材料的基本性质实验
- 格式:docx
- 大小:264.28 KB
- 文档页数:11
材料的基本性质实验一、实验目的1、掌握材料密度、体积密度和表观密度的定义和测定方法2、掌握材料吸水率的定义和测定方法3、掌握材料强度的分类和影响因素4、了解混凝土试件荷载-挠度曲线的测定方法及用途二、实验内容1、测定蒸压灰砂砖、烧结粘土砖和烧结页岩砖的体积密度和质量吸水率。
a测定蒸压灰砂砖、烧结粘土砖和烧结页岩砖的体积密度:使用设备:案秤(量程6kg,精度50g);直尺(精度1mm);干燥箱。
实验步骤:首先,将试件放入105 ℃的干燥箱并干燥至恒重状态,然后冷却至室温并测定质量m;用直尺测量试件的尺寸并计算其体积。
对六面体的试件,需在长、宽、高各个方向测定三处,取其平均值并计算体积V。
材料的体积密度=m/V;单位kg/m3。
(精确至10 kg/m3)b测定蒸压灰砂砖、烧结粘土砖和烧结页岩砖的质量吸水率:使用设备:天平;干燥箱。
实验步骤:将试件放入干燥箱在105 ℃的条件下干燥至恒重状态,然后冷却至室温并测定初始质量m0;将试件放入容器并逐次加水,以使得试样中的开放空隙均被水所填充;30分钟后,取出试件,抹去表面水分以使其处于饱和面干状态,称量其质量m1,然后用排水法测出试样的体积V0;使用如下公式计算材料的质量吸水率和体积吸水率(精确至0.01%):2、观察承压面状态(环箍效应)对混凝土试件抗压强度和破坏状态的影响:测定在不同的加荷速率、试件尺寸和承载面状态下对混凝土试件极限抗压强度得影响。
用加载机在0.5MPa/s以及1.0MPa/s两种加载速率,在直接接触和垫胶片两种不同的承压面接触方式上,对100*100*100、150*150*150、100*100*300三种C30混凝土试件进行加载,观察试件的极限强度以及破坏方式,并分析这些变量对实验结果影响的原因,总结加载混凝土试件的规律经验。
3、用Toni 200kN抗折试验机演示混凝土试件荷载-挠度曲线的测定方法用Toni 200kN抗折试验机演示C30素混凝土、C30轻骨料混凝土、CF30掺入钢纤维的混凝土、C80高强度混凝土进行弯折加载,用计算机绘制不同品质混凝土试件的挠度-荷载曲线,并用日本JSCE - SF4标准分析混凝土的弯曲韧性和弯曲韧性指数,依据混凝土试件挠度-荷载曲线峰值后的面积占曲线总面积的百分比来分析混凝土试样的韧性,并观测强度等级和纤维掺量对混凝土断面形态的影响。
实验1 建筑材料基本物理性质实验(1) 实验目的通过材料密度的测试,计算出材料的孔隙率,了解材料的构造特征。
(2) 试样制备将试样研磨,用孔径0.2 mm筛子筛分除去筛余物,并放到105~110 ℃的烘箱中,烘至恒重。
将烘干的粉料放入干燥器中冷却至室温待用。
(3) 实验步骤①密度的测定A 在李氏瓶中注入煤油至突颈下部,记下刻度数。
将李氏瓶放在盛水的容器中,在试验过程中保持水温为20℃。
B 称取50~90 g试样,用漏斗将试样逐渐送入李氏瓶内,使液面上升至接近20 cm3的刻度为止。
再称剩下的试样,计算送入李氏瓶中的试样质量m(g)。
将注入试样后的李氏瓶液面的读数,减去未注前的读数,得试样得绝对体积V(cm3)。
②体积密度的测定A 称取试样质量m及蜡封试件在空气的质量m1,并对试样表面涂蜡。
B 在容量瓶中加入适量的水,记录水的体积数V1。
C 将试样放入容量瓶中,记录水的体积数V2。
(4) 实验结果计算①密度按下式计算出密度 (精确至0.01 g)ρ=m/V式中m——装入瓶中的质量,gV——装入瓶中试样的体积,cm3密度实验用两个试样平行进行,以其计算结果的算术平均值作为最后结果。
