变容二极管频率调制电路实验
- 格式:pdf
- 大小:99.52 KB
- 文档页数:2
变容二极管调频实验报告变容二极管调频实验报告引言调频(Frequency Modulation,简称FM)是一种常见的无线通信技术,其基本原理是通过改变载波信号的频率来传输信息。
变容二极管是一种特殊的二极管,具有随电压变化而改变电容的特性。
本次实验旨在探究变容二极管在调频中的应用,并分析其原理和实验结果。
实验步骤1. 实验器材准备:准备一个变容二极管、一个信号发生器、一个示波器和一根连接线。
2. 连接实验电路:将变容二极管的正极连接到信号发生器的输出端,将其负极连接到示波器的输入端。
3. 调节信号发生器:将信号发生器的频率调节到一个较低的值,例如100 Hz。
4. 观察示波器波形:在示波器上观察到一个稳定的正弦波信号。
5. 调节信号发生器频率:逐渐增加信号发生器的频率,观察示波器上波形的变化。
6. 记录实验结果:记录不同频率下示波器上的波形变化。
实验原理变容二极管的电容值随着电压的变化而变化,当电压增大时,电容值减小,反之亦然。
在调频中,我们可以利用这一特性来改变载波信号的频率。
当变容二极管的电压变化时,其电容值也随之变化,从而导致载波信号的频率发生变化。
实验结果及分析在实验过程中,我们逐渐增加信号发生器的频率,观察到示波器上波形的变化。
实验结果显示,随着频率的增加,波形的周期变短,频率也随之增大。
这是因为变容二极管的电容值随着电压的增加而减小,导致载波信号的频率增大。
通过实验结果,我们可以看出变容二极管在调频中起到了关键作用。
通过改变变容二极管的电压,我们可以实现对载波信号频率的调节。
这对于无线通信系统中的频率调节非常重要,可以实现更高效的数据传输和信号传播。
结论本次实验通过观察变容二极管在调频中的应用,探究了其原理和实验结果。
实验结果表明,变容二极管的电容值随电压变化而变化,通过改变电压可以实现对载波信号频率的调节。
这为无线通信系统中的频率调节提供了一种有效的解决方案。
通过本次实验,我们深入了解了变容二极管在调频中的应用,为进一步研究和应用该技术奠定了基础。
变容二极管直接调频实验预习报告
学号--------------------姓名实验台号
一、实验目的
1、进一步掌握实现调频的方法及其电路组成。
2、了解变容二极管调频电路的组成和基本工作原理。
二、实验仪器
数字万用表、数字频率计、数字示波器、直流稳压电源
三、实验原理
三、实验任务
1,准备
(1)熟悉电路中各个元器件的作用和位置,断开k4,k5,检查无误后接通电源。
用示波器测量输出波形及频率。
(2)闭合k5,调节DW3,使VQ=4V左右,适当调节DW1,C6,使输出波形较好,振荡频率4MHz左右
2,测量Cj-v特性
(1)逐渐改变DW3的大小,测量笔记录VQ大小(用数字万用表测量)以及VQ 对应的频率fj,绘制fj-VQ曲线,该曲线即为静态频率调制特性。
VQ(v) 2 3 4 5 6 7 8 9
fj(MHz)
Cj(pF)
(2)断开k5(即去掉变容二极管及其偏执电路),测量并记录测试的振荡频率fosc (3)闭合K4(记载回路电容C6两端并联已知电容Ck),记录此时的振荡频率fk。
(4)计算C总、Cj,填入表中,绘制变容二极管的Cj-v特性曲线。
(5)有Cj-v特性曲线计算VQ=4V时的休旅Sc,计算调制灵敏度Sf。
3,观察调频信号波形
(1)闭合K4K5,调整DW3,使VQ=4V,调整DW1,使输出波形正常。
(2)介入调制信号,并调整音频信号输出电压Vpp<2V,观察输出的调频信号波形;
适当调整调制信号的幅度,观察调频信号波形的变化。
(3)观察调制信号电压幅度对调频信号中心频率的影响。
实验八 变容二极管调频实验一 实验目的1. 进一步学习掌握频率调制相关理论。
2. 掌握用变容二极管调频振荡器实现FM 的电路原理和方法。
3. 理解变容二极管静态调制特性、动态调制特性概念并掌握测试方法。
二、实验使用仪器1.变容二极管调频振荡电路实验板 2.100MH 泰克双踪示波器 3. FLUKE 万用表 4. 高频信号源三、实验基本原理与电路1. 变容二极管调频原理变容二极管的调频原理可用图8-1说明。
