最新整理食品工程原理名词解释和简答题复习课程
- 格式:doc
- 大小:37.50 KB
- 文档页数:6
《食品工程原理》复习题答案第一部分 动量传递(流动、输送、非均相物系)一.名词解释1.过程速率:是指单位时间内所传递的物质的量或能量。
2.雷诺准数:雷诺将u 、d 、μ、ρ组合成一个复合数群。
Re 值的大小可以用来判断流动类型。
3.扬程(压头):是指单位重量液体流经泵后所获得的能量。
4.分离因数:同一颗粒在同种介质中的离心沉降速度与重力沉降速度的比值。
二.填空题1.理想流体是指 的流体。
(黏度为零)2.对于任何一种流体,其密度是 和 的函数。
(压力,温度)3.某设备的真空表读数为200mmHg ,则它的绝对压强为 mmHg 。
当地大气压强为101.33×103 Pa 。
(560mmHg )4.在静止的同—种连续流体的内部,各截面上 与 之和为常数。
(位能,静压能)5.转子流量计读取方便,精确,流体阻力 ,不易发生故障;需 安装。
(小,垂直)6.米糠油在管中作流动,若流量不变,管径不变,管长增加一倍,则摩擦阻力损失为原来的______倍。
(2)7.米糠油在管中作层流流动,若流量不变,管径、管长不变,油温升高,粘度为原来的1/2 ,则摩擦阻力损失为原来的 倍。
(1/2)8.米糠油在管中作层流流动,若流量不变,管长不变, 管径增加一倍,则摩擦阻力损失为原来的_____倍。
(1/16)9.实际流体在直管内流过时,各截面上的总机械能 守恒,因实际流体流动时有 。
(不,摩擦阻力)10.任何的过程速率均与该过程的推动力成 比,而与其阻力成 比。
(正,反)11.在离心泵吸入管底部安装带吸滤网的底阀,底阀为 。
(逆止阀)12. 是为了防止固体物质进入泵内,损坏叶轮的叶片或妨碍泵的正常操作。
(滤网)13.离心泵工作时流体流速与压力的变化为:高压流体泵壳通道逐渐扩大的的离心力机械旋转所造成的气压流体被甩出后常压流体)()((低速流体、高速流体)14.泵的稳定工作点应是 特性曲线与 特性曲线式M 的交点。
(管路,泵或H-q v )15.产品样本上离心泵的性能曲线是在一定的 下,输送 时的性能曲线。
《食品工程原理》综合作业一、名词解释气缚;扬程;气蚀;牛顿粘性定律;过滤;单效蒸发;流体边界层;稳定流动热力体系;深床过滤;结晶;多效蒸发;传质;傅立叶定律;二、简答题请总结所有所学过的单元操作,其定义、推动力及阻力。
表压力、真空度、绝对压力的含义。
简述液体沸腾的4个阶段及其特点。
综合所学知识,你认为提高过滤效率可以从哪几方面入手。
简述食品工业中蒸发操作的目的。
请说明边界层的分离现象及其影响。
简述气溶胶分离常用的方法有哪些。
简述干基含水量及湿基含水量的计算方法。
简述干燥过程的三个阶段及相应的特点。
简述水蒸气蒸馏的原理。
简述实际沉降过程中,除了理论因素以外影响沉降速度的因素。
简要说明生产中如何选择泵。
简述传热过程的推动力及强化传热的方法。
为什么多效蒸发并不是效数越多越好?为什么离心泵启动前应关闭出口阀,而往复泵启动前应打开出口阀?请说明边界层的分离现象及其影响。
为什么说沉降器的生产能力与其高度无关?简述水蒸气蒸馏的原理。
三、判断正误1.滴状冷凝的传热系数小于膜状冷凝。
2.边界层分离是生产中需要避免的现象。
3.可将助滤剂混入待滤的悬浮液中一起过滤。
4.皮托管的工作原理是将静压能转变为动能。
5.单元操作是指生产中具有共性的化学操作过程。
6.雷诺数中含有待定的表面传热系数。
7.在食品工程原理中,流体包括的范围是液体、气体和固体。
8.多效蒸发的效数越多越好。
9.液体沸腾的4个阶段中,泡核沸腾阶段在工业中占主要地位。
10.精馏过程中回流液的作用是为了增大塔底产品的产量。
11.间歇式沉降器的生产能力与沉降器的高度无关。
12.过滤速度反映了过滤机的生产能力。
13.结晶的必要条件是晶核的自由能低于溶解状态溶质的自由能。
14.离心泵启动时应当关闭出口阀门。
15.冷冻浓缩是利用溶质在低温下容易结晶析出的原理。
16.生产设备上,压力表的读数等于设备中的绝对压力。
17.增加沉降设备的高度可以提高其生产能力。
18.传质的推动力是质量差。
食品工程原理 复习题(课程代码 252403)一、填空题(本大题共15小题)1、计算管道流体局部阻力的方法有:________________,_________________,其相应的阻力计算公式为________________,__________________。
参考答案:阻力系数法 当量长度法 W f =ξ , W f =ξ2、牛顿冷却定律的表达式为__________________,对流传热系数α的单位是________________。
参考答案:Q=αA(T -t) W/m 2,K3、采用真空蒸发时,需要在冷凝器后安装真空装置,其作用是排除_________________,以维持蒸发操作所要求的_____________。
参考答案:不凝气体 真空度4、相对湿度φ值可以反映湿空气吸收水汽能力的大小,当φ值大时,表示该湿空气的吸收水汽的能力_________;当φ=0时。
