复变函数复习
- 格式:doc
- 大小:442.50 KB
- 文档页数:11
(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. ①两个复数相等,当且仅当它们的实部与虚部分别相等。
②一个复数等于零,当且仅当它的实部与虚部同时等于零。
③称复数x+iy 和x-iy 互为共轭复数。
2.复数的表示1)模:z=2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于[)π2,0中的幅角。
(()Arg z 有无穷个值,()arg z 是复数z 的辐角的主值()Arg z =()arg z +2k π3)()arg z 与arctan y x之间的关系如下: 当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:)sin (cos z θθi r +=,其中)(r z g A =θ;注:中间一定是“+”号。
(r=|z|)5)指数表示:θi re =z ,其中)(r z g A =θ。
(二) 复数的运算 1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±··2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
复变函数复习提纲一、复数及复平面上的运算1.复数的定义和基本性质2.复数的表示形式:直角坐标形式和极坐标形式3.复数的加法和减法4.复数的乘法和除法5.复数的共轭、模和幅角二、复变函数的定义1.复变函数的定义和常见符号表示2.复变函数的实部和虚部3.复变函数的可导性和全纯性4.复变函数的解析函数和全纯函数5.复变函数与实变函数的区别三、复变函数的基本运算1.复变函数的和、差、积、商的性质2.复变函数的乘方和开方3.复变函数的复合函数和反函数4.复变函数的三角、指数和对数函数5.基本初等函数的推广四、复变函数的级数展开1.复变函数的幂级数展开2.零点的意义和展开中的唯一性3.幂级数的敛散性和收敛半径4.幂级数的和函数和导函数5.复变函数的泰勒级数展开和洛朗级数展开五、复变函数的积分1.复变函数的定积分和不定积分2.瑕积分和主值积分的定义3.复变函数的原函数和柯西-黎曼积分定理4.瑕积分和主值积分的计算方法5.狄利克雷定理和焦函数的应用六、解析函数的应用1.几何转化和连续映射2.物理应用:流体流动和电场问题3.工程应用:电阻网络和热传导问题4.统计应用:随机过程和随机变量5.数学应用:多复变数函数和复变函数的边界性质七、复变函数的解析延拓1.裂点和分岔点的概念和性质2.加点后的解析延拓和解析延拓的唯一性3.互补法和不动点法的应用4.点列内闭包性质和整函数性质的判别5.亚纯函数和亚纯函数的零点性质八、复变函数的几何应用1.复变函数的映射和对应关系2.线性变换和保持角度的特殊变换3.保形映射和自共轭函数的性质4.圆盘映射和单位圆盘函数5.黎曼映射和分式线性变换的应用九、复变函数的调和函数1.调和方程和调和函数的概念2.调和函数的基本性质和解析条件3.核函数和调和函数的唯一性4.调和函数的积分表示和傅里叶展开5.调和函数的应用:电势和温度分布以上是复变函数的复习提纲,包括了复数及复平面上的运算、复变函数的定义、复变函数的基本运算、复变函数的级数展开、复变函数的积分、解析函数的应用、复变函数的解析延拓、复变函数的几何应用和复变函数的调和函数等内容。
复变函数论(A )Ⅰ. Cloze Tests (20102=⨯ Points )1. If nn n n i i z ⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=1173,thenlim =+∞→n n z .2. If C denotes the circle centered at 0z positively oriented and n is apositive integer ,then)(10=-⎰Cn dz z z . 3. The radius of convergence of∑∞=++13)123(n n z n nis .4. The singular points of the function )3(cos )(22+=z z zz f are . 5. 0 ,)ex p(s Re 2=⎪⎭⎫⎝⎛n z z , where n is a positive integer.6.=)sin (3z e dzd z. 7. The main argument and the modulus of the number i -1 are . 8. The square roots of i -1 are . 9. The definition of z e is . 10. Log )1(i -= .Ⅱ. True or False Questions (1553=⨯ Points)1. If a function f is analytic at a point 0z ,then it is differentiable at 0z .( )2. If a point 0z is a pole of order k of f ,then 0z is a zero of order k off /1.( )3. A bounded entire function must be a constant.( )4. A function f is analytic a point 000iy x z += if and only if whose real andimaginary parts are differentiable at ),(00y x .( )5. If f is continuous on the plane and =+⎰Cdz z f z ))((cos 0 for every simpleclosed path C , then z e z f z 4sin )(+ is an entire function. ( )Ⅲ. Computations (3557=⨯ Points)1. Find⎰=-+1||)2)(12(5z z z zdz.2. Find the value of ⎰⎰==-+228122)1(sin z z z z dzz dz z ze . 