两次结果之差不应大于0.02 g/cm3,否则重做。
②体积密度按下式计算出体积密度ρ0ρ0=m/V0式中m——试样的质量,gV0——试样的体积(包括开口孔隙、闭口孔隙和材料绝对密实体积)V0=V2-V1-[(m1-m)/ρ蜡]实验用两个试样平行进行,以其计算结果的算术平均值作为最后结果。
两次结果之差不应大于0.02 g/cm3,否则重做。
③孔隙率的计算按下式计算孔隙率P(5) 问题与讨论①在进行密度试验时,试样的研碎程度对试验结果有何影响,为什么?答:试验样品内部存在较多孔隙。
颗粒越大材料孔隙率越大,测得的密度值越大,其误差越大。
试件越碎,测试结果越准确。
②在测试密度的试验中,为什么要轻轻摇动李氏瓶?答:因为需要排除空气。
实验名称:材料性质实验实验日期:2023年X月X日实验地点:材料科学实验室实验人员:XXX、XXX、XXX一、实验目的1. 了解材料的力学性能、热性能和化学性能等基本性质。
2. 掌握材料性能测试的基本方法。
3. 分析不同材料在不同条件下的性能差异。
二、实验原理材料的性质是指材料在外力、热力、化学作用等条件下表现出的各种特性。
本实验主要测试材料的力学性能、热性能和化学性能,通过对材料的测试,了解其性质。
三、实验仪器与试剂1. 实验仪器:- 拉伸试验机- 热分析仪- 化学分析仪器- 天平- 试样切割机- 标准试样- 铅笔2. 实验试剂:- 水性溶剂- 酸性试剂- 碱性试剂四、实验步骤1. 材料力学性能测试(1)试样制备:将标准试样切割成规定尺寸,并标记编号。
(2)拉伸试验:将试样固定在拉伸试验机上,按照规定速度拉伸试样,记录最大载荷和断裂载荷。
(3)计算力学性能指标:屈服强度、抗拉强度、延伸率等。
2. 材料热性能测试(1)试样制备:将标准试样切割成规定尺寸,并标记编号。
(2)热分析试验:将试样放入热分析仪中,按照规定升温速率加热试样,记录试样在不同温度下的质量变化和热失重。
(3)计算热性能指标:比热容、热导率、热膨胀系数等。
3. 材料化学性能测试(1)试样制备:将标准试样切割成规定尺寸,并标记编号。
(2)化学分析试验:将试样放入化学分析仪器中,按照规定方法进行化学分析,记录试样的化学成分和含量。
(3)计算化学性能指标:耐腐蚀性、抗氧化性、耐水性等。
五、实验结果与分析1. 材料力学性能结果与分析通过拉伸试验,得到材料的屈服强度、抗拉强度、延伸率等力学性能指标。
结果表明,该材料具有较高的屈服强度和抗拉强度,但延伸率较低,说明材料具有较高的脆性。
2. 材料热性能结果与分析通过热分析试验,得到材料的比热容、热导率、热膨胀系数等热性能指标。
结果表明,该材料具有较高的比热容和热导率,但热膨胀系数较小,说明材料具有良好的热稳定性。
水泥基本性质实验报告篇一:建筑材料水泥试验报告建筑材料水泥试验报告1. 实验目的1.1.掌握水泥各种技术性质定义 .通过试验进一理解水灰比、掺和料对水泥强度的影响。
1.2.学会操作水泥强度和与外加剂相容性的实验方法。
1.3.了解水泥安定性、凝结时间的测试方法。
2. 实验内容2.1.水泥与外加剂相容性实验 1.实验原理相容性的概念:对于混凝土外加剂与水泥适应性的定义,普遍认为:依据混凝土外加剂应用技术规范,将经过检验符合标准的某种外加剂掺入按规定可以使用该品种外加剂的水泥中,用该水泥所配制的混凝土或砂浆若能够产生应有的效果,就认为该水泥与这种外加剂是适应的;相反,如果不能产生应有的效果,则该水泥与这种外加剂不适应。
选用PO42.5水泥300g,水87g(水灰比相同),减水剂掺量不同,分别测定水泥净浆流动度(mm)。