表示该空气为_______________。
参考答案:弱 绝对干空气5、 当地大气压为 1.0×105Pa ,一设备绝压为 3.0×104Pa ,其表压为 ;真空度为 。
参考答案:—7.0×104Pa 7.0×104Pa6、圆管管内流体流动,流体最大流速位于 。
参考答案:管心线7、已知雷诺准数为1×105,管子相对粗糙度为0.005,则流动时的摩擦系数为 。
参考答案:0.0328、今选用一单级单吸离心泵,如所需流量为15m 3/h ,扬程为29m ,则所选离心泵型号为 。
参考答案:IS50—32—1609、传热基本方程式是 ,其中 是传热推动力 参考答案:Q=KA △t m △t m10、流体物性对对流传热的影响用 表示。
参考答案:Pr11、流量计的安装方向上,孔板流量计只能 安装,转子流量计只能安装。
参考答案:水平 垂直12、当地大气压为1.0×105Pa ,一设备绝压为2.0×104Pa ,其表压为 ;真空度为 。
思考题与习题绪论一、填空1 同一台设备的设计可能有多种方案,通常要用()来确定最终的方案.2 单元操作中常用的五个基本概念包括( )、()、()、( )和()。
3 奶粉的生产主要包括()、()、()、( )、()等单元操作.二、简答1 什么是单元操作?食品加工中常用的单元操作有哪些?2 “三传理论”是指什么?与单元操作有什么关系?3 如何理解单元操作中常用的五个基本概念?4 举例说明三传理论在实际工作中的应用。
5 简述食品工程原理在食品工业中的作用、地位.三、计算1 将5kg得蔗糖溶解在20kg的水中,试计算溶液的浓度,分别用质量分数、摩尔分数、摩尔浓度表示。
已知20%蔗糖溶液的密度为1070kg/m3。
2 在含盐黄油生产过程中,将60%(质量分数)的食盐溶液添加到黄油中。
最终产品的水分含量为15。
8%,含盐量1.4%,试计算原料黄油中含水量.3 将固形物含量为7。
08%的鲜橘汁引入真空蒸发器进行浓缩,得固形物含量为58%得浓橘汁。
若鲜橘汁进料流量为1000kg/h,计算生产浓橘汁和蒸出水的量。
4 在空气预热器中用蒸气将流量1000kg/h,30℃的空气预热至66℃,所用加热蒸气温度143。
4℃,离开预热器的温度为138。
8℃。
求蒸气消耗量。
5 在碳酸饮料的生产过程中,已知在0℃和1atm下,1体积的水可以溶解3体积的二氧化碳。
试计算该饮料中CO2的(1)质量分数;(2)摩尔分数。
忽略CO2和水以外的任何组分。
6 采用发酵罐连续发酵生产酵母。
20m3发酵灌内发酵液流体发酵时间为16h。
初始接种物中含有1.2%的酵母细胞,将其稀释成2%菌悬液接种到发酵灌中。
在发酵罐内,酵母以每2.9h 增长一倍的生长速度稳定增长。
从发酵罐中流出的发酵液进入连续离心分离器中,生产出来的酵母悬浮液含有7%的酵母,占发酵液中总酵母的97%。
试计算从离心机中分离出来的酵母悬浮液的流量F以及残留发酵液的流量W(假设发酵液的密度为1000kg/m3)。
《食品工程原理》课程教学大纲课程名称:食品工程原理课程类别:专业基础课适用专业:食品质量与安全考核方式:考试总学时、学分: 64 学时、4 学分其中实验学时: 0 学时一、课程的性质、目的和任务《食品工程原理》是食品质量与安全专业的一门专业基础课,主要研究食品加工过程中各单元操作的基本原理、主要设备构造和设计计算等内容,是进行食品机械、食品工艺与设备、食品工厂设计等后续课程实施的基础。
本课程的目的是通过系统学习食品加工过程中的工程概念和各单元操作原理,使学生了解食品加工过程中单元操作的基本概念,掌握典型单元操作的基本原理和理论知识,为学习食品机械设备、食品工艺学及食品工厂设计等课程奠定工程技术理论基础。
课程的任务是研究和介绍食品工业生产中传递过程与主要单元操作的基本原理、它们的内在规律、常用设备及过程计算方法,使学生掌握常用的工程方法,具备运用工程方法解决生产实际问题的能力;掌握传递过程及单元操作的基本原理,学会运用其基本理论进行过程的物料衡算、能量衡算和设备选型配套设计计算等工程问题。
二、课程教学要求1.专业知识目标1.1 掌握食品加工过程中有关流体流动及输送机械、机械分离、传热、蒸发、制冷、蒸馏、干燥、结晶与膜分离等常见单元操作的概念、基本理论和基本规律,理解典型设备的工作原理、结构、主要性能参数及选型;1.2 掌握动量传递、热量传递和质量传递的基本原理,运用这些理论并结合所学的物理、化学、数学和物理化学等基础知识,研究食品加工过程中各种单元操作的内在规律和基本原理,能够根据生产上的具体要求对各单元操作进行初步的工艺计算和优化调节;1.3 了解简化模型法、当量法、因次分析法等工程上解决复杂问题的分析方法,正确查阅工程手册、国内外文献获取设计参数或者通过实验测取、生产现场查定相关数据,掌握食品加工过程中各种单元操作的物料和能量衡算计算方法,并能进行过程的选择、设备工艺尺寸的计算及设备的选型计算;1.4 了解食品加工过程中各单元操作典型设备的工作原理、影响因素、常见故障,理解控制传递速率的变化规律,并能够结合生产实际初步分析强化或者削弱过程传递的途径,提出消除故障或改进过程及设备的途径。
