少9,减数应怎样变化?2、两数相减,被减数减少9,要使差增加4,减数应怎样变化?3、两数相减,减数增加7,要使差增加10,被减数应怎样变化?4、被减数、减数、差相加得1050,减数是差的一半。
巧算与速算(二)巧点晴——方法和技巧数列中的数称为项,第一个数叫第一项,又叫首项;第二个数叫第二项……最后一个数叫末项。
如果一个数列从第二项开始,每一项与它前面一项的差都相等,就称这个数列为等差数列。
后一项与前一项的差叫做这个数列的公差。
如:1,3.5.7,…是等差数列,公差为2;5,10,15,20…是等差数列,公差为5。
在等差数列中,有如下规律:总和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1第n项=首项+(n-1)×公差巧指导——例题精讲A级冲刺名校·基础点晴[例1]求下面各数列有多少项。
(1)2,5,8,…65,68 (2)1,3,5…,97,99做一做1已知等差数列7,11,15,…,195。
问这个数列共有多少项?[例2]计算:(1)2+5+8+…+65+68(2)(2+4+6+...+2008)-(1+3+5+ (2007)做一做2 计算:(1)2+4+6+…+98+100 (2)51+52+53+…+99+100【例3】计算:1÷2003+2÷2003+3÷2003+…+2001÷2003+2002÷2003+2003÷2003做一做3计算:15÷49+17÷49+19÷49+21÷49+23÷49+25÷49+27÷49B级培优竞赛·更上层楼【例4】求等差数列3,5,7…的第10项和第100项。
【例5】有20个朋友聚会,见面时如果每人都和其他人握手1次,这20个人一共握手多少次?做一做5 如果参加宴会的每一个人都和其他人握手1次,宴会结束时,统计出一共握手28次。
问参加宴会的一共有多少人?【例6】如下图所示,这是一个堆放钢管的V形架。
如果V开架上一共放有465根钢管,问最上面一层有多少根钢管?做一做6 在一个七层高的书架上放了497本书,上面一层总比下面一层少7本书。
第十一课时巧妙求和(二)【教学目标】1.某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和;2.如果是等差数列求和,才可用等差数列求和公式;3.在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
【教学重点】理解等差数列求和公式的概念,灵活使用等差数列求和公式。
【教学难点】准确确定数列的项数【教学内容】【典型例题】例题1:刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。
这本书共有多少页?练习1:(1)刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。
这批零件共有多少个?(2)胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了50页恰好读完,这本书共有多少页?(3)丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个英语单词?例题2:30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?(1)有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?(2)有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。
一共有几把锁的钥匙搞乱了?(3)有10只盒子,44只羽毛球。
能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等?例题3:某班有51个同学,毕业时每人都和其他的每个人握一次手。
那么共握了多少次手?练习3:(1)学校进行乒乓球赛,每个选手都要和其他所有选手各赛一场。
如果有21人参加比赛,一共要进行多少场比赛?(2)在一次同学聚会中,一共到43位同学和4位老师,每一位同学或老师都要和其他同学握一次手。
那么一共握了多少次手?(3)假期里有一些同学相约每人互通两次电话,他们一共打了78次电话,问有多少位同学相约互通电话?例题4:求1 ~ 99 这99个连续自然数的所有数字之和。
第十一课时巧妙求和(二)【教学目标】1.某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和;2.如果是等差数列求和,才可用等差数列求和公式;3.在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
【教学重点】理解等差数列求和公式的概念,灵活使用等差数列求和公式。
【教学难点】准确确定数列的项数【教学内容】【典型例题】例题1:刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。
这本书共有多少页?练习1:(1)刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。
这批零件共有多少个?(2)胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了50页恰好读完,这本书共有多少页?(3)丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个英语单词?例题2:30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?(1)有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?(2)有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。
一共有几把锁的钥匙搞乱了?(3)有10只盒子,44只羽毛球。
能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等?例题3:某班有51个同学,毕业时每人都和其他的每个人握一次手。
那么共握了多少次手?练习3:(1)学校进行乒乓球赛,每个选手都要和其他所有选手各赛一场。