3. Let )2)(1()(--=z z zz f ,find the Laurent expansion off on the annulus{}1||0:<<=z z D .4. Given λλλλd z z f C⎰-++=345)(2,where {}3|:|==z z C ,find )1(i f +-'.5. Given )1)(1(sin 1)(2+-+=z z zz f ,find )1),(Res()1),(Res(-+z f z f .Ⅳ. Verifications (30310=⨯ Points)1. Show that if )(0)()(C z z f k ∈∀≡, then )(z f is a polynomial of order k <.2. Show that 012797lim 242=+++⎰+∞→R C R dz z z z , where R C is the circle centered at 0 with radius R .3. Show that the equation 012524=-+-z z z has just two roots in the unite disk复变函数论(B )Ⅰ. Cloze Tests (20102=⨯ Points )1. If nn n n i i z ⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=1162,thenlim =+∞→n n z .2. If C denotes the circle centered at 0z positively oriented and n is apositive integer ,then)(10=-⎰Cn dz z z . 3. The radius of the power series∑∞=+12)1(n n z nis .4. The singular points of the function )1(sin )(2+=z z zz f are . 5. 0 ,)ex p(s Re 2=⎪⎭⎫⎝⎛n z z , where n is a positive integer.6.=z e dzd z2cos . 7. The main argument and the modulus of the number i -1 are . 8. The square roots of 1+i are . 9. The definition of z cos is . 10. Log )1(i += .Ⅱ. True or False Questions (1553=⨯ Points)1. If a function f is differentiable at a point 0z ,then it is continuous at 0z .( )2. If a point 0z is a pole of order m of f ,then 0z is a zero of order m off /1.( )3. An entire function which maps the plane into the unite disk must be aconstant.( )4. A function f is differentiable at a point 000iy x z += if and only if whosereal and imaginary parts are differentiable at ),(00y x and the CauchyRiemann conditions hold there.( )5. If a function f is continuous on the plane and=⎰Cdz z f )(0 for everysimple closed contour C , then z z f sin )( is an entire function. ( )Ⅲ. Computations (3557=⨯ Points)1. Find⎰=-+1||)2)(12(z z z zdz.2. Find the value of ⎰⎰==-+223122)1(sin z z z z dzz dz z ze . 3. Let )2)(1()(--=z z zz f ,find the Laurent expansion off on the annulus{}1||0:<<=z z D .4. Given λλλλd z z f C⎰-++=142)(2,where {}3|:|==z z C ,find )1(i f +-'.5. Given )1)(1(sin )(2+-=z z zz f ,find )1),(Res()1),(Res(-+z f z f .Ⅳ. Verifications (30310=⨯ Points)1. Show that the function iy x e e z z f ---=)2()(2is an entire function.2. Show that if )(0)()(C z z f m ∈∀≡, then )(z f is a polynomial of orderm <.3. Show that 0651lim 242=+++⎰+∞→R C R dz z z z , where R C is the circle centered at 0 with radius R .复变函数论(C )Ⅰ. Cloze Tests (20102=⨯ Points )1. If nnn n i i z ⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+=3131,thenlim =+∞→n n z .2. If C denotes any simple closed contour and 0z is a point inside C , then)(sin 0=-⎰Cn dz z z z, where n is an integer. 