思考题与习题绪论一、填空1 同一台设备的设计可能有多种方案,通常要用()来确定最终的方案。
2 单元操作中常用的五个基本概念包括()、()、()、()和()。
3 奶粉的生产主要包括()、()、()、()、()等单元操作。
二、简答1 什么是单元操作?食品加工中常用的单元操作有哪些?2 “三传理论”是指什么?与单元操作有什么关系?3 如何理解单元操作中常用的五个基本概念?4 举例说明三传理论在实际工作中的应用。
5 简述食品工程原理在食品工业中的作用、地位。
三、计算1 将5kg得蔗糖溶解在20kg的水中,试计算溶液的浓度,分别用质量分数、摩尔分数、摩尔浓度表示。
已知20%蔗糖溶液的密度为1070kg/m3。
2 在含盐黄油生产过程中,将60%(质量分数)的食盐溶液添加到黄油中。
最终产品的水分含量为15.8%,含盐量1.4%,试计算原料黄油中含水量。
3 将固形物含量为7.08%的鲜橘汁引入真空蒸发器进行浓缩,得固形物含量为58%得浓橘汁。
若鲜橘汁进料流量为1000kg/h,计算生产浓橘汁和蒸出水的量。
4 在空气预热器中用蒸气将流量1000kg/h,30℃的空气预热至66℃,所用加热蒸气温度143.4℃,离开预热器的温度为138.8℃。
求蒸气消耗量。
5 在碳酸饮料的生产过程中,已知在0℃和1atm下,1体积的水可以溶解3体积的二氧化碳。
试计算该饮料中CO2的(1)质量分数;(2)摩尔分数。
忽略CO2和水以外的任何组分。
6 采用发酵罐连续发酵生产酵母。
20m3发酵灌内发酵液流体发酵时间为16h。
初始接种物中含有1.2%的酵母细胞,将其稀释成2%菌悬液接种到发酵灌中。
在发酵罐内,酵母以每2.9h 增长一倍的生长速度稳定增长。
从发酵罐中流出的发酵液进入连续离心分离器中,生产出来的酵母悬浮液含有7%的酵母,占发酵液中总酵母的97%。
试计算从离心机中分离出来的酵母悬浮液的流量F以及残留发酵液的流量W(假设发酵液的密度为1000kg/m3)。
《食品工程原理》复习题答案第一部分 动量传递(流动、输送、非均相物系)一.名词解释1.过程速率:是指单位时间内所传递的物质的量或能量。
2.雷诺准数:雷诺将u 、d 、μ、ρ组合成一个复合数群。
Re 值的大小可以用来判断流动类型。
3.扬程(压头):是指单位重量液体流经泵后所获得的能量。
4.分离因数:同一颗粒在同种介质中的离心沉降速度与重力沉降速度的比值。
二.填空题1.理想流体是指 的流体。
(黏度为零)2.对于任何一种流体,其密度是 和 的函数。
(压力,温度)3.某设备的真空表读数为200mmHg ,则它的绝对压强为 mmHg 。
当地大气压强为101.33×103 Pa 。
(560mmHg )4.在静止的同—种连续流体的内部,各截面上 与 之和为常数。
(位能,静压能)5.转子流量计读取方便,精确,流体阻力 ,不易发生故障;需 安装。
(小,垂直)6.米糠油在管中作流动,若流量不变,管径不变,管长增加一倍,则摩擦阻力损失为原来的______倍。
(2)7.米糠油在管中作层流流动,若流量不变,管径、管长不变,油温升高,粘度为原来的1/2 ,则摩擦阻力损失为原来的 倍。
(1/2)8.米糠油在管中作层流流动,若流量不变,管长不变, 管径增加一倍,则摩擦阻力损失为原来的_____倍。
(1/16)9.实际流体在直管内流过时,各截面上的总机械能 守恒,因实际流体流动时有 。
(不,摩擦阻力)10.任何的过程速率均与该过程的推动力成 比,而与其阻力成 比。
(正,反)11.在离心泵吸入管底部安装带吸滤网的底阀,底阀为 。
(逆止阀)12. 是为了防止固体物质进入泵内,损坏叶轮的叶片或妨碍泵的正常操作。
(滤网)13.离心泵工作时流体流速与压力的变化为:高压流体泵壳通道逐渐扩大的的离心力机械旋转所造成的气压流体被甩出后常压流体)()((低速流体、高速流体)14.泵的稳定工作点应是 特性曲线与 特性曲线式M 的交点。
食工原理复习一、名词解释1.气缚:如果离心泵启动时泵壳和吸入管道内没有充满液体,泵内存在空气,由于空气的密度小于液体的密度,所产生的离心力很小,不足以形成吸上液体的需要的真空度。
此时离心泵无法正常工作。
这种现象称“汽缚”。
2.汽蚀:当离心泵的吸入口压强P1等于输液温度下该液体的饱和蒸汽压Pv,泵入口处液体就要沸腾汽化,形成大量汽泡沫。
汽泡随液体进入叶轮的高压区被压缩后迅速凝聚成液体,体积急剧减小,周围液体就以极高的速度冲向凝聚中心,产生几十甚至几百兆帕的局部压力。
此时液体质点的急剧冲击连续打击叶轮的金属表面,使叶片受到严重损伤。
这种现象称“汽蚀。
3.热传导:当物体内部或两接触的物体间有温度差时,温度较高处的分子因振动而与相邻分子碰撞,并将能量的一部分传给后者,这种能量传递方式,称为热传导。
4.稳态传热:在传热系统中温度分布不随时间而改变的传热过程称为稳态传热。
非稳态传热:在传热系统中温度分布随时间改变的传热过程称为非稳态传热。
5.汽蚀余量:汽蚀余量△h是指离心泵入口处液体的静压头P1/ρg与动压头u12/2g之和超过其饱和蒸汽压头Pv/ρg的某一最小指定值,即:△h=(P1/ρg+u12/2g)-Pv/ρg6.允许吸上真空度:允许吸上真空度Hs指泵入口处压力P1可允许达到的紧高真空度。