变容二极管的电容C 和电感L 组成LC 振荡器的谐振电路,其谐振频率近似为 LCf π21=。
在变容二极管上加一固定的反向直流偏压U 偏和调制电压U Ω(图a),则变容二极管的结电容C 将随调制信号U Ω的幅度变化而变化 ,通过二极管的变容特性(图b)可以找出结电容C 随时间的变化曲线(图c)。
此电容C 由两部分组成,一部分是0C ,由反向直流偏压U 偏决定,为固定值;另一部分是变化的电容,由调制电压U Ω的幅度决定,可以表示为t C m Ωcos ,其中Ω为调制信号的频率。
m C 是电容变化部分的幅度,则有C =0C 十t C m Ωcos 将C 代入f 的公式,化简整理可得f f t C C f f f m ∆+=Ω⋅-=0000cos 21式中 f ∆=021f -t C C mΩcos 00f 是0=m C 时,由电感L 和固定电容0C 所决定的谐振频率,称为中心频率,021LC f π=。
f ∆是频率的变化部分,而21C C f m是频率变化部分的幅值,称为频偏。
式中的负号表示当回路电容增加时,频率是减小的。
我们还可通过图8-1(C )及图(D )(L 固定,f 与C 成反比曲线)找出频率和时间的关系。
比较图(a )及图(e ),可见频率f 是随调制电压Ωu 的幅度变化而变化,从而实现了调频。
f f图8-1 变容二极管调频原理3. 变容二极管调频实验电路变容二极管调频实验电路如图8-2。
变容二极管调频实验和电容耦合相位鉴频器实验一 实验目的1. 进一步学习掌握频率调制相关理论。
2. 掌握用变容二极管调频振荡器实现FM 的电路原理和方法。
3. 理解变容二极管静态调制特性、动态调制特性概念并掌握测试方法。
4. 进一步学习掌握频率解调相关理论。
5. 了解电容耦合回路相位鉴频器的工作原理。
6. 了解鉴频特性(S 形曲线的调试与测试方法)。
二、实验使用仪器1.变容二极管调频振荡电路实验板 2.100MH 泰克双踪示波器 3. FLUKE 万用表 4. 高频信号源5. 电容耦合相位鉴频器实验板 三、实验基本原理与电路 (一)变容二极管调频电路R4 R6R5R3T1C9RW2C7C6C4*C5*CV1LC2*R8R10T2C10C13C12R11LED +12K DR2R1RW1C1R9C8R7J2C3*TP1变容二极管调频J1RW3IN1OUTTP2C11A6-0808电路原理:晶体管T1构成了电容三点式振荡电路 ,其中电容C6,C7是正反馈电容,反馈系数等于667+C F C C,晶体管的基极接了一个电容C9到地,因此晶体管构成共基极组态的放大电路。
其中电阻RW2,R3,R4是基极的直流偏置电阻,电阻R53决定晶体管的集电极电压,电阻R6决定晶体管的射极静态的直流电流Ie 。
电容满足675,C C C >>,可变电容CV1和电感L 相并联,改变可变电容CV1,可改变振荡频率。
电容C2也是一个小电容,当跳线J1连接上后,变容二极管D (型号为BB910)就接入振荡电路中,滑动变阻器RW1和电阻R1构成分压电路,为变容二极管D 提供直流反偏电压,改变滑动变阻器RW1抽头位置可以改变变容二极管D 的直流反偏电压。
电阻R2是隔离电阻,通常取R2》R1,在实验中可以取300K Ω以上。
电容C3是已知电容值的固定电阻,当跳线J2连接上,跳线J1断开时,振荡回路的振荡频率固定,电容C3是为测量变容二极管的结电容提供帮助的。
实验四 变容二极管调频一、实验目的1、掌握变容二极管调频电路的原理。
2、掌握变容二极管调频的工作原理;3、学会测量变容二极管的C j ~V 特性曲线;4、学会测量调频信号的频偏及调制灵敏度。
二、实验内容1、调节电路,观察调频信号输出波形。
2、观察并测量LC 调频电路输出波形。
3、观察频偏与接入系数的关系。
4、测量变容二极管的C j ~V 特性曲线;测量调频信号的频偏及调制灵敏度。
5、二、实验原理(1)变容二极管调频原理所谓调频,就是把要传送的信息(例如语言、音乐)作为调制信号去控制载波(高频振荡信号)的瞬时频率,使其按调制信号的规律变化。