3. The radius of convergence of the power series∑∞=-12)63(n n z nis .4. The singular points of the function )2(cos )(244-+=z z z z z f are .5. 0 ,)ex p(s Re =⎪⎭⎫⎝⎛m z z , where m is a positive integer.6. The main argument and the modulus of the number iie 45π are . 7. The integral of the function )(sin )(2ti t t t w += on ]1,1[- is . 8. The definition of z sin is . 9. Log )1(i -= .10. The solutions of the equation 013=-zi e are .Ⅱ. True or False Questions (1553=⨯ Points)1. If a function f is continuous at a point 0z ,thenit is differentiable at 0z .( )2. If a point 0z is a pole of order m of f ,then there is a function ϕ that isanalytic at 0z with 0)(0≠z ϕ such that mz z z z f )()()(0-=ϕ on somedeleted neighborhood of 0z .( )3. An entire function which is identically zero on a line segment must beidentically zero.( )4. A function f is differentiable on open set D if and only if whose real andimaginary parts are differentiable on D and the Cauchy Riemann conditions hold on D .( )5. If a function f is continuous on the plane and=⎰Cdz z f )(0 for everysimple closed path C , then 0)(=z f for all z . ( )Ⅲ. Computations (3557=⨯ Points)1. Find⎰=++1||)23)(13(9z z z zdz.2. Find the value of ⎰⎰==-+-222142)1(sin z z z dzz dz z zz . 3. Let )2)(1(3)(2++=z z z z f ,find the Laurent expansion of f on the annulus{}1||0:<<=z z D .4. Given ξξξξd z z f C ⎰-++=543)(2,where {}4|:|==z z C ,find )2(i f +'.5. Find ⎪⎪⎭⎫⎛+i z z ,)1(4Res 222. Ⅳ. Verifications (30310=⨯ Points)1. Show that 0233lim 242=+++⎰+∞→RC R dz z z z , where R C is the circle centered at 0 with radius R .2. Suppose that f is analytic and ||f is a constant on a domain a domainD , prove that a z f =)( for some constant a and all D z ∈.3. Show that the equation z z z z -=+-127234 has just three roots in the unite disk.《复变函数论》试题(D )Ⅰ. Cloze Tests (20102=⨯ Points )1. If nnn n i i z ⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=1153,then lim =+∞→n n z . 2. If C denotes the circle centered at 0z positively oriented and n is apositive integer ,then)(10=-⎰C n dz z z . 3. The radius of the power series∑∞=++13)12(n n z n nis .4. The singular points of the function )3(cos )(2+=z z zz f are .5. 0 ,)ex p(s Re 2=⎪⎭⎫⎝⎛n z z , where n is a positive integer.6.=)sin (5z e dzd z. 7. The main argument and the modulus of the number i -1 are . 8. The square roots of 1+i are . 9. The definition of z e is . 10. Log )1(i += .Ⅱ. True or False Questions (1553=⨯ Points)1. If a function f is differentiable at a point 0z ,then it is analytic at 0z .( )2. If a point 0z is a pole of order k of f ,then 0z is a zero of order k off /1.( )3. A bounded entire function must be a constant.