第三章 (3.3)控制系统的稳定性分析
- 格式:pdf
- 大小:1.01 MB
- 文档页数:19
第三章 线性系统的稳定性分析3.1 概述如果在扰动作用下系统偏离了原来的平衡状态,当扰动消失后,系统能够以足够的准确度恢复到原来的平衡状态,则系统是稳定的。
否则,系统不稳定。
一个实际的系统必须是稳定的,不稳定的系统是不可能付诸于工程实施的。
因此,稳定性问题是系统控制理论研究的一个重要课题。
对于线性系统而言,其响应总可以分解为零状态响应和零输入响应,因而人们习惯分别讨论这两种响应的稳定性,从而外部稳定性和内部稳定性的概念。
应用于线性定常系统的稳定性分析方法很多。
然而,对于非线性系统和线性时变系统,这些稳定性分析方法实现起来可能非常困难,甚至是不可能的。
李雅普诺夫(A.M. Lyapunov)稳定性分析是解决非线性系统稳定性问题的一般方法。
本章首先介绍外部稳定性和内部稳定性的概念及其相互关系,然后介绍李雅普诺夫稳定性的概念及其判别方法,最后介绍线性定常系统的李雅普诺夫稳定性分析。
虽然在非线性系统的稳定性问题中,Lyapunov 稳定性分析方法具有基础性的地位,但在具体确定许多非线性系统的稳定性时,却并不是直截了当的。
技巧和经验在解决非线性问题时显得非常重要。
在本章中,对于实际非线性系统的稳定性分析仅限于几种简单的情况。
3.2 外部稳定性与内部稳定性3.2.1 外部稳定:考虑一个线性因果系统,如果对一个有界输入u (t ),即满足条件:1()u t k ≤<∞的输入u (t ),所产生的输出y (t )也是有界的,即使得下式成立:2()y t k ≤<∞则称此因果系统是外部稳定的,即BIBO (Bounded Input Bounded Output )稳定。
注意:在讨论外部稳定性的时候,我们必须要假定系统的初始条件为零,只有在这种假定下面,系统的输入—输出描述才是唯一的和有意义的。
系统外部稳定的判定准则系统的BIBO 稳定性可根据脉冲响应矩阵或者传递函数矩阵来进行判别。
a) 时变情况的判定准则对于零初始条件的线性时变系统,设(,)G t τ为脉冲响应矩阵,则系统BIBO 稳定的充要条件是,存在一个有限常数k ,使对于一切0[,),(,)t t G t τ∈∞的每一个元0(,)(1,2,.......;1,2,.....)(,)ij tij t g t i q j p g t d k τττ==≤<∞⎰有即,(,)G t τ是绝对可积的。
第三章控制系统的时域分析法3.2 劳斯-霍尔维茨稳定性判据稳定性是控制系统最重要的问题,也是对系统最基本的要求。
控制系统在实际运行中,总会受到外界和内部一些因素的扰动,例如负载或能源的波动、环境条件的改变、系统参数的变化等。
如果系统不稳定,当它受到扰动时,系统中各物理量就会偏离其平衡工作点,并随时间推移而发散,即使扰动消失了,也不可能恢复原来的平衡状态。
因此,如何分析系统的稳定性并提出保证系统稳定的措施,是控制理论的基本任务之一。
常用的稳定性分析方法有:1. 劳斯-赫尔维茨(Routh-Hurwitz)判据:这是一种代数判据。
它是根据系统特征方程式来判断特征根在S平面的位置,来判断系统的稳定性.2. 根轨迹法:这是一种利用图解来系统特征根的方法。
它是以系统开环传递函数的某一参数为变量化出闭环系统的特征根在S平面的轨迹,从而全面了解闭环系统特征根随该参数的变化情况。
3. 奈魁斯特(Nyquist)判据:这是一种在复变函数理论基础上建立起来的方法。
它根据系统的开环频率特性确定闭环系统的稳定性,同样避免了求解闭环系统特征根的困难。
这一方法在工程上是得到了比较广泛的应用。
4. 李雅普诺夫方法上述几种方法主要适用于线性系统,而李雅普诺夫方法不仅适用于线性系统,也适用于非线性系统。
该方法是根据李雅普诺夫函数的特征来决定系统的稳定性。
一、稳定性的概念稳定性的概念可以通过图3-31所示的方法加以说明。
考虑置于水平面上的圆锥体,其底部朝下时,我们施加一个很小的外力(扰动),圆锥体会稍微产生倾斜,外作用力撤消后,经过若干次摆动,它仍会返回到原来的状态。
而当圆锥体尖部朝下放置时,由于只有一点能使圆锥体保持平衡,所以在受到任何极微小的外力(扰动)后,它就会倾倒,如果没有外力作用,就再也不能回到原来的状态。