画出减水剂掺量与净浆流动度之间的关系曲线并进行分析。
2.主要设备水泥净浆搅拌机、水平玻璃板、湿布、截锥圆模、电子称、钢尺等。
3.实验步骤我们组负责的是减水剂掺量1.8%的水泥的净浆流动度:(1)将截锥圆模置于水平玻璃板上,先用湿布擦拭截锥圆模内壁和玻璃板,然后将湿布覆盖它们的上方。
(2)称量300g水泥,倒入用湿布擦拭过的搅拌锅内。
(3) 称量5.4g减水剂,加入搅拌锅。
然后称量87g水,加入搅拌锅,搅拌3min。
(4)将拌好的净浆迅速诸如截锥圆模内,刮平,将截锥圆模按垂直方向迅速提起,30s以后量取相互垂直的两直径,并去它们的平均值作为次胶凝材料净浆的流动度。
其它减水剂掺量的实验步骤类似。
2.2.水泥胶砂强度实验 1.实验原理选用PO42.5水泥,改变水灰比和粉煤灰的掺量。
测定不同龄期的抗压、抗折强度,并对其结果进行分析。
其重量比为:水泥:标准砂=1:3。
水灰比分别为:0.45、0.50、0.55。
粉煤灰掺量(内掺):10%、20%。
水泥用量450g,标准砂用量1350g。
2.实验仪器电子称、搅拌机、伸臂式胶砂振动台、可拆卸的三联模、水泥电动抗折实验机、压力实验机和抗压夹具等。
广西科技大学鹿山学院实验报告课程名称:土木工程材料指导教师:班级:姓名:学号:成绩评定:指导教师签字:年月日土木工程材料实验课的要求一、实验室的纪律要求1.进入实验室后,要听从教师的安排,不得大声说笑和打闹。
2.进入实验室后,对本组所用的仪器设备进行检查,如有缺损或失灵应立即报告,由教师修理或调换,不得私自拆卸。
实验结束时,应将所用仪器设备按原位放好,经检查后方可离开实验室。
3.要爱护实验仪器设备,严格按照实验操作规程进行实验,同时注意人身安全,非本次实验所用的室内其他仪器,不得随便乱动。
4.在实验过程中,当仪器设备被损坏时,当事者应立即向实验室教师报告,由其根据学校的规定给予检查或赔偿等处理。
5.实验结束后,每组学生对所用的仪器设备及桌面、地面应加以清理,并由各实验小组轮流做全室的卫生整理。
6.完成实验后,经教师同意后方可离开实验室。
二、实验与实验报告的要求1.每次做实验以前,要认真阅读实验指导书,熟悉实验内容和实验方法步骤。
2.要以严肃的科学态度、严格的作风、严密的方法进行实验,认真记录好实验数据。
3.在实验课进行中要认真回答教师提出的问题,回答问题的情况作为实验课考核成绩的一部分。
4.要认真填写、整理实验报告,不得潦草,不得缺项、漏项,报告中的计算部分必须完成,同时要保持实验报告的整洁。
5.实验报告应及时完成,并按老师规定的时间上交。
实验一土木工程材料的基本性质实验报告一、实验内容二、主要仪器设备及规格型号三、实验记录(一) 材料的表观密度测试试样名称:_____________________ 实验日期:____________________ 气温/室温:_____________________ 湿度:____________________1.砂的表观密度:表1—4 砂表观密度测定结果2.石子的表观密度:表1—5 石子表观密度测定结果试样名称:_____________________ 实验日期:____________________ 气温/室温:_____________________ 湿度:____________________表1—6 堆积密度测定结果(五) 材料的吸水率测试试样名称:_____________________ 实验日期:____________________ 气温/室温:_____________________ 