( )4. A function f is analytic a point 000iy x z += if and only if whose real andimaginary parts are differentiable and the Cauchy Riemann conditions hold in a neighborhood of ),(00y x .( )5. If a function f is continuous on the plane and=⎰Cdz z f )(0 for everysimple closed contour C , then z e z f z sin )(+ is an entire function. ( )Ⅲ. Computations (3557=⨯ Points)1. Find⎰=-+1||)2)(12(z z z zdz.2. Find the value of ⎰⎰==-+223122)1(sin z z z z dzz dz z ze . 3. Let )2)(1()(--=z z zz f ,find the Laurent expansion off on the annulus{}1||0:<<=z z D .4. Given λλλλd z z f C⎰-++=142)(2,where {}3|:|==z z C ,find )1(i f +-'.5. Given )1)(1(sin )(2+-=z z zz f ,find )1),(Res()1),(Res(-+z f z f .Ⅳ. Proving (30310=⨯ Points)1. Show that if )(0)()(C z z f m ∈∀≡, then )(z f is a polynomial of order m <.2. Show that 012783lim 242=+++⎰+∞→R C R dz z z z , where R C is the circle centered at 0 with radius R .3. Show that the equation 012524=-+-z z z has just two roots in the unitedisk.《复变函数论》试题(E )Ⅰ. Cloze Tests (20102=⨯ Points )1. If nn n i n n z ⎪⎭⎫⎝⎛++-=211,thenlim =+∞→n n z . 2. If C denotes the circle centered at 0z and n is an integer ,then)(1210=-⎰C n dz z z i π. 3. The radius of the power series∑∞=+12)1(n n z nis .4. The singular points of the function 1cos )(2+=z zz f are . 5. 0 ,sin s Re 2=⎪⎭⎫⎝⎛n z z , where n is a positive integer.6.=z e dzd z2sin . 7. The main argument and the modulus of the number i +1 are . 8. The square roots of )0(>A Ai are . 9. The definition of z cos is . 10. Log )22(i += .Ⅱ. True or False Questions (1553=⨯ Points)1. If a function f is differentiable at a point 0z ,then it is continuous at 0z .( )2. If a point 0z is a zero of order n of f ,then 0z is a pole of order n off /1.( )3. There is a non-constant entire function which maps the plane into the disk1000||<z .( )4. A function f is differentiable at a point 000iy x z += if and only if whosereal and imaginary parts are differentiable at ),(00y x and the Cauchy Riemann conditions hold there.( )5. If a function f is continuous on the plane and=⎰Cdz z f )(0 for everysimple closed contour C , then it is an entire function. ( )Ⅲ. Computations (3557=⨯ Points)1. Find the integral ⎰+C zdz z e 12, where C is the circle 7||=z .2. Find the value of ⎰⎰==+-+235121)1(sin z z z z dzz dz z ze . 3. Let )2)(1(1)(--=z z z f ,find the Laurent expansion off on the annulus{}1||0:<<=z z D .4. Given λλλλd z z f C⎰-++=765)(2,where {}4|:|==z z C ,find )1(i f +'.5. Given )0(2:,2)(πθθ≤≤=+=i e z C zz z f ,find dz z f C⎰)(.