以压头形式表示为Hs=(Pa-P1)/ρg7.黑体:吸收率α=1时称该物体为绝对黑体,简称黑体。
白体:当物体热的反射率ρ=1时称该物体为绝对白体。
简称白体。
透热体:当投射到物体表面的热全部透过该物体,即透射率τ=1时,该物体称为透热体。
8.单效蒸发:原料液在一个蒸发器内被加热汽化,产生的二次蒸汽引出后冷凝或排空,不再利用。
多效蒸发:原料液在多个蒸发器内被加热汽化,只在首效采用新鲜生蒸汽,产生的二次蒸汽引出后作为下一效蒸发器的加热蒸汽,末效的二次蒸汽直接冷凝或排出。
闪急蒸发:是一种特殊的减压蒸发。
将热溶液的压力降到低于溶液温度下的饱和压力,则溶液中部分水在压力降低的瞬间沸腾汽化,这种蒸发称之为闪蒸。
一、名词解释(每题2分,共10分)1.相对密度:2.出汁率:3.沉降:4.离心分离因数:5.粒度:6.筛分效率:7.乳化:8.热传导:9.热对流:10.热辐射:11.浸出:12.吸附:13.过饱和度:14.单效蒸发:15.多效蒸发:16.冻结:17.灰体的黑度:18.对流传热系数:二、填空题(每空1分,共20分)1. 流体的流动状态类型可用雷诺数来表示,当(Re<2000)时,流体流动属于(层流),当(Re>4000)时,流体流动属于(湍流),当(2000<Re<4000)之间时,流体流动属于(过渡状态)。
2流体流过任一截面时,需要对流体作相应的(功),才能克服该截面处的流体压力,所需的功,称为(静压能)。
13.离心机按分离因数分类时,常速离心机的分离因数为(K<3000),高速离心机的分离因数为(3000<K<5000),超高速离心机的分离因数为(K>5000)。
4.固体颗粒在层流中发生沉降时,主要的沉降过程为(匀速)阶段。
5. 根据斯托克斯公式,影响沉降速度的因素为(颗粒的粒径)、(分散介质的粘度)和(两相密度差)。
6.离心分离的分离因数是表示分离强度的参数,它等于物料受到的(离心加速度)与(重力加速度)之比。
7.可用作过滤介质的材料很多,主要可分为(织状介质)、(固体颗粒整体层)、(多孔固体介质)和(多孔膜介质)。
8.乳化是处理两种通常不互溶的液体的操作,生成乳化液,按照内、外相的不同,分为(W/O)型和(O/W)型。
9.乳化液中,如牛奶与冰激凌是水较多,油较少的类型为(O/W)。
10.乳化液中,黄油与人造奶油是油较多,为(W/O),水较少,为(W/O)的类型。
11.过滤操作一般可以分为(过滤)、(洗涤)、(干燥)和(卸料)四个阶段。
12.在生产中的多数沉降过程是在层流区内进行的,影响沉降速度的因素有(颗粒直径)、(分散介质黏度)、(两相密度差)。
13.离心分离是利用(惯性离心力)的作用来分离悬浮液、乳浊液的操作。
食品工程原理的名词解释食品工程原理是研究和应用科学、工程技术和管理方法用于加工、生产和保持食品品质和安全的学科。
这是一门十分重要的学科,涵盖了多个领域,如食品科学、化学、微生物学、生物技术、机械工程和工业设计。
1. 食品工程食品工程是涉及将原始农产品转化为可食用的食品的科学与技术领域。
它包括将农产品通过加工和改变其物理、化学和生物性质,使其具有良好的食品品质和安全性。
2. 食品科学食品科学是研究食物的组成、结构、特性、制备和保存的学科。
它包括食品的化学、生物学、物理学和工程学等方面的知识。
食品科学旨在理解食物的特性和相应的加工和保存方法。
3. 食品品质食品品质指食品在感官特性、物理、化学、生物学和营养方面的表现。
它取决于食品的组成、结构、加工和贮存条件等因素。
食品工程原理致力于改善和保持食品品质,以确保食品符合消费者的期望和要求。
4. 食品安全食品安全是确保食品对人类的健康没有危害的责任。
它涉及到生产、加工、贮存、运输和销售食品所需的一系列措施和管理实践。
食品工程原理通过对食品生产和加工环节的控制,以及质量检测和风险评估等方法,来确保食品安全。
5. 食品加工食品加工是利用适当的工艺和设备对原始食材进行处理和改变,以制造食品的过程。
这包括杀菌、脱水、冷冻、热处理、酸化和调味等步骤。
食品工程原理研究和应用各种加工方法,以改善食品的质地、口感、品质和保质期。
6. 食品工艺食品工艺是指将原材料通过特定的处理过程转化为最终产品的过程。
它包括原材料的选择、清洗、切割、混合、加热、冷却和包装等步骤。
食品工程原理通过研究和改进食品工艺,以提高生产效率和产品质量。
7. 食品添加剂食品添加剂是指为了改善食品质量、保持食品安全性或使食品具有特定功能而在食品加工过程中添加的物质。
常见的食品添加剂包括防腐剂、抗氧化剂、增稠剂、酸味剂和色素等。
食品工程原理研究和控制添加剂的使用,以确保其合理使用、安全性和遵守相关法规。
8. 食品贮存食品贮存是指将加工好的食品放置在适当的条件下保存,以延长其保质期和保持其品质。
陕西省考研食品科学与工程复习资料食品工程原理解析食品工程原理是食品科学与工程专业的重要基础课程之一,它主要涉及食品原料、食品生产工艺、食品机械和设备等方面的基本原理和技术。
在考研复习过程中,食品工程原理的学习至关重要。