湿度:____________________表1—7 吸水性测定结果四、实验小结:实验二水泥实验报告一、实验内容二、主要仪器设备及规格型号三、实验记录水泥品种:_____________________ 强度等级:____________________ 产品及名称:_____________________ 出厂日期:____________________(一) 水泥细度测试实验日期:____________ 气温/室温:____________ 湿度:____________1.负压筛析法表2—1 水泥细度记录表2.水筛法表2—2 水泥细度记录表3.手工干筛法表2—3 水泥细度记录表(二) 水泥标准稠度测试实验日期:____________ 气温/室温:____________ 湿度:____________1.标准法表2—4 标准稠度用水量测定记录表2.代用法(1) 调整水量法表2—5 标准稠度用水量测定记录表(2) 不变水量法表2—6 标准稠度用水量测定记录表(三) 水泥凝结时间测试实验日期:____________ 气温/室温:____________ 湿度:____________表2—7 水泥凝结时间记录表结论:(四) 水泥安定性测试实验日期:____________ 气温/室温:____________ 湿度:____________1.标准法(雷氏夹法)表2—8 水泥安定性记录表2.代用法(试饼法)沸煮前试饼情况形容:直径约______________ ;厚度______________ ;沸煮后目测试饼情况:______________________________________________________ 。
建筑材料工程力学土质土力学实验报告专业道路桥梁工程姓名文李学号 14组别湖南网络工程学院实验一建筑材料基本性质试验报告一、实验目的本实验的主要任务就是通过对固体材料密度、表观密度、堆积密度、吸水率检测方法的练习,掌握材料基本物理参数的获取方法,并利用所测得物理状态参数来计算材料的孔隙率及空隙率等构造参数,从而推断其对材料其他性质的影响。
二、实验仪器游标卡尺、直尺、天平、李氏瓶、试样筛、量筒、天平。
温度计、漏斗三、实验内容和步骤A、表观密度测量1、用天平称量出试件的质量m(kg)2、用游标卡尺测量试样尺寸(长,宽,厚),并计算试样的体积V。
(m³)B、密度试验1、往李氏瓶注入与试样不发生反应的液体至凸颈下部,记下刻度(V1)2、称取60~90g试样,用小勺和漏斗将试样徐徐送入李氏瓶中3、微倾并转动李氏瓶,用瓶内的液体将粘附在瓶颈和瓶壁的试样冲入瓶内液体中,待液体中气泡排出后,记下液面刻度(V2)4、取剩余试样的质量,计算出装入瓶中的试样质量m5、计算瓶中试样所排开水的体积:V=V2- V1四、实验结果计算 (一)水泥石的表观密度(二)水泥粉的密度 (三)水泥石孔隙率的计算%100)/1(01⨯-=ρρP =(1-1.663/2.255)×100%=26.6% %100)/1(02⨯-=ρρP =(1-1.355/2.255)×100%=39.9% 五、实验结果分析(比较两组水泥石的性质差异)由P 1<P 2可知,一号水泥石的孔隙率比较小,其材料的力学性能比较好实验二混凝土用砂实验试验原始记录试验时间2013.3.29 温度22℃相对湿度82%一、砂的筛分析试验二、砂的表观密度测定三、砂的堆积密度测定实验二混凝土用砂试验报告一、实验目的通过对砂的筛分析、表观密度测定、堆积密度测定,掌握混凝土用砂的检验,评定其各项技术性能二、实验仪器水泥标准筛、筛框、筛盖广口瓶、天平、筛子、搪瓷盘容量筒、平头铁掀。