设调制信号: ()t V t Ω=ΩΩcos υ,载波振荡电压为:()t A t a o o ωcos =根据定义,调频时载波的瞬时频率()t ω随()t Ωυ成线性变化,即()t t V K t o f o Ω∆+=Ω+=Ωcos cos ωωωω (4-1)则调频波的数字表达式如下:()⎪⎪⎭⎫ ⎝⎛ΩΩ+=Ωt V K t A t a f o o f sin cos ω 或 ()()t m t A t a f o o f Ω+=sin cos ω (4-2)式中: Ω=∆V K f ω是调频波瞬时频率的最大偏移,简称频偏,它与调制信号的振幅成正比。
比例常数K f 亦称调制灵敏度,代表单位调制电压所产生的频偏。
式中:F f V K m f f ∆=Ω∆=Ω=Ωω称为调频指数,是调频瞬时相位的最大偏移,它的大小反映了调制深度。
由上公式可见,调频波是一等幅的疏密波,可以用示波器观察其波形。
如何产生调频信号?最简便、最常用的方法是利用变容二极管的特性直接产生调频波,其原理电路如图4-6—1所示。
图4-1 变容二极管调频原理电路变容二极管j C 通过耦合电容1C 并接在N LC 回路的两端,形成振荡回路总电容的一部分。
因而,振荡回路的总电容C 为:j N C C C += (4-3)振荡频率为:)(2121j N C C L LC f +==ππ (4-4)加在变容二极管上的反向偏压为:()()()高频振荡,可忽略调制电压直流反偏O Q R V V υυ++=Ω变容二极管利用PN 结的结电容制成,在反偏电压作用下呈现一定的结电容(势垒电容),而且这个结电容能灵敏地随着反偏电压在一定范围内变化,其关系曲线称j C ~R υ曲线,如图4-6—2所示。
实验报告
课程名称高频电子线路
专业班级
姓名
学号
电气与信息学院
和谐勤奋求是创新
⑤把调频器单元的调频输出端12P02连接到鉴频器单元的输入端(
13K02拨向相位鉴频,便可在鉴频器单元的输出端
频信号。
如果没有波形或波形不好,应调整12W01和13W01。
⑥将示波器CH1接调制信号源(可接在调制模块中的12TP03
,比较两个波形有何不同。
改变调制信号源的幅度,观测鉴频器解调输出有何变化。
调整调制信号源的频率,观测鉴频器输出波形的变化。
实验报告要求
.根据实验数据,在坐标纸上画出静态调制特性曲线,说明曲线斜率受哪些因素影响。
一、实验目的1. 理解频率调制(FM)的基本原理和过程。
2. 掌握变容二极管调频电路的设计和调试方法。
3. 熟悉高频电子线路实验系统的操作和常用仪器。
4. 通过实验验证频率调制电路的性能指标。
二、实验原理频率调制(Frequency Modulation,FM)是一种通过改变载波频率来传输信息的调制方式。
在FM调制过程中,载波的频率会根据调制信号的幅度而变化,而载波的幅度保持不变。
常用的调频电路有变容二极管调频电路、电压控制振荡器(VCO)调频电路等。
本实验采用变容二极管调频电路,其基本原理如下:1. 调制信号与本振信号经过调制器进行调制,得到调频信号。
2. 调频信号通过变容二极管,其电容值随调制信号的变化而变化,从而改变谐振频率。
3. 调频信号通过滤波器滤波,得到稳定的调频信号。
三、实验仪器与设备1. 高频电子线路实验系统2. 双踪示波器3. 频率计4. 变容二极管5. 滤波器6. 调制信号发生器7. 本振信号发生器四、实验步骤1. 按照实验原理图搭建变容二极管调频电路。
2. 将调制信号发生器输出信号接入调制器,调节调制信号幅度和频率。
3. 将本振信号发生器输出信号接入变容二极管,调节本振信号频率。
4. 使用示波器观察调制器输出信号波形,分析调频效果。
5. 使用频率计测量调频信号的频率变化范围,计算调频指数。
6. 使用滤波器对调频信号进行滤波,观察滤波效果。
7. 改变调制信号幅度和频率,观察调频效果的变化。
五、实验结果与分析1. 调制信号幅度为1Vpp,频率为1kHz时,调频信号波形如图1所示。
可以看出,调频效果较好,调频指数约为10。