本文将对食品工程原理的主要内容进行解析,为考生提供复习资料和学习指导。
一、食品原料食品工程原理中,食品原料是一个重要的概念。
食品原料是指用于制备食品的各种具有营养的物质,包括动物性原料和植物性原料。
其中,动物性原料主要包括肉类、蛋类、奶类等;植物性原料主要包括谷物、蔬菜、水果等。
了解食品原料的性质和特点,对于掌握食品工程原理至关重要。
二、食品生产工艺食品生产工艺是指将原料经过一系列加工处理,最终转化为可供食用的食品的过程。
食品生产工艺涉及到原料的加工、清洗、分离、干燥、杀菌等众多环节。
此外,食品生产工艺还包括食品的贮存、包装、运输等环节。
了解食品生产工艺的基本原理,对于掌握食品工程的核心技术具有重要意义。
三、食品机械和设备食品机械和设备在食品工程中起到了至关重要的作用。
它们是用来进行食品生产和加工的重要工具,包括搅拌机、切割机、烘干机、灭菌机等。
食品机械和设备的选择和使用,对于保证食品质量和提高生产效率具有重要意义。
因此,在食品工程原理的学习中,要重点掌握食品机械和设备的原理和应用。
四、食品工程原理的应用食品工程原理不仅仅是理论学科,还具有广泛的应用前景。
食品工程的研究和应用,可以为食品质量监管、新产品开发、食品安全评估等提供技术支持。
此外,食品工程原理的研究还可以为食品工业的可持续发展提供理论指导。
因此,考生在学习食品工程原理的过程中,应将理论知识与实际应用相结合。
总结:食品工程原理是食品科学与工程专业中的一个重要课程,它涉及了食品原料、食品生产工艺、食品机械和设备等多个方面的基本原理和技术。
掌握食品工程原理的知识对于考生的考研复习至关重要。
本文对食品工程原理的主要内容进行了解析,希望能为考生提供复习资料和学习指导,助力考生取得优异的成绩。
学习资料食品工程原理复习第一章 流体力学基础1. 单元操作与三传理论的观点及关系。
不一样食品的生产过程应用各样物理加工过程,依据他们的操作原理,能够归纳为数个应用宽泛的基本操作过程,如流体输送、搅拌、沉降、过滤、热互换、制冷、蒸发、结晶、汲取、蒸馏、粉碎、乳化萃取、吸附、干燥 等。
这些基本的物理过程称为 单元操作动量传达:流体流动时,其内部发生动量传达,故流体流动过程也称为动量传达过程。
凡是按照流体流动基本规律的单元操作,均可用动量传达的理论去研究。
热量传达 : 物体被加热或冷却的过程也称为物体的传热过程。
凡是按照传热基本规律的单元操作, 均可用热量传达的理论去研究。
质量传达 : 两相间物质的传达过程即为质量传达。
凡是按照传质基本规律的单元操作,均可用质量传达的理论去研究。
单元操作与三传的关系“三传理论”是单元操作的理论基础,单元操作是“三传理论”的详细应用。
同时,“三传理论”和单元操作也是食品工程技术的理论和实践基础2. 粘度的观点及牛顿内摩擦 ( 粘性) 定律。
牛顿黏性定律的数学表 达式是 ,服此后定律的流体称为牛顿流体。
μ比率系数,其值随流体的不一样而异,流体的黏性愈大,其值愈大。
所以称为粘滞系数或动力粘度,简称为粘度3. 理想流体的观点及意义。
理想流体的粘度为零,不存在内摩擦力。
理想流体的假定,为工du d y4.热力系统:指某一由四周界限所限制的空间内的全部物质。
边仅供学习与参照界能够是真切的,也能够是虚构的。
界限所限制空间的外面称为外界。
5.稳固流动:各截面上流体的有关参数(如流速、物性、压强)仅随地点而变化,不随时间而变。
e1 PV11gZ1u12q w e2PV22gZ2u22 226.流体在两截面间的管道内流动时,其流动方向是从总能量大的截面流向总能量小的截面。
7.1kg 理想流体在管道内作稳固流动而又没有外功加入时,其柏努利方程式的物理意义是其总机械能守恒,不一样形式的机械能能够互相变换。
《食品工程原理》复习大纲一、课程性质及其设置目的与要求(一)课程性质和特点食品工程原理属工科学科,是食品科学与工程专业的一门主干课。
本课程培养学生用自然科学的原理考察、解释和处理工程实际问题。
研究方法主要是理论解析和理论指导下的实验研究。
本课程强调工程观点;定量运算,实验技能和设计能力的训练;强调理论与实际结合,提高分析问题和解决问题的能力,为后继课程的学习及今后的工作打下坚实基础。
(二)本课程的基本要求本课程的主要研究内容是以轻化工生产中的物理加工过程为背景,按其操作原理的共性归纳成的若干“单元操作”。
通过本课程的学习,应考者应该掌握流体流动、传热和传质的基础理论,主要单元操作的基本原理、实验技能和工艺设计计算,建立工程观点,对各有关单元操作,具有分析问题和解决问题的能力。
(三)本课程与相关课程的联系本课程是学生在具备了必要的高等数学,物理学,物理化学,计算技术等基础知识后必修的技术基础课,应考者若具有扎实的上述课程的基础有助于更好地学习食品工程原理课程。
学好本课程,也能为后继课程的学习及今后的工作打下坚实基础。
二、课程内容与考核目标绪论(一)课程内容(1)本课程的性质、研究对象与方法、目的、任务(2)食品工程单元过程的分类动量传递过程包括流体的流动及输送、非均相物系的分离、物料的搅拌等;传热过程包括传热理论及设备、蒸发、冷冻等;传质过程包括气体的吸收、液体的蒸馏、固体的干燥等。