因此,系统的稳定性定义为,系统在受到外作用力后,偏离了最初的工作点,而当外作用力消失后,系统能够返回到原来的工作点,则称系统是稳定的。
第3章时域分析法基本要求3-1 时域分析基础3-2 一、二阶系统分析与计算3-3 系统稳定性分析3-4 稳态误差分析计算返回主目录基本要求1熟练掌握一、二阶系统的数学模型和阶跃响应的特点。
熟练计算性能指标和结构参数,特别是一阶系统和典型欠阻尼二阶系统动态性能的计算方法。
2了解一阶系统的脉冲响应和斜坡响应的特点。
3正确理解系统稳定性的概念,能熟练运用稳定性判据判定系统的稳定性并进行有关的参数计算、分析。
4正确理解稳态误差的概念,明确终值定理的应用条件。
5熟练掌握计算稳态误差的方法。
6掌握系统的型次和静态误差系数的概念。
控制系统的数学模型是分析、研究和设计控制系统的基础,经典控制论中三种分析(时域,根轨迹,频域)、研究和设计控制系统的方法,都是建立在这个基础上的。
3-1 时域分析基础一、时域分析法的特点它根据系统微分方程,通过拉氏变换,直接求出系统的时间响应。
依据响应的表达式及时间响应曲线来分析系统控制性能,并找出系统结构、参数与这些性能之间的关系。
这是一种直接方法,而且比较准确,可以提供系统时间响应的全部信息。
二、典型初始状态,典型外作用1. 典型初始状态通常规定控制系统的初始状态为零状态。
即在外作用加于系统之前,被控量及其各阶导数相对于平衡工作点的增量为零,系统处于相对平衡状态。
2. 典型外作用①单位阶跃函数1(t)tf(t)⎩⎨⎧<≥==0t 00t 1)t (1)t (f 其拉氏变换为:s 1dt e 1)s (F )]t (f [L 0st===⎰∞-其数学表达式为:t②单位斜坡函数0t 0t 0t)t (1t )t (f <≥⎩⎨⎧=.=其拉氏变换为:2sts 1dt e t )s (F )]t (f [L ===⎰∞-f(t)其数学表达式为:③单位脉冲函数000)()(=≠⎩⎨⎧∞==t t t t f d 其数学表达式为:其拉氏变换为:1)()]([==s F t f L ⎰+∞∞-=1)(dt t d 定义:图中1代表了脉冲强度。
3.3.3 三阶非线性控制系统一.实验要求1. 了解和掌握非线性控制系统重要特征—自激振荡,极限环的产生及性质。
2. 了解和掌握用描述函数法分析非线性控制系统的稳定性和自振荡的原理。
3. 观察和分析二种三阶非线性控制系统的相平面图。
二.实验原理及说明1. 非线性控制系统重要特征——自激振荡非线性控制系统在符合某种条件下,即使没有外界变化信号的作用,也能产生固有振幅和频率的稳定振荡,其振幅和频率由系统本身的特性所决定;如有外界扰动时,只要扰动的振幅在一定的范围内,这种振荡状态仍能恢复。
这种自振荡只与系统的结构参数有关,与初始条件无关。
对于非线性系统的稳定的自振荡,其振幅和频率是确定的,并且可以测量得到。
振幅可用负倒特性曲线-1/N(A)曲线的自变量A 的大小来确定,而振荡频率由线性部分的G (j ω)曲线的自变量ω来确定。
注:所得的振幅和频率是非线性环节的输入信号的振幅和频率,而不是系统的输出信号。
产生自振荡的条件为:1)()(=A N j G ω πω−=∠+∠)()(A N j G (3-3-20)产生自激振荡在三阶非线性控制系统中是常见的,因此在这里作详细说明。
注:线性控制系统虽能也能产生等幅振荡,但这是在临界稳定的情况下才能产生,一旦系统系数发生微小变化,这种临界状就将被破坏,振荡将消失。
2. 极限环的研究在非线性控制系统出现的自振荡现象,在相平面图中将会看到一条封闭曲线,即极限环。
极限环的类型有: ①.稳定的极限环当∞时,相轨迹从内部或外部卷向极限环。
②.不稳定的极限环当③.半稳定的极限环当轨迹卷离极限环。
在一些复杂的非线性控制系统中,有可能出现两个或两个以上的极限环。
3. 用描述函数法分析非线性控制系统 ⑴ 描述函数的定义非线性环节的描述函数的定义为非线性环节的输入正弦波信号与稳态输出的基波分量的复数比。
描述函数法是非线性控制系统的一种近似分析法。
主要是用来分析无外作用的情况下,非线性控制系统的稳定性和自振荡问题。