如果有21人参加比赛,一共要进行多少场比赛?(2)在一次同学聚会中,一共到43位同学和4位老师,每一位同学或老师都要和其他同学握一次手。
那么一共握了多少次手?(3)假期里有一些同学相约每人互通两次电话,他们一共打了78次电话,问有多少位同学相约互通电话?例题4:求1 ~ 99 这99个连续自然数的所有数字之和。
速算与巧算计算(1)9+99+999+9999+99999 (2)489+487+485+484+486+488 (3)632-156-232 (4)128+186+72-86(5)248+(152-127)(6)325÷25(7)25×125×4×8 (8)(360+108)÷36(9)(450-75)÷15 (10)158×61÷79×3(11)123×96÷16 (12)200÷(25÷4)(13)19×25×64×125 (14)26×25(15)5×64×25×125×2009 (16)2004×25 (17)125×792 (18)125×16-111×9 (19)256×9999(20)5÷(7÷11)÷(11÷15)÷(15÷21)【答案】1.【解析】这四个加数分别接近10、100、1000、10000.在计算这类题目时,常使用减整法,例如将99转化为100-1.这是小学数学计算中常用的一种技巧.9+99+999+9999=(10-1)+(100-1)+(1000-1)+(10000-1)=10+100+1000+10000-4=111062.【解析】认真观察每个加数,发现它们都和整数490接近,所以选490为基准数.489+487+483+485+484+486+488=490×7-1-3-7-5-6-4-2=3430-28=34023.【解析】在没有括号的算式里,如果只有第一级运算,计算时可根据减法的运算性质来做.632-156-232=632-232-156=400-156=2444.【解析】在没有括号的算式里,如果只有第一级运算,计算时可根据运算定律来做.128+186+72-86=128+72+186-86=(128+72)+(186-86)=200+100=3005.【解析】在计算有括号的加减混合运算时,有时为了使计算简便可以去括号,如果括号前面是“+”号,去括号时,括号内的符号不变;如果括号前面是“-”号,去括号时,括号内的加号就要变成减号,减号就要变成加号.计算方法概括为:括号前面是加号,去掉括号不变号;括号前面是减号,去掉括号要变号.248+(152-127)= 324124+97= 200+97= 2976.【解析】在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变.利用这一性质,可以使这道计算题简便.325÷25=(325×4)÷(25×4)= 1300÷100= 137.【解析】经过仔细观察可以发现:在这道连乘算式中,如果先把25与4相乘,可以得到100;同时把125与8相乘,可以得到1000;再把100与1000相乘就简便了.这就启发我们运用乘法交换律和结合律使计算简便.25×125×4×8=(25×4)×(125×8)= 1000008.【解析】两个数的和除以一个数,可以用这个数分别去除这两个数,再求出两个商的和.(360+108)÷36=360÷36+108÷36=10+3=139.【解析】两个数的差除以一个数,可以用这个数分别去除这两个数,再求出两个商的差.(450-75)÷15=450÷15-75÷15=30-5=2510.【解析】在乘除法混合运算中,如果算式中没有括号,计算时可以根据运算定律和性质调换因数或除数的位置.158×61÷79×3=158÷79×61×3=2×61×3=36611.【解析】采用加括号或去括号的方法,使计算简便.括号前是乘号,添、去括号不变号.123×96÷16=123×(96÷16)=123×6=73812.【解析】采用加括号或去括号的方法,使计算简便.括号前是除号,添、去括号要变号.200÷(25÷4)=200÷25×4=8×4=3213.【解析】把64分成4×8×2,采用乘法结合律便可速算.19×25×64×125=(25×4)×(125×8)×(19×2)=100×1000×38=380000014.【解析】26不能被4整除,但26可以拆成6×4+2.26×25=(6×4+2)×25=6×4×25+2×25=600+50=65015.【解析】把64分成4×8×2,采用乘法结合律便可速算.5×64×25×125×2009=5×(2×4×8)×25×125×2009=(5×2)×(4×25)×(8×125)×2009=10×100×1000×2009=200900000016.【解析】把2004拆成2000+4,便可简便计算.2004×25=(2000+4)×25=2000×25+4×25=50000+100=5010017.【解析】把792拆成800-8,便可简便计算.125×792=125×(800-8)=125×800-125×8=100000-1000=9900018.【解析】根据乘法凑整原则可求125×16-111×9=125×8×2-999=2000-(1000-1)=2000-1000+1=100119.【解析】把9999拆成10000-1,便可简便计算.256×9999=256×(10000-1)=2560000-256=255974420.【解析】采用加括号或去括号的方法,使计算简便.括号前是除号,添、去括号要变号.5÷(7÷11)÷(11÷15)÷(15÷21)=5÷7×11÷11×15÷15×21=5×(11÷11)×(15÷15)×(21÷7)=5×3=15。
第十一课时巧妙求和(二)
【教学目标】
1.某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和;
2.如果是等差数列求和,才可用等差数列求和公式;
3.在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
【教学重点】
理解等差数列求和公式的概念,灵活使用等差数列求和公式。
【教学难点】
准确确定数列的项数
【教学内容】
【典型例题】
例题1:刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。
这本书共有多少页?