Ⅳ. Proving (30310=⨯ Points)1. Show that 020914lim 242=++-⎰+∞→RC R dz z z z , where R C is the circle centered at 0 with radius R .2. Suppose that f is an entire function and there is a constant M and apositive integer m such that )(|||)(|C ∈∀≤z z M z f m . Prove thatm m z a z a z a z f +++= 221)(for some constants 1a , m a a ,,2 and all z in the plane.3·Show that the equation 01438=-+-z z z has just three roots in the unite disk2005-2006学年第一学期期末考试2003级数学与应用数学专业《复变函数论》试题(C )Ⅰ. Cloze Tests (20102=⨯ Points )1. If nnn n i i z ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=2121,then lim =+∞→n n z . 2. If C denotes any simple closed contour and 0z is a point inside C , then)(10=-⎰Cn dz z z , where n is an integer. 3. The radius of the power series∑∞=123n n z nis .4. The singular points of the function )2(cos )(24-=z z zz f are .5. 0 ,)ex p(s Re =⎪⎭⎫⎝⎛nz z , where n is a positive integer. 6. The main argument and the modulus of the number iie 42π are . 7. The integral of the function )(sin )(4i t t t w += on ]1,1[- is .8. The definition of z cos is .9. Log )1(i -= .10. The solutions of the equation 012=-zi e are .Ⅱ. True or False Questions (1553=⨯ Points)1. If a function f is continuous at a point 0z ,then it is differentiable at 0z .( )2. If a point 0z is a pole of order m of f ,then there is analytic function ϕat 0z with 0)(0≠z ϕ such that m z z z z f )()()(0-=ϕ on some deleted neighborhood of 0z .( )3. An entire function which is identically zero on the real axis must be zero.( )4. A function f is differentiable on a domain D if and only if whose realand imaginary parts are differentiable on D and the Cauchy Riemann conditions hold on D .( )5. If a function f is continuous on the plane and=⎰C dz z f )(0 for everysimple closed contour C , then 0)(=z f for all z . ( )Ⅲ. Computations (3557=⨯ Points)1. Find ⎰=++1||)23)(13(z z z zdz .2. Find the value of ⎰⎰==-+-22216)1(sin z z z dz z dz z z z . 3. Let )2)(1()(2++=z z z z f ,find the Laurent expansion of f on the annulus {}1||0:<<=z z D .4. Given ξξξξd z z f C⎰-++=143)(2,where {}4|:|==z z C ,find )2(i f +'. 5. Evaluate ),)1((Res 222i z z +.Ⅳ. Proving (30310=⨯ Points)1. Show that 02316lim 242=+++⎰+∞→R C R dz z z z , where R C is the circle centered at 0 with radius R .2. Suppose that f is differentiable and ||f is a constant on a domain D , prove that A z f =)( for some constant A and all D z ∈.3. Show that the equation 0127234=-++-z z z z has just three roots in the unite disk.复变函数考试试题(G )1. 求通过1z 和2z 的线段的参数方程(用复数形式表示)。
复变函数复习题详细答案复变函数复习题详细答案如下:1. 复数的代数形式和几何解释复数 \( z = a + bi \) 可以表示为平面上的一个点 \( (a, b) \),其中 \( a \) 是实部,\( b \) 是虚部。
复数的模 \( |z| \) 表示该点到原点的距离,即 \( |z| = \sqrt{a^2 + b^2} \)。
2. 复数的运算两个复数 \( z_1 = a + bi \) 和 \( z_2 = c + di \) 的加法和乘法运算如下:\[ z_1 + z_2 = (a + c) + (b + d)i \]\[ z_1 \cdot z_2 = (ac - bd) + (ad + bc)i \]3. 复数的共轭和模复数 \( z = a + bi \) 的共轭为 \( \overline{z} = a - bi \),模为 \( |z| = \sqrt{a^2 + b^2} \)。