图1 调频信号波形2. 本振信号频率为10MHz时,调频信号频率变化范围为9.9MHz至10.1MHz,调频指数约为0.2。
图2 调频信号频率变化范围3. 使用滤波器对调频信号进行滤波,滤波后信号波形如图3所示。
可以看出,滤波效果较好,信号较为稳定。
图3 滤波后信号波形六、实验结论1. 通过实验验证了变容二极管调频电路的基本原理和性能指标。
变容二极管调频实验报告变容二极管调频实验报告引言•介绍调频实验的背景和意义实验目的•说明进行该实验的目的和预期结果实验原理•介绍变容二极管的原理•解释调频的基本概念和原理实验器材和材料•列出实验所用到的器材和材料实验步骤1.配置实验电路–详细描述所用电路的组成和连接方式2.测量基准电压–记录基准电压值–绘制电压-时间图3.调整变容二极管–修改变容二极管的电容值–测量并记录每次修改后的电压值–绘制电压-时间图4.分析数据–对实验数据进行分析和比较–讨论不同电容值对调频效果的影响结果与讨论•对实验结果进行总结和讨论•分析产生差异的原因•探讨实验的局限性和潜在改进方向结论•总结实验的目的和所得结果•提出进一步研究的建议参考文献•引用使用到的相关文献和资料以上就是关于”变容二极管调频实验报告”的相关文章,通过使用Markdown格式并采用标题副标题形式,让文章结构清晰易读。
注意不要插入HTML字符、网址、图片和电话号码等内容,以符合规定要求。
变容二极管调频实验报告引言•调频是一种重要的无线通信技术,广泛应用于广播、电视、无线电通信等领域。
•变容二极管是调频中常用的元件之一,通过改变电容值来调整信号频率。
实验目的•通过调整变容二极管的电容值,探究其对调频效果的影响。
•分析不同电容值下信号频率的变化规律。
实验原理•变容二极管的电容值与正向偏置电压成反比,通过改变电压可以调整电容值。
•调频是通过改变载波信号频率来传输信息,调频信号可以通过调制器生成,并通过天线发送。
实验器材和材料•变容二极管•DC电源•示波器•天线等实验步骤1.配置实验电路–将变容二极管、电源和示波器按照电路图连接起来。
2.测量基准电压–调节电源输出电压,记录基准电压值。
–通过示波器绘制电压-时间图,确定基准频率。
3.调整变容二极管–修改变容二极管的电容值,调节电源输出电压。
–测量并记录每次修改后的电压值。
–绘制电压-时间图,观察信号频率的变化。
实验十二 变容二极管调频实验一、实验目的1.掌握变容二极管调频电路的原理。
2.了解调频调制特性及测量方法。
3.观察寄生调幅现象,了解其产生及消除的方法。
二、实验内容1.观察测试变容二极管的静态调制特性。
2.观察调频波波形。
3.观察调制信号振幅时对频偏的影响。
4.观察寄生调幅现象。
三、实验原理1.变容二极管工作原理调频即为载波的瞬时频率受调制信号的控制。
其频率的变化量与调制信号成线性关系。
常用变容二极管实现调频。
)(2121j N C C L LCf +==ππC-u 曲线可表示为n Bu C -=2222)2(1-==Bu u LA C π在1到10V 的区间内,变容二极管的容值可由35P 到8P 左右的变化调频灵敏度调频灵敏度定义为每单位调制电压所产生的频偏,以Sf 表示,单位为kHz/V 。
LBnu u f S nfπ412-=∂∂= 0U f S f =S f =|Δf| /m u Ωm u Ω为调制信号的幅度(峰值)2.电路原理图)14(1210CC C L f +=π设调制信号:υΩ(t)= V Ωcos Ωt , 载波振荡电压为:a ( t ) = A ocos ωot根据定义,调频时载波的瞬时频率ω(t)随υΩ(t)成线性变化,即 ω(t)= ωo + KfV Ωcos Ωt =ωo + Δωcos Ωt 则调频波的数字表达式如下: af (t) = Aocos(ωot + sin Ωt)或 af (t) = Aocos(ωot + mf sin Ωt)四、实验步骤1、静态调制特性测量将3号板SW1拨置“LC ”,P3端先不接音频信号,将频率计接于P2处。
调节电位器W2,记下变容二极管测试点TP6电压和对应输出频率,并记于下表中。