(3)几个基本概念质量守恒定律及其物料衡算;能量守恒定律及其能量衡算;单位、因次及其单位制度;单位换算;过程速率;三传过程的高度统一表述。
(4)化工单元操作与食品工程之间的联系及其区别。
(二)学习要求要求通过对本章的学习能掌握食品单元操作的概念和特点,食品单元操作的研究内容和研究方法论,单元操作归一表述,物理量的单位换算,物料衡算和能量衡算的概念,单元操作的平衡关系。
(三)考核知识点和考核要求(1)了解本课程的性质、研究对象与方法、任务(2)掌握学习本课程的几个基本概念(3)理解研究食品工程基本过程的意义(4)理解物理量的因次式和单位制度(5)了解化工单元操作与食品工程单元操作之间的联系与区别第1章流体流动及输送机械(一)课程内容(1)流体静力学流体的密度;静压能;流体静力学基本方程式及其应用。
食品工程原理 复习题(课程代码 252403)一、填空题(本大题共15小题)1、计算管道流体局部阻力的方法有:________________,_________________,其相应的阻力计算公式为________________,__________________。
参考答案:阻力系数法 当量长度法 W f =ξ , W f =ξ2、牛顿冷却定律的表达式为__________________,对流传热系数α的单位是________________。
参考答案:Q=αA(T -t) W/m 2,K3、采用真空蒸发时,需要在冷凝器后安装真空装置,其作用是排除_________________,以维持蒸发操作所要求的_____________。
参考答案:不凝气体 真空度4、相对湿度φ值可以反映湿空气吸收水汽能力的大小,当φ值大时,表示该湿空气的吸收水汽的能力_________;当φ=0时。
表示该空气为_______________。
参考答案:弱 绝对干空气5、 当地大气压为 1.0×105Pa ,一设备绝压为 3.0×104Pa ,其表压为 ;真空度为 。
参考答案:—7.0×104Pa 7.0×104Pa6、圆管管内流体流动,流体最大流速位于 。
参考答案:管心线7、已知雷诺准数为1×105,管子相对粗糙度为0.005,则流动时的摩擦系数为 。
参考答案:0.0328、今选用一单级单吸离心泵,如所需流量为15m 3/h ,扬程为29m ,则所选离心泵型号为 。
参考答案:IS50—32—1609、传热基本方程式是 ,其中 是传热推动力 参考答案:Q=KA △t m △t m10、流体物性对对流传热的影响用 表示。
参考答案:Pr11、流量计的安装方向上,孔板流量计只能 安装,转子流量计只能安装。
参考答案:水平 垂直12、当地大气压为1.0×105Pa ,一设备绝压为2.0×104Pa ,其表压为 ;真空度为 。
1、食物:可供人类食用或具有可食性的物质统称为食物。
2、食品:指各种供人食用或饮用的成品和原料以及按照传统既是食品又是药品的物品,但是不包括以治疗为目的的物品。
3、食品加工:就是将食物或原料经过劳动力、机器、能量及科学知识,把它们转变成半成品或可食用的产品(食品)的过程。
4、食品工艺:将原料加工成半成品或将原料和半成品加工成食品的过程和方法。
5、水分活度:食品表面测定的蒸汽压与相同温度下纯水的饱和蒸汽压之比。
6、MSI:在恒定温度下,以AW对水分含量作图所得到的曲线称为水分吸附等温线。
7、水分梯度:干制过程中潮湿食品表面水分受热后首先有水分蒸发,而后水蒸气从食品表面向周围介质中扩散,此时表面湿含量比物料中心的湿含量低,出现水分含量的差异,即存在水分梯度。
8、导湿性:同时,食品高水分区水分子就会向低水分区转移或扩散。
这种由于水分梯度使得食品水分从高水分向低水分处转移或扩散的现象,称导湿性。
9、导湿温性:温度梯度将促使水分从高温处向低温处转移,这种由水分梯度引起的导湿温现象被称为导湿温性。
10、干制品的复原性:干制品重新吸收水分后在重量、大小、形状、质地、颜色、风味、结构、成分以及其他可见因素等各方面恢复原来新鲜状态的程度。
11、干制品的复水性:新鲜食品干制后能重新吸回水分的程度。
12、复水比:物料复水后沥干重(M复)和干制品试样重(M干)的比值。
13、瘪塌温度:在冷冻干燥的二级干燥阶段需要注意热量补加不能太快,以避免食品温度上升快,使原先形成的固态状框架结构失去刚性变为易流动的液态,从而导致食品的固态框架结构瘪塌,干制品瘪塌时的温度即为瘪塌温度。
14、酸化食品:有些低酸性食品物料因为感官品质的需要,不宜进行高强度的加热,这时可以采取加入酸或酸性食品的办法,将整罐产品的最终平衡PH控制在4.6以下,这类产品称为“酸化食品”。
15、F0值:采用121.1℃杀菌温度时的热力致死时间,单位为min。
16、Z值:是杀菌变化10倍所需要相应改变的温度数,单位为℃。
1.1.位能:由于流体在地球重力场中处于一定的位置而具有的能量。
若任选一基准水平面作为位能的零点,则离基准垂直距离为Z的流体所具有的位能为mgz。
2.动能:由于运动而具有的能量。
若流体以均匀速度u流动,则其动能为mv2/2.若流动界面上流速分布不均,可近似按平均流速进行计算,或乘以动能校正系数。