一、实验目的1. 了解亚克力材料的基本性质。
2. 掌握亚克力材料的物理性能测试方法。
3. 分析亚克力材料的性能与其应用之间的关系。
二、实验原理亚克力(Acrylic),又称有机玻璃,是一种具有良好透明性、耐磨性、耐冲击性、耐化学腐蚀性等优异性能的有机高分子材料。
本实验主要研究亚克力材料的以下物理性能:1. 密度2. 比重3. 拉伸强度4. 弯曲强度5. 压缩强度6. 硬度7. 热变形温度三、实验仪器与材料1. 仪器:电子天平、拉伸试验机、弯曲试验机、压缩试验机、硬度计、热变形温度测定仪、亚克力样品等。
2. 材料:亚克力板材。
四、实验方法与步骤1. 密度测试(1)将亚克力样品放入电子天平中,称得质量为m1。
(2)将亚克力样品放入量筒中,测量其体积为V1。
(3)根据公式ρ = m1/V1计算亚克力样品的密度。
2. 比重测试(1)将亚克力样品放入电子天平中,称得质量为m1。
(2)将亚克力样品放入量筒中,测量其体积为V1。
(3)将量筒中的水倒入烧杯中,测量水的质量为m2。
(4)根据公式比重 = m1/m2计算亚克力样品的比重。
3. 拉伸强度测试(1)将亚克力样品放入拉伸试验机中,调整试验机夹具。
(2)启动试验机,以一定的拉伸速度对亚克力样品进行拉伸。
(3)记录拉伸强度值。
4. 弯曲强度测试(1)将亚克力样品放入弯曲试验机中,调整试验机夹具。
(2)启动试验机,以一定的弯曲速度对亚克力样品进行弯曲。
(3)记录弯曲强度值。
5. 压缩强度测试(1)将亚克力样品放入压缩试验机中,调整试验机夹具。
(2)启动试验机,以一定的压缩速度对亚克力样品进行压缩。
(3)记录压缩强度值。
6. 硬度测试(1)将亚克力样品放入硬度计中,调整硬度计夹具。
(2)启动硬度计,以一定的力度对亚克力样品进行测试。
(3)记录硬度值。
7. 热变形温度测试(1)将亚克力样品放入热变形温度测定仪中,调整温度。
(2)观察亚克力样品在温度升高过程中的变形情况。
第1篇一、实验目的1. 了解木材的基本力学性质。
2. 掌握木材力学性质实验的基本方法和步骤。
3. 通过实验,分析影响木材力学性质的主要因素。
二、实验原理木材的力学性质主要包括强度、硬度、刚度和韧性等。
本实验通过测定木材的抗拉、抗压、抗弯和抗剪等力学性能,分析木材的力学性质及其影响因素。
三、实验材料与设备1. 实验材料:木材试件(硬木、软木、针叶木等)。
2. 实验设备:万能试验机、切割机、量具、砝码等。
四、实验步骤1. 样品准备:将木材试件切割成规定尺寸,如100mm×100mm×10mm。
2. 抗拉强度测试:a. 将试件固定在万能试验机上,确保试件平行于拉伸方向。
b. 拉伸速度设定为10mm/min。
c. 记录试件断裂时的最大拉力值。
3. 抗压强度测试:a. 将试件固定在万能试验机上,确保试件垂直于压缩方向。
b. 压缩速度设定为5mm/min。
c. 记录试件破坏时的最大压力值。
4. 抗弯强度测试:a. 将试件放置在万能试验机上,确保试件平行于弯矩方向。
b. 弯曲速度设定为10mm/min。
c. 记录试件破坏时的最大弯矩值。
5. 抗剪强度测试:a. 将试件放置在万能试验机上,确保试件平行于剪切方向。
b. 剪切速度设定为10mm/min。
c. 记录试件破坏时的最大剪切力值。
五、实验结果与分析1. 抗拉强度:硬木试件的抗拉强度最高,软木试件次之,针叶木试件最低。
2. 抗压强度:硬木试件的抗压强度最高,软木试件次之,针叶木试件最低。
3. 抗弯强度:硬木试件的抗弯强度最高,软木试件次之,针叶木试件最低。