练习1:
(1)刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。
这批零件共有多少个?
(2)胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了50页恰好读完,这本书共有多少页?
(3)丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个英语单词?
例题2:30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?
(1)有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?
(2)有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。
一共有几把锁的钥匙搞乱了?
(3)有10只盒子,44只羽毛球。
能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等?
例题3:某班有51个同学,毕业时每人都和其他的每个人握一次手。
那么共握了多少次手?
练习3:
(1)学校进行乒乓球赛,每个选手都要和其他所有选手各赛一场。
如果有21人参加比赛,一共要进行多少场比赛?
(2)在一次同学聚会中,一共到43位同学和4位老师,每一位同学或老师都要和其他同学握一次手。
那么一共握了多少次手?
(3)假期里有一些同学相约每人互通两次电话,他们一共打了78次电话,问有多少位同学相约互通电话?
例题4:求1 ~ 99 这99个连续自然数的所有数字之和。
(1)求1~199这199个连续自然数的所有数字之和。
(2)求1~999这999个连续自然数的所有数字之和。
(3)求1~3000这3000个连续自然数的所有数字之和。
例题5:求1~209这209个连续自然数的全部数字之和。
练习5:
(1)求1~308连续自然数的全部数字之和。
(2)求1~2009连续自然数的全部数字之和。
(3)求连续自然数2000~5000的全部数字之和。
【基础巩固】
1.刘大妈做一批工艺鞋,她第一天做了8双,第二天起手艺越来越熟练,每天都比前一天多做2双。
最后一天做了24双,刘大妈这几天共做工艺鞋多少双?
2.小鹏学英语单词,第一天学会了6个,以后每一天比前一天多学相同数量的单词,结果全月(30天)共学了615个单词。
小鹏每天比前一天多学几个英语单词?
3.有50把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?
4.有一大串钥匙被搞乱了,已知至多要试55次,就能使每把锁都配上自己的钥匙。
这一串钥匙到底有几把?
5.小童练习口算,他按照顺序从1开始求和。
当计算到某个数时,和是70,但他重复计算了其中一个数字。
问:小童重复计算了哪个数字?
6.四年级举行羽毛球选拔赛,每个参赛选手都要和其他选手各赛一场,现在有20人参赛,一共要进行多少场比赛?
【拓展提升】
1.过新年时,亲人们相约每两个小家庭之间互通一次电话。
已知琳琳亲人们共打了36次电话,问琳琳的大家庭中共有多少户小家庭?
2.六(1)班同学聚会,每一位同学都和其他同学握一次手。
莎莎共握了30次手,那么参加聚会的同学共我了多少次手?
3.求1~699的699个连续自然数的所有数字之和。
4.求1~4000的4000个连续自然数的所有数字之和。
5.求1~709这709个连续自然数的全部数字之和。
6.求2000~3000这1001个连续自然数的全部数字之和。