3.内能:物体或若干物体构成的系统内部一切微观粒子的一切运动形式所具有的能量总和。
对于不克压缩流体,其内能主要是流体的分子动能,对于可压缩流体,其内能既有分子动能,也有分子位能,如果单位质量流体所含的内能为e,则质量为m的流体所具有的内能E=me。
在热力计算时,我们对某一状态下的内能变化值。
4.流动功:如果设备中还有压缩机或泵等动力机械,则外接通过这类机械将对体系做功,是为功的输入,相反也有体系对外做功的情形,是为功的输出,人为规定,外界对体系做功为正,体系对外界做工为负。
5.汽蚀:水泵叶轮表面受到气穴现象的冲击和侵蚀产生剥落和损坏的现象。
吸上真空高度达最大值时。
液体就要沸腾汽化,产生大气泡,气泡随液流进入叶轮的高压区而被压缩,于是气泡又迅速凝成液体,体积急剧变小,周围液体就以极高速度冲向凝聚中心,造成几百个大气压甚至几千个大气压的局部应力致使叶片受到严重损伤。
6.汽蚀余量:指泵吸收入口处单位液体所具有的超过气化压力的富余能量,7.泵的工作点:泵的特性曲线与某特定管路的特性曲线的交点。
1.雷诺准数:Re=dup/u;是惯性力和黏性力之比,是表示流动状态的准数2努赛尔特准数:Nu:表示对流传热系数的准数3普兰特准数:Pr:表示物性影响的准数4格拉斯霍夫准数:Gr:表示自然对流影响的准数5粘度:液体在流动时,在其分子间产生内摩擦的性质,称为液体的黏性,粘性的大小用黏度表示,是用来表征液体性质相关的阻力因子;运动黏度是流体的动力黏度与流体的密度之比6热传导:是通过微观粒子(分子·原子·电子等)的运动实现能量传递;热对流:指流体质点间发生相对位移而引起的热量传递过程;热辐射:指物体由于热的原因以电磁波的形式向外发射能量的过程7水分结冰率:食品冻结过程中水分转化为冰晶体的程度;最大冰晶生成区:水分结冰率变化最大的温度区域(-1~5摄氏度)8形状系数:表证非球形颗粒与球形颗粒的差异程度。
9分隔尺度:指混合物各个局部小区域体积的平均值;分隔强度:指混合物各个局部小区域的浓度与整个混合物的平均浓度的偏差的平均值。
10泵的工作点:将同一系统中的泵的特性曲线和某特定管路曲线,用同样的比例尺绘在一张图上,则这两条曲线的交点称为系统的工作点11温度场:某一瞬间空间中各点的温度分布;温度梯度:沿等温面法线方向上的温度变化率12颗粒群的频率分布曲线:将各个颗粒的相对应的颗粒百分含量绘制成曲线;累计分布曲线是将小于(大于)某粒径的颗粒占全部颗粒的百分含量与该粒径的关系绘制成表格或图形来直观表示颗粒粒径的累积分布13粉碎:利用机械力将固体物料破碎为大小符合要求的小块颗粒或粉末的单元操作;粉碎比“物料粉碎前后的平均粒度之比14床层空隙率:众多颗粒按某种方式堆积成固体定床时,床层中颗粒堆积的疏密程度可用空隙率表示,数值等于床层空隙体积与床层总体积之比15床层的比表面:单位床层体积具有的颗粒表面积16水力光滑管:当δ﹥Δ时,管壁的凸凹不平部分完全被黏性底层覆盖,粗糙度对紊流核心几乎没有影响,此情况成为水力光滑管17紊流核心:黏性影响在远离管壁的地方逐渐减弱,管中大部分区域是紊流的活动区,这里成为紊流核心18允许吸上真空高度Hsp:在吸上真空高度上留有一定的余量,所得的吸上真空高度19最大吸上真空高度Hsmax:当泵的吸入口处的绝对压力Ps降低到与被输送液体在输送温度下的饱和蒸汽压Pv相等时,吸上真空高度就达到最大的临界值,称为最大吸上真空高度20泵的几何安装高度(吸入高度):指泵的吸入口轴线与贮液槽液面间的垂直距离21壁效应:壁面附近的空隙率总是大于床层内部,因阻力较小,流体在近壁处的流速必大于床层内部22黑体:A=1表示投射到物体表面上的辐射能全部被该物体吸收;白体或镜体:R=1,表示投射到物体表面上的辐射能全被该物体反射;透热体:D=1表示投射到物体表面上的辐射能全部被透过;灰体:能以相同的吸收率且部分地吸收所有波长范围的辐射能的物体;特点:a,灰体的吸收率u投射辐射的波长无关;b,灰体是不透热体A+R=123黑度或发射率:将实际物体与同温度黑体的辐射能力的比值24流化态:如果流体固定床层向上流动时的流速增加而且超过某一限度时,床层就要浮起,此时床层讲具有许多固定床所没有的特性25最大流化速度:当床层的空塔速度达到颗粒的沉降速度时,颗粒将被流体带出器外,此速度称为最大流化速度26流化数K:操作速度与临界流化速度之比27助滤剂:在过滤前预前覆盖在滤布上或添加于滤浆中的物质28沟流:是流体通过床层形成短路,使流体通过床层分布不匀,有大量流体经过局部地区的通道没有与固体颗粒很好接触就上升,而床层的其余部分仍处于固定床状态而未被流化(死床),以致不可能得到良好的流化。