4. 复数的指数形式复数 \( z \) 可以表示为指数形式 \( z = re^{i\theta} \),其中\( r = |z| \) 是模,\( \theta \) 是 \( z \) 的辐角,满足\( \cos\theta = \frac{a}{r} \) 和 \( \sin\theta = \frac{b}{r} \)。
5. 复数的对数复数 \( z \) 的对数定义为 \( \log z = \log r + i\theta \),其中 \( r = |z| \),\( \theta \) 是 \( z \) 的主辐角。
6. 复数的导数设 \( f(z) = u(x, y) + iv(x, y) \) 是复函数,其中 \( z = x +iy \),则 \( f(z) \) 的导数为:\[ f'(z) = \frac{\partial u}{\partial x} + i\frac{\partialv}{\partial x} \]前提是 \( u \) 和 \( v \) 的偏导数满足柯西-黎曼方程。
不考内容《复变函数》第一章:§2.2 复球面§2.4 区域§5 第二部分:映射的概念§6 复变函数的极限与连续性第四章§1 复数项级数第五章§3 留数在定积分上的应用《积分变换》第一章:傅立叶变换第二章:§4 卷积注意:第二章一般不算积分,除了周期函数的公式以外。
复变函数复习第一章 复数与复变函数1.复数的表示(1)复数的代数表示:复数z = x + i y ,其中x,y 为实数.(2)复数的几何表示:复数z = x + i y 可以用xy 平面上的点P(x,y)来表示,因而也能用原点指向P 点的平面向量来表示.(3)复数的三角表示:复数()θθsin cos i r z += 复数的模 22y x r z +== 复数的辐角Argz=θ, ()xyArgz tg =, 复数的辐角的主值argz Argz=argz+2k π(k 为整数). 规定-π<argz ≤π 当0=z 时,|z |=0,辐角没有意义.当∞=z 时,|z |=+∞,没有实部,虚部和辐角.argz (0≠z )与反正切x y Arctg 的主值x y arctg ⎪⎭⎫ ⎝⎛<<-22ππx y arctg 的关系:第一、四象限 xyarctg z =arg x ﹥0第二象限 π+=xy arctg z arg x ﹤0,y ﹥0第三象限 π-=xyarctg z arg x ﹤0,y ﹤0正虚轴 2arg π=z x=0,y ﹥0 负虚轴 2arg π-=z x=0,y ﹤0负实轴 π=z arg x ﹤0,y=0(4)复数的指数表示:θi re z z =≠,0时2.复数的运算设z 1= x 1+iy 1=()111sin cos θθi r +, z 2 = x 2+iy 2()222sin cos θθi r +=(1)相等 z 1= z 2 ⇔ x 1=x 2 y 1=y 2 (2)加(减)法 z 1±z 2=(x 1±x 2)+i(y 1±y 2) (3)乘法 z 1z 2=(x 1x 2-y 1y 2)+i(x 2y 1+x 1y 2)()()[]212121)(21sin cos 21θθθθθθ+++==+i r r e r r i(4)除法 222121z z z z z z ⋅⋅==22222121y x y y x x +++i22222112y x y x y x +-()2121θθ-=i e r r )]sin()[cos(212121θθθθ-+-=i r r (z 2≠0) (5)乘幂 )sin (cos θθθn i n r e r z n in n n +==特别 |z |=1时, (cos θ+isin θ)n =cosn θ+isinn θ (棣莫弗公式) (6)方根,2sin 2cos1⎪⎭⎫⎝⎛+++=nk i n k r z n nπθπθ ()1,,2,1,0-=n k Λ (7)共轭 z = x -iy=re-i θ, 21z z ±=1z 2z ±, 121z z z =2z , 2121z z z z =⎪⎪⎭⎫ ⎝⎛ ;z z = ; 22y x z z += ; x z z 2=+, iy z z 2=- .注意:(1)在复数的运算中,除加减法用代数表示较方便外,其它运算宜采用三角表示,特别是用指数表示最方便.(2)关于复数的模与辐角有以下计算公式:2121z z z z ⋅= , ()2121Argz Argz z z Arg +=2121z z z z = , Arg ⎪⎪⎭⎫ ⎝⎛21z z =21Argz Argz - (z 2≠0) 3.复变函数的概念复变函数的定义,极限,连续以及导数等概念在形式上几乎与实变函数完全相同.但需注意的是,复变函数的定义域是复平面上的点集,因此在讨论有关概念时,应注意复变量z 变化方式的任意性,即z →z 0可以以任意方式(直线,曲线…),而一元实变函数中实变量x →x 0只能沿x 轴.4.简单曲线是研究复变量的变化范围时经常用到的重要概念之一,特别是简单闭曲线经常作为区域的边界出现.在复变函数的积分运算中,常常需要把曲线表示为复参量的形式,通常用得最多的是一元实参量t 的复值函数 z=z(t)=x(t)+iy(t) (α≤t ≤β) 其中 x=x(t), y=y(t) (α≤t ≤β) 是该曲线在直角坐标系中的参数方程.第二章 解析函数1. 复变函数的导数(1)定义 函数w = f (z)在其定义域D 内一点z 0处(可导)的导数()()()()()00000000limlim lim z z z f z f z z f z z f z wdzdw z f z z z z z z --=∆-∆+=∆∆=='→→∆→∆= 若函数w = f (z)在区域D 内处处可导,称 f (z)在D 内可导. (2) f(z)在z 0可导连续(3)求导法则 若f(z),g(z)在点z 可导,则()1-='b bbzz(b 为复数);()()[]()()z g z f z g z f '±'='±; ()()[]()()()()z g z f z g z f z g z f '+'=';()()()()()()()[]z g z f z g z f z g z g z f '-'='⎥⎦⎤⎢⎣⎡21,()0≠z g .()[]{}()()z g w f z g f ''=',其中 ()z g w = . ()()w z f ϕ'='1,其中()z f w =与()w z ϕ=是两个互为反函数的单值函数,且 ()0≠'w ϕ. 2.