4. 抗剪强度:硬木试件的抗剪强度最高,软木试件次之,针叶木试件最低。
六、实验结论1. 木材的力学性质与其种类、密度、含水率、木纹方向等因素密切相关。
2. 硬木试件的力学性能普遍优于软木和针叶木试件。
3. 实验结果与理论分析基本一致。
七、实验注意事项1. 实验过程中,确保试件表面平整、无损伤。
材料的基本性质实验实验目的1、掌握材料密度、体积密度和表观密度的定义和测定方法2、掌握材料吸水率的定义和测定方法3、掌握材料强度的分类和影响因素4、了解混凝土试件荷载-挠度曲线的测定方法及用途实验内容1、测定蒸压灰砂砖、烧结粘土砖和烧结页岩砖的体积密度和质量吸水率。
a测定蒸压灰砂砖、烧结粘土砖和烧结页岩砖的体积密度:使用设备:案秤(量程6kg,精度50g);直尺(精度1mm);干燥箱。
实验步骤:首先,将试件放入105 C的干燥箱并干燥至恒重状态,然后冷却至室温并测定质量m ;用直尺测量试件的尺寸并计算其体积。
对六面体的试件,需在长、宽、高各个方向测定三处,取其平均值并计算体积V。
材料的体积密度=m/V ;单位kg/m3。
(精确至10 kg/m3)b测定蒸压灰砂砖、烧结粘土砖和烧结页岩砖的质量吸水率:使用设备:天平;干燥箱。
实验步骤:将试件放入干燥箱在105 C的条件下干燥至恒重状态,然后冷却至室温并测定初始质量m0;将试件放入容器并逐次加水,以使得试样中的开放空隙均被水所填充;30分钟后,取出试件,抹去表面水分以使其处于饱和面干状态,称量其质量m1,然后用排水法测出试样的体积V0 ;使用如下公式计算材料的质量吸水率和体积吸水率(精确至0.01%):2、观察承压面状态(环箍效应)对混凝土试件抗压强度和破坏状态的影响:测定在不同的加荷速率、试件尺寸和承载面状态下对混凝土试件极限抗压强度得影响。
用加载机在0.5MPa/s以及1.0MPa/s两种加载速率,在直接接触和垫胶片两种不同的承压面接触方式上,对100*100*100、150*150*150、100*100*300三种C30混凝土试件进行加载,观察试件的极限强度以及破坏方式,并分析这些变量对实验结果影响的原因,总结加载混凝土试件的规律经验。
3、用Toni 200kN抗折试验机演示混凝土试件荷载-挠度曲线的测定方法用Toni 200kN抗折试验机演示C30素混凝土、C30轻骨料混凝土、CF30掺入钢纤维的混凝土、C80高强度混凝土进行弯折加载,用计算机绘制不同品质混凝土试件的挠度-荷载曲线,并用日本JSCE - SF4标准分析混凝土的弯曲韧性和弯曲韧性指数,依据混凝土试件挠度-荷载曲线峰值后的面积占曲线总面积的百分比来分析混凝土试样的韧性,并观测强度等级和纤维掺量对混凝土断面形态的影响。
三、实验结果及分析1、测定蒸压灰砂砖、烧结粘土砖和烧结页岩砖的体积密度和质量吸水率。
a、测定蒸压灰砂砖、烧结粘土砖和烧结页岩砖的体积密度。
砖的类型粘土砖页岩砖灰砂砖干燥质量(g )2380 2423 2850 长/mm 239.5241.1 241.1 239.0 238.2 240.9 238.9 239.9 240.9 长平均值/mm230.1 239.7 241.0 宽/mm 115.0115.5 114.9 115.5 114.8 114.7 115.2 114.3 115.1 宽平均值/mm115.2 114.9 114.9 高/mm 51.051.2 54.1 50.9 50.9 53.9 50.1 52.2 54.2 咼平均值/mm 50.7 51.4 54.1 体积/mm 31.344*10 61.417*10 61.498*10 