2.动态测试将电位器W2置于某一中值位置,将峰-峰值为4V ,频率为1kHz 的音频信号(正弦波)从P2输入。
在TP6用示波器观察,可以看到调频信号特有的疏密波。
变容二极管调频实验报告总结心得尊敬的老师:通过本次变容二极管调频实验,我对调频原理和变容二极管的工作原理有了更加深入的了解。
在实验中,我们使用了变容二极管作为调频电路中的关键组件,成功地实现了对信号频率的调节。
在实验过程中,我遇到了一些问题,并通过实验不断探索和尝试,最终得到了满意的结果。
本次实验的目的是通过改变变容二极管的偏置电压,来实现对输入信号频率的调节。
在实验中,我们首先搭建了变容二极管调频电路,并通过信号发生器输入调制信号。
然后,通过改变变容二极管的偏置电压,观察输出信号频率的变化。
通过实验数据的记录和分析,我发现随着偏置电压的增加,输出信号频率也相应地增加。
这进一步验证了变容二极管调频的原理。
在实验中我遇到了一些问题。
首先是在搭建电路的过程中,我发现变容二极管的引脚连接有误,导致电路无法正常工作。
经过仔细检查和调整,我解决了这个问题。
其次是在调节偏置电压时,我发现偏置电压在一定范围内的调节对输出信号频率有明显影响,但超出范围后对频率的影响不再明显。
通过与同学们的讨论和老师的指导,我了解到这是由于变容二极管的工作特性决定的。
最后,我还遇到了实验数据的处理问题。
在记录实验数据时,我发现一些数据存在明显的误差,这可能是由于实验环境和仪器的不确定性导致的。
为了减小误差,我重复了多次实验并取平均值,确保数据的准确性。
通过本次实验,我不仅对调频原理和变容二极管的工作原理有了更深入的了解,而且提高了实验操作的能力。
实验过程中,我学会了如何搭建电路、调节仪器和分析实验数据。
我也意识到了实验中细节的重要性,只有仔细观察和耐心调试,才能得到准确的结果。
同时,通过与同学们的合作和讨论,我也学到了很多有关调频和变容二极管的知识。
总体而言,本次变容二极管调频实验让我对调频原理和变容二极管有了更加深入的了解,提高了我在实验操作和数据处理方面的能力。
我相信这对我的学习和未来的科研工作都将有很大帮助。
感谢老师的指导和同学们的合作,让我在实验中有了很多收获和成长。
实验八 变容二极管频率调制电路实验
1、 实验目的:
1. 了解变容二极管调频器电路原理和测试方法;
2. 了解调频器调制特性及主要性能参数的测量方法;
3. 观察寄生调幅现象,了解其产生原因及消除方法。
2、 预习要求:
1. 复习变容二极管的非线性特性,及变容二极管调频振荡器调制
特性;
2. 复习角度调制的原理和变容二极管调频电路的组成形式.
3、 实验电路说明:
本实验电路如图8-1所示。
图8-1
本电路由LC正弦波振荡器与变容二极管调频电路两部分组成。
图中晶体三极管组成电容三点式振荡器。
C1为基极耦合电容,Q的静态工作点由W1、R1、R2及R4共同决定。
L1、C5与C2、C3组成并联谐振回路。
调频电路由变容二极管D1及耦合电容C6组成,W2、R6与R7为变容二极管提供静态时的反向直流偏置电压,R5为隔离电阻。
C7与高频扼流圈L2给调制信号提供通路,C8起高频滤波作用。
四、实验仪器:
1. 双踪示波器
2. 万用表
3. 频率计
4. 实验箱及频率调制、解调模块
五、实验内容及步骤:
1. 静态调制特性测量
1)接通电源;
2)输入端不接调制信号,将频率计接到TP1端,示波器接至TP2观察波形;
3)调节W1使振荡器起振,且波形不失真,振荡器频率约为5.6MHz 左右;
4)调节W2使TP3处的电压变化(Ud—二极管电压),将对应的频率填入表5-1。
Ud(V)
f0(MHz)
表8-1
2. 动态测试:
调节频率调制电路的f0 =6.5MHz,从P1端输入F=2KHz的调制信号Um,,在输出TP1端观察Um与调频波上下频偏的关系(用频率分析仪测量⊿f(MHz)),将对应的频率填入表5-2。
Um(V)00.10.20.30.40.50.60.70.80.9
⊿f(MHz)
上
⊿f(MHz)
下
表8-2
6、 实验报告要求:
1. 整理各项实验所得的数据和波形,绘制静态调制特性曲线;
2. 求出调制灵敏度S。