解析函数(1)定义 如果函数f(z)在z 0及z 0的邻域内处处可导,那末称f(z)在z 0解析.如果f(z)在z 0不解析,则称z 0为f(z)的奇点. 如果f(z)在区域D 内每一点解析,那末称f(z)在D 内解析,或称f(z)是D 内的一个解析函数. (2)性质 两个解析函数的和,差,积,商(分母不为零)及复合函数仍然解析 有理分式函数)()(z Q z P 在复平面内除了使分母为零的点外处处解析 (3)柯西-黎曼方程 (C-R 方程)函数()()()y x iv y x u z f ,,+=在定义域D 内(解析)一点iy x z +=可导⇔u(x,y)与v(x,y)在(D 内)点(x,y)可微,并且满足C-R 方程 yv x u ∂∂=∂∂,x v y u ∂∂-=∂∂.推论 若f (z)在z 处可导, 则 ()yui y v x v i x u z f ∂∂-∂∂=∂∂+∂∂=' . 3.初等函数 定义 定义区域 单值多值性 解析区域 (1) 对数函数Lnz=lnz+2 kπi 整个复平面 多值 整个复平面iArgz z Lnz +=ln (z ≠0) (除原点和负实轴)(k=0,±1,±2,…) 主值分支z i z z arg ln ln +=(2)乘幂 a b = e bL n a =e blna+2bk πi 多值(k=0,±1,±2,…) 主值分支e b l n ab 为正整数n 单值 整个复平面nb 1= n 个分支 (除原点和负实轴)定义 定义区域 解析区域 单值多值性 基本周期 奇偶性(3)指数函数 e z(4)双曲函数2zz e e chz -+= 2πi 偶2zz e e shz --=整个复平面 单值 奇(5)三角函数2cos iziz e e z -+=2π 偶ie e z iziz 2sin --= 奇第三章 复变函数的积分1.积分的计算 ()()[]()t d t z t z f z d z f C '=⎰⎰βα光滑曲线C 参数方程: ()()()βα≥≤+==t t iy t x t z z ,, 正向t 增加()⎰+-Cn z z dz10⎩⎨⎧≠==0002n n i πC 是包围z 0的任何一条正向简单闭曲线2.积分的性质 f(z),g(z)沿曲线C连续(1) ()()dz z f dz z f C C ⎰⎰-=- ;(2) ()()dz z f k dz z kf C C ⎰⎰=;(k 为常数) (3) ()[()]()()dz z g dz z f dz z g z f C C C ⎰⎰⎰±=±(4)设曲线C 的长度为L,函数f(z)在C 上满足()M z f ≤,那末()()ML ds z f dz z f C C ≤≤⎰⎰.3.柯西-古萨基本定理 如果函数f(z)在单连域B 内处处解析,那末函数f(z)沿B 内任何一条封闭曲线C 的积分为零: ()0=⎰dz z f C.推广:(1)闭路变形原理 在区域内的—个解析函数f(z)沿闭曲线的积分,不因闭曲线在区域内作连续变形而改变其值,只要在变形过程中曲线不经过f(z)的奇点.(2)复合闭路定理 设C 为多连域D 内的一条简单闭曲线,C 1,C 2,…,C n 是在C 内部的简单闭曲线,它们互不包含也互不相交,并且以 C ,C 1,C 2,…,C n 为边界的区域全含于D.如果f(z)在D 内解析,那末1) ()()dz z f dz z f nk C CK∑⎰⎰==1 ,其中C 及C k 均取正向.2) 0)(=⎰Γdz z f ,这里г为由C 及C k ―(k=1,2,…,n )所组成的复合闭路,其方向是:C 逆时针,C k ―顺时针.推论:(1) ()()dz z f dz z f ZZ C ⎰⎰=10,C是连结z 0与z 1的任一曲线.(2)函数()()ςςd f z F ZZ ⎰=0必为B 内的—个解析函数,并且()()z f z F ='.5.原函数 如果在区域B 内φ/(z)=f(z),那末φ(z)称为f(z)在区域B 内的原函数 不定积分 ()()c z dz z f +=⎰ϕ ,其中c为任意复常数.()()()0110z z dz z f Z Z ϕϕ-=⎰,其中z 0 ,z 1是B 内任意两点6.柯西积分公式 如果f(z)在区域D 内处处解析,C 为D 内的任何一条正向简单闭曲线,它的内部完全含于D,z 0为C 内的任一点,那末()()dz z z z f i z f C ⎰-=0021π 解析函数f(z)的导数仍为解析函数,上式两边形式上对z 0求n 阶导数得到高阶导数公式 ()()()()dz z z z f i n z fC n n ⎰+-=1002!π . 7.调和函数 如果二元实变函数φ(x,y)在区域D 内具有二阶连续偏导数并且满足拉普拉斯方程02222=∂∂+∂∂yxϕϕ,那末称φ(x,y)为区域D 内的调和函数任何在区域D 内解析的函数f(z)=u(x,y)+iv(x,y)的实部和虚部都是D 内的调和函数,并且其虚部v(x,y)为实部u(x,y)的共轭调和函数. 8.已知实部或虚部求解析函数(1)偏积分法 如已知u(x,y),可利用柯西一黎曼方程 x uy v ∂∂=∂∂,将x 当成常数,对y 积分得 ()()x g dy xuy x v +∂∂=⎰,,再利用 x v y u ∂∂-=∂∂ 确定g(x).也可以利用 yux v ∂∂-=∂∂ ,将y 当成常数,对x 积分得()()y h dx yu y x v +∂∂-=⎰, ,再利用 y vx u ∂∂=∂∂ 确定h(y).(2)不定积分法 由于 ()x vi x u z f ∂∂+∂∂=', 利用柯西一黎曼方程得到()()z U yui x u z f =∂∂-∂∂=' ,则 ()()c dz z U z f +=⎰ .或 ()()z V xv i y v z f =∂∂+∂∂=' ,则 ()()c dz z V z f +=⎰ . 第四章 级数1.幂级数 形为()()()()ΛΛ+-++-+-+=-∑∞=n n n n n a z c a z c a z c c a z c 22100或 ΛΛ+++++=∑∞=n n n n n z c z c z c c z c 22100的级数称为幂级数.