6体积密度:粘土砖:2.3B0Ckg) 1.344 X ID' \m 3)二 1.77 x页岩砖:mo 2423 (kg) 3 p =——= --------------- ;—=171 x It) kg/invo 1.417 x 10 _3(m 3)灰砂砖:mo 2.aso (kg) p — -— vo 1.198 X1/J0 x llPkg/m "实验中测量的三种砖块的体积密度大致为1.7*103kg.m 3至1.9*103kg.m 3砖的类型 干燥砖的质量m °(g )吸水30分钟后质量m 1(g )粘土砖 2380 2624 页岩砖2423 2792 灰砂砖28502998m i-mow 二——=m m2624—23H023S0二 10.25%页岩砖:2、测定蒸压灰砂砖、烧结粘土砖和烧结页岩砖的质量吸水率实验数据处理:质量吸水率:粘土砖:吸水率差异分析:粘土砖:以砂质粘土(主要化学成分是 SiO2 , AI2O3和Fe2O3)为主要原料,在 900-1000摄氏度左右进行烧结而成。
由于其中的粘土被部分烧结,故具有较多的 孔隙,且多为开口孔隙,所以吸水率较大。
页岩砖:以页岩为主要原料, 页岩的化学组成与粘土相近, 但因其颗粒细度不及粘土,故塑性较差,制砖时常需掺入一定量的粘土,以增加可塑性。
灰砂砖:以石灰和天然砂为主要原料,在0.8MPa , 175摄氏度的条件下蒸养 6小时而成,由其中的Ca (OH )2与SiO2反应生产水化硅酸钙凝胶而产生强度。
灰砂砖外观光洁整齐,均匀密实。
但不宜用在高水流和高温(大于200摄氏度)的地区,以免发生Ca (OH )2的滤析及Ca (OH )2和水化硅酸钙凝胶的脱水分解。
结合上一实验的数据可以发现:材料的体积密度越大,那么它的吸水率就越小,因为体积密度和孔洞的多少有一定关系,蒸压灰砂砖的体积密度大,材料内部结构密实,孔洞较少,因此吸水率较小;烧结粘土砖和烧结页岩砖体积密度较小, 空洞多,因此吸水率也较小。
3、观察承压面状态(环箍效应)对混凝土试件抗压强度和破坏状态的影响用加载机在不同条件下对混凝土试件进行加载,结果如下:考察因素加荷速率 (kN/s / Mpa/s )试件尺寸 (mm )承压面状态极限载荷 kN/Mpa现象加荷速率& 承压面状态5/0.5 10/1.0 5/0.5100*100*100 直接接触 直接接触 垫胶片396.5/39.6 419.0/41.9 121.0/12.1成双倒锥破坏 成双倒锥破坏,极限载荷大 (与裂纹扩展的速度有关) 呈条状破坏 (与环箍效应有关)试件尺寸11.25/0.5 5/0.5150*150*150 100*100*300直接接触 直接接触806.0/35.8 346.4/34.6呈双倒锥破坏,极限载荷降低(与临界裂纹存在的几率有关) 呈双倒锥破坏,极限载荷降低(与环箍效应有关)结果分析:一、 加荷速率会影响测得的混凝土极限载荷,加荷速率越大,测得的极限载荷越大,混凝土破坏时,裂缝最开始出现在粗骨料和浆体的粘合面上, 然后沿着粘合面扩展,裂缝逐渐融合为大的裂缝,最终导致混凝土试件的断 裂,而加载速度越慢,裂缝扩展的越充分,导致测试得到的强度越低。
所以 对混凝土试件的加荷速率要有统一的规定,一般强度小于 C30的混凝土加荷 速率为0.3-0.5Mpa/s ,强度大于 C30的混凝土加荷速率为 0.5-0.8 Mpa/s ,强度 大于C60的混凝土加荷速率为0.8-1.0 Mpa/s ;二、 试件尺寸会影响测得的混凝土尺寸,尺寸大的混凝土试件中临界裂纹存在的几率越大,尺寸越大的混凝土测得的强度越低;三、 在不同条件下,混凝土的破坏性状也不同。