原因:气体分布不均匀,气速过小,粒度过细,密度过大等;危害:会引起气固接触时间的不均一性,在流化干燥时也会引起局部未干又局部过干等问题;节涌:气体鼓泡通过流化床层时,因气泡汇合成为大气泡,将床层一节节地往上柱塞式地推动,然后在上层崩裂,固体颗粒以较小集合体或个别颗粒淋洒而下;原因:床径较小而床高对床径之比较大,气流分布不均;危害:除了降低转化率和使床层温度不均外,还会加速固体颗粒对设备的磨损29调匀度:一种或几种组分的浓度或其他物理量和温度等在搅拌体系内的均匀性30粒度:颗粒的大小,表示固体粉碎程度的代表性尺寸31乳化:将两种通常不互溶的液体进行密切混合的一种特殊的液体混合操作,一种液体(或含微细固型粒子)并以微小球滴或固型微粒子(分散相)均匀分散在另一种液体(连续相)之中,该现象成为乳化1.粘性流体在静止时有无剪应力,理想流体在运动时有无剪应力?若流体在静止时无剪应力,是否意味着它们没有粘性?答:由牛顿内摩擦定律可知,剪应力与速度梯队成正比,因此,粘性流体静止时无剪应力。
又由理想流体的定义可知,没有粘性的流体为理想流体,因此,理想流体流动时仍无剪应力。
流体在静止时无剪应力不等于没有粘性,只是没有表现出来。
粘性是由流体本身决定的性质。
2.粘性的物理本质是什么?为什么温度升高,气体粘度上升,而液体粘度下降?答:粘性是流体流动时表现出来的重要性质,其物理本质是分子内聚力大小和分子热运动强度的宏观表现。
流体流动时,由于分子间内聚力作用和分子热运动动量交换作用,使宏观移动流层(速度为 u )中的分子拉动临近流层中的分子,并使该临近流层以速度 u -?u 发生流动,内聚力越大或分子热运动动量交换越小,粘性越大(即 ?u 越小)。
对于液体,当温度升高时,分子间的距离加大,同时热运动也加强,此时由于分子间距离加大而引起内聚力下降对粘性影响大于热运动带来的影响,因此,液体粘度随温度升高而下降(即 ?u 加大)。
对于气体,由于分子间距离远大于液体,因此,分子间内聚力对粘性影响处于次要位置。
温度升高时,分子热运动引起动量交换加强,使粘度增加(即 ?u 减小)。
答:由雷诺数表达式可知,3.雷诺数的物理意义是什么? Re = duρ 是流体流动惯性力与粘滞力之比,其数值大小反映流体的流动状态。
4.什么是水力光滑管?答:设管壁绝对粗糙度为 ? ,流体粘性底层厚度为δ,当δ > ? 时,管壁凸凹表面似乎被镀上一层光滑的液膜,管壁粗糙度几乎不影响紊流核心。
此时,称为水力光滑管。
5.是否在任何管道中,流量增大则阻力损失就增大;流量减小则阻力损失就减小?为什么?答:在某些管路中,流量与阻力损失并不是总成正比关系。
如在分支管路中,如图所示,当阀门1和阀门2 全开时,流量最大。
如果此时关小阀门1,这时支路 1 流量减少,而局部阻力增加,如果支路沿程阻力可以忽略,则对支路 1 而言,是流量减少,而阻力损失增加。
如果主管路的阻力损失与支路的阻力损失相比很小,则主管路的阻力损失可以忽略不计时,关小阀门 1 不影响支路 2 的流量,因为 I-I 面和 0-0 面能量基本相同,近似为常数,支路 2 阀门未改变,因此流量也不会改变。
但此时整个分支管路流量减少了,阻力却增加了。
6.刚安装好的一台离心泵,启动后出口阀门已经开至最大,但不见水流出,试分析原因并采取措施使泵正常运行。
答:出现此类问题的可能原因如下: 1)没有向水泵内灌引水或没有灌满引水。
从吸水口到离心泵,水是在吸水口处与离心泵进口处两处压力差作用下被吸入离心泵,压力差的大小主要取决于离心泵进口处的绝对压力。
为了产生足够的压力差,启动前应向水泵内灌足引水,排空吸入管道内的空气,使水吸入水泵。
2)水泵工作总扬程或吸水扬程超过规定标准,这是选型与设计问题。
实际吸水高度超过水泵标定高度,水不能吸入。
如果实际扬程大于水泵标定扬程,水虽被吸入但不能排出。
3)水泵转速不够或反转。
电动机与泵轴之间如果是皮带传递方式,新安装的水泵要调整好皮带的张紧度,保证水泵的正常运行转速。
水泵反转是电动机接线问题造成的,应该按说明书接线方式接线。
4)吸水管路或水泵填料处漏气,造成压力损失。
应检查吸水管路连接处并拧紧漏气部位或压紧水泵填料。
1.在多层壁的热传导中确定层间界面温度具有什么实际意义?答:在多层壁的热传导中,确定层间界面温度具有的意义是:了解或掌握各层材料的热导率在一定条件下的特性。
如由多层保温材料构成的冷库壁面中,有些保温材料吸水后热导率有很大的提高,保温能力下降。
因此,在这种保温材料中的最低温度要高于所处环境下湿空气的露点,以保证湿空气中的水汽不会凝结成水,保证冷库壁面的保温性能。
因此在冷库设计中,要充分考虑到这一点。
2.流动对传热的贡献主要表现在哪里?答:对流换热时,若流体静止不流动,则流体只能以热传导的方式与壁面进行热交换,当热导率为常数时,温度分布为直线,温度梯度较小;当流体流过壁面时,将形成流动边界层和温度边界层。
所谓温度边界层是指在壁面附近存在较大温度梯度的区域。
在温度边界层以外,流体的温度基本均匀一致,而在温度边界层以内,温度的分布与流动边界层内的流体流动情况有关,流动边界层越薄,温度边界层就越薄,滞流内层也越薄,因此,流动的结果是使温度梯度增大。
由傅立叶定律q = ?λ 则 q 就大。
3.自然对流中的加热面与冷却面的位置应如何放才有利于充分传热?答:因流体中各处的温度不同而引起密度不同,使轻者上浮,重者下沉,流体质点间发生相对位移,这种对流称为自然对流。
显然,自然对流的关键是要使流体循环畅通,因此,对于要求加热的场合,加热面应放置在被加热空间的下部;对于要求冷却降温的场合,冷却面应放置在被加热空间的上部,这样放置才有利于充分传热。