(1)阿贝尔定理 如果级数∑∞=0n n n z c 在()00≠=z z 收敛,那末对满足0z z <的z,级数必绝对收敛. 如果在0z z =级数发散,那末对满足0z z >的z,级数必发散.(2)对于幂级数()nn n a z c -∑∞=0或 ∑∞=0n n n z c ,存在以a 或0为中心,R 为半径的圆周C R .在C R 的内部,级数绝对收敛;在C R 的外部,级数发散.圆周C R 称为幂级数的收敛圆,收敛圆的半径R 称为收敛半径. 特别1)R=0,级数在复平面内除原点外处处发散2)R=∞,级数在复平面内处处收敛 (3)对于幂级数∑∞=0n n n z c ,如果λ=+∞→nn n c c 1lim或λ=∞→n n n c lim 那末收敛半径λ1=R .(包括R=0或R=∞)(4)在收敛圆内幂级数()n n n a z c -∑∞=0的和函数f(z)是解析函数.在收敛圆R a z <-内,式()()nn n a z c z f -=∑∞=0,可进行有理(加,减.乘法)运算,代换(复合)运算和微积分运算.2.泰勒级数 函数f(z)可在以展开中心z 0为圆心,z 0到f(z)的最近的一个奇点α的距离为半径R=|α-z 0|的解析圆域|z-z 0|<R 内展开为泰勒级数.()()()()n n n z z n z f z f 000!-=∑∞= 泰勒展开式具有唯一性,因此可以借助于一些已知函数的展开式,利用幂级数的有理(加,减.乘法)运算,代换(复合)运算和微积分运算来得出一个函数的泰勒展开式. 常用的已知函数的展开式为ΛΛ+++++=-n z z z z2111, 1<z . ΛΛ++++++=!!3!2132n z z z z e nz 3.洛朗级数 函数f(z)可在以展开中心z 0为圆心的解析的圆环域 R 1<|z-z 0|<R 2内展开为洛朗级数 ()()n n n z z c z f 0-=∑∞-∞=,其中 ()()()Λ,2,1,0.2110±±=-=⎰+n d z f i c C n n ςςςπ 这里C 为在圆环域内绕z 0的任何一条正向简单闭曲线.洛朗展开式具有唯一性,因此也可以借助于已知函数的展开式,利用幂级数的有理(加,减.乘法)运算,代换(复合)运算和微积分运算来得出一个函数的洛朗展开式.第五章 留数1.孤立奇点的概念和分类(1)定义 如果函数f(z)虽在z 0不解析,但在z 0的某一个去心邻域δ<-<00z z 内处处解析,则将z 0称为f(z)的孤立奇点.(2)孤立奇点的分类和判定z 0为f(z)的 ()z f z z 0lim → f(z)在z 0的去心邻域内的洛朗级数可去奇点 存在且有限 没有负幂项 极点 ∞有限多个负幂项本性奇点不存在且不为∞ 无穷多个负幂项z 0是f(z)的m 级极点()()()z g z z z f m01-=⇔ ,其中g(z)是在δ<-0z z 内解析的函数,且 ()00≠z g .(3)函数的零点及其与极点的关系不恒等于零的解析函数f(z)如果能表示成 ()()()z z z z f m ϕ0-= 其中()z ϕ在z 0解析并且()00≠z ϕ,m 为某一正整数,那末z 0称为f(z)的m 级零点.如果f(z)在z 0解析,那末z 0为f(z)的m 级零点 ⇔ ()()()()()0,1,,2,1,0,000≠-==z f m n z f m n Λz 0是f(z)的m 级极点⇔z 0是()z f 1的m 级零点.如果()()()z h z g z f =,而z 0是g(z)的m 级零点,h(z)的n 级零点,那末z 0为()z f 1的(n-m)级零点,为f(z)的(n-m)级极点.(4)函数在无穷远点的性态如果函数f(z)在无穷远点∞=z 的去心邻域+∞<<z R 内解析,那末称点∞为f(z)的孤立奇点.f(z)在+∞<<z R 内的洛朗展开式 ()n n n nn n z c c zc z f ∑∑∞=-∞=-++=101其中 ()()Λ,2,1,0,211±±==⎰+n d f ic C n n ςςςπ,C 为+∞<<z R 内绕原点的任一正向简单闭曲线.洛朗级数 z=∞是f(z)的 ()z f z ∞→lim没有正幂项 → 可去奇点 ← 存在且有限 有限正幂项(最高m 次) → 极点(m 级) ← ∞ 无限正幂项 → 本性奇点 ← 不存在且不为∞ 2.留数与留数的计算(1)留数定义 如果z 0为f(z)的一个孤立奇点,C 是z 0的去心邻域.11 / 11'.R z z <-<00 内包围z 0的任意一条正向简单闭曲线,函数f(z)在此邻域内展开成洛朗级数 ()()n n n z z c z f 0-=∑∞-∞=, 则f(z)在z 0处的留数 ()[]()dz z f ic z z f s C⎰==-π21,Re 10 (2)留数定理 设函数f(z)在区域D 内除有限个孤立奇点n z z z ,,,21Λ外处处解析.C 是D 内包围诸奇点的一条正向简单闭曲线,那末()()[]∑⎰==nk k Cz z f s i dz z f 1,Re 2π(3)留数的计算1)可用洛朗级数计算 ()[]10,Re -=c z z f s当z 0为可去奇点时, ()[]0,Re 0=z z f s ;当z 0为本性奇点时,只能用此法, 2)当z 0为一级极点时, ()[])]()[(lim ,Re 000z f z z z z f s z z -=→若()()()z Q z P z f =,P(z)及Q(z)在z 0都解析,如果()(),0,000=≠z Q z P()00≠'z Q ,那末z 0为f(z)的一级极点,而 ()[]()()000,Re z Q z P z z f s '=. 3)如果z 0为f(z)的m 级极点,那末()[]()()(){}z f z z dzd m z z f s mm m z z 01100lim !11,Re --=--→4.无穷远点处的留数函数f(z)在圆环域+∞<<z R 内解析,C 为这圆环域内绕原点的任何一条正向简单闭曲线, f(z)在∞点的留数 ()[]()dz z f i z f s C ⎰-=∞π21,Re . 如果函数f(z)在扩充复平面内只有有限个孤立奇点,那末f(z)在所有各奇点(包括∞点)的留数的总和必等于零.()[]⎥⎦⎤⎢⎣⎡⋅⎪⎭⎫ ⎝⎛-=∞0,11Re ,Re 2z z f s z f s。