直接与加载台接触的试 件破坏之后呈现双倒锥破坏的形状,而受压面垫胶皮的一组呈现竖直方向的 断裂纹路。
承压面状态会影灰砂砖:2了彩-2蛀32423二 15.23%m t _ mo 2998-2850 叫二-2B5O= 539%响测试的结果,混凝土试样在受压时,在沿加荷方向发生纵向变形的同时,也按泊松比效应产生横向变形。
由于试验机的上下压板的弹性模量比混凝土大5-15倍,而泊松比则不大于混凝土的两倍。
所以,在荷载作用下,压板的横向应变小于混凝土的横向应变,从而在摩擦力的作用下对试件的横向膨胀起约束作用,对混凝土试件的测试强度有提高作用。
愈接近试样的端面,这种约束作用就愈大。
在距离端面大约的范围以外,这种约束作用才消失。
这种约束作用,称为环箍效应。
如果在加载平台和试件之间加上一层橡胶,由于橡胶的弹性模量很小,所以对测试结果的影响不大;四、试件的高度对实验结果也有一定的影响,比较100*100*100和100*100*300两种试件,发现后者的极限强度小,原因是环箍效应对离加载平台近的部分作用更明显,而高度较大的试件中部所受环箍效应不明显,所能承受的载荷极限就较小。
对于北美等使用ASTM标准的国家,用于测定混凝土抗压强度的混凝土试件为圆柱体,且圆柱体的H/D=2。
对于圆柱体试件,在抗压强度的测试过程中,在试件高度方向的中部存在单轴向的受压区。
所以使用圆柱体试件所测得的混凝土抗压强度较立方体的试件要小。
通常假定立方体试件的抗压强度与圆柱体试件的抗压强度之比为 1.25,但这不是严格的一个常数,它随混凝土强度的变化而变化。
结构物体总是存在裂纹,这促使人们去探讨裂纹尖端的应力和应变场以及裂纹的扩展规律。
早在20年代,格里菲思首先提岀了玻璃的实际强度取决于裂纹的扩展应力这一重要观点。
欧文于1957年提岀应力强度因子及其临界值概念,用以判别裂纹的扩展,从此诞生了断裂力学。
当裂缝尖端变成无限地尖锐,即P- 0时,材料的强度就小到可以忽略的程度。
一个具有尖锐裂缝的材料,是否具有有限的强度,必须进一步弄清楚发生断裂的必要条件和充分条件。
格里菲思从能量平衡的观点研究了断裂过程,认为:①断裂要产生新的表面,需要一定的表面能,断裂产生新的表面所需要的表面能是由材料内部弹性储能的减少来补偿的;②弹性储能在材料中的分布是不均匀的。
裂缝附近集中了大量弹性储能,有裂缝的地方比其他地方有更多的弹性储能来供给产生新表面所需要的表面能,致使材料在裂缝处先行断裂。
4、用Toni 200kN抗折试验机演示混凝土试件荷载-挠度曲线的测定方法,观察强度等级和纤维掺量对混凝土挠度-荷载曲线和断面形态的影响。
用Toni 200kN抗折试验机在混凝土试件的两个三等分点出对混凝土试件进行加载,中间1/3部分受纯弯曲作用,因此可以通过传感器测量试验机对混凝土的载荷和试件变形量之间的关系,进而做出载荷-挠度曲线,并依据混凝土试件挠度-荷载曲线和日本JSCE - SF4标准分析混凝土的弯曲韧性和弯曲韧性指数。
一、加载过程的控制:位移控制速率:1(1〜—)mm ,1500 3000 ' min对于高度为100mm的试件,位移控制速率应为0.2-0.1mm/min,在此取0.2mm/min。
测试所需试件跨距中点的挠度值:tb l150二、混凝土试件弯曲强度、弯曲韧性、弯曲韧性指数的计算方法:弯曲强度:Pl 其中:P为试件的极限弯曲荷载(kN),b和h分别b bh2为试件的宽度和高度(mm )。
弯曲韧性:韧性的定义是试件在变形或折断的过程中吸收的能量,所以在本实验中可以用载荷-挠度曲线下的面积来表示试件的韧性。