完整版五年级上册多边形面积的计算
- 格式:docx
- 大小:161.48 KB
- 文档页数:7
可编辑修改精选全文完整版小学五年级上学期数学《多边形的面积》教案•相关推荐小学五年级上学期数学《多边形的面积》教案(通用8篇)在教学工作者实际的教学活动中,很有必要精心设计一份教案,教案是备课向课堂教学转化的关节点。
那么应当如何写教案呢?下面是小编精心整理的小学五年级上学期数学《多边形的面积》教案,仅供参考,欢迎大家阅读。
小学五年级上学期数学《多边形的面积》教案篇1学习目标:1.复习面积的意义、常用的面积单位、长方形和正方形的面积计算公式,初步建立图形的等积变形思想。
2.体会转化、估计等解决问题的策略,为教学平行四边形等图形的面积计算作比较充分的知识准备和思想准备。
3.学习重难点:对图形进行分解与组合、分割与移拼的转化方法学具准备:学具盒学习过程:一、分一分、数一数1、下面两个图形的面积相等吗?2、怎样数的?在小组里交流一下。
二、移一移、数一数1、怎样移动右边图形中的一部分,能很快数出它的面积?2、利用分割与平移,保持面积不变,把多边形转化为长方形,计算它的面积。
这个图形的面积是多少?三、数一数、算一算1、下面是牧场中一个池塘的平面图。
先把池塘上面整格的和不满整格的分别涂上不同的颜色,数一数各有多少个,再算出池塘面积大约是多少平方米?(不满整格的,都按半格计算)。
2、你算出的面积大约是多少?这样的算法合理吗?在小组里说说自己的想法。
3、你能算出右边树叶的面积大约是多少平方厘米吗?四、估一估、算一算1、采集几片树叶,先估计他们的面积个是多少平方厘米,再把树叶描在第122页的方格纸上,用数方格的方法算促他们的面积。
2、你能用这样的方法算出自己手掌的面积吗?五、小结:今天我们进行面积是多少实践活动,怎样计算不规则图形的面积呢?小学五年级上学期数学《多边形的面积》教案篇2【教学内容】:课本79页到81页的内容【教学目标】:1、知识与能力目标:使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.2、过程与方法:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.3、情感态度价值观:通过解决问题,使学生体会所学知识在生活中的应用,增强学生学好数学的兴趣和意识。
多边形的面积一、计算公式注:S表示面积,a表示底,h表示高,底和高必须对应!在梯形的面积公式里,a表示上底,b表示下底,一般来说,短的是上底,长的是下底。
在计算面积时,要找准对应的量。
求三角形和梯形的面积时,不要忘了除以2。
二、其他知识点1、计算多边形的面积,要代入公式计算。
2、推导平行四边形的面积,将平行四边形转化成长方形。
(割补法)3、平行四边形的周长=相邻两边长之和×2 三角形的周长=三条边之和梯形的周长=上底+下底+两条腰4、把一个长方形拉成平行四边形,周长不变,面积变小(平行四边形的高比原来长方形的宽小)。
反之,把平行四边形拉成一个长方形,周长不变,面积变大。
5、两个完全一样的三角形可以拼成一个平行四边形。
(拼摆法)6、等底等高的平行四边形和三角形,平行四边形的面积是三角形面积的2倍,三角形面积是平行四边形面积的一半。
等面积等底的平行四边形和三角形,三角形的高是平行四边形的高的2倍,平行四边形的高是三角形的高的一半。
7、在直角三角形里,两条直角边就是对应的底和高,斜边最长。
8、两个完全一样的梯形可以拼成一个平行四边形。
(拼摆法)9、计算堆成梯形形状的圆木、钢管等的个数,通常用下面的方法:(顶层个数+底层个数)×层数÷2=总个数。
注意:只有下一层物体比上一层物体数多1时,才有“层数=底层个数-顶层个数+1”10、求组合图形的面积时,一定要找准所分成的图形的相关数据。
11、不规则图形的面积可以转化成学过的图形来估算,也可以通过数方格的方法来估算。
三、解答方法1、计算面积时,分清是算哪种图形的面积,直接利用相应的面积公式,一定要找准公式里所需的每个量,注意单位是否一致,算出结果后记得写单位,面积单位有“平方”两个字。
2、计算底、高、上底或下底时,同样看清是哪种图形,直接利用相应面积公式的变式。
(熟记和熟练运用上面表格的计算公式。
)3、计算组合图形的面积时,利用割补法,看清组合图形是由哪几个简单图形(所谓简单图形,就是我们学过的长方形、正方形、平行四边形、三角形、梯形)组成的,分别算出每个简单图形的面积,最后不要忘了再相加(分割法,图形是凸的)或相减(添补法,图形是凹的)。
一、介绍多边形和面积的概念多边形是由直线段围成的图形,其中包括三角形、四边形、五边形等等。
面积是描述一个图形所占的平方单位的大小,用平方厘米、平方米等表示。
二、计算三角形面积的方法计算三角形的面积可以使用以下两种方法:1.使用底和高的公式对于任意一个三角形,我们可以通过测量底和高,然后使用公式:面积=底×高÷2,来计算三角形的面积。
2.使用海伦公式对于已知三角形三条边的长度的情况下,我们可以使用海伦公式来计算三角形的面积。
海伦公式如下:面积=√(s×(s-a)×(s-b)×(s-c))其中,a、b、c分别表示三角形的三条边的长度,s为半周长,即s=(a+b+c)÷2三、计算四边形面积的方法计算四边形的面积可以使用以下两种方法:1.使用边长和高的公式对于一个四边形,如果已知两对对边平行,并且我们可以测量其中一对对边的长度,以及从一对对边中的一边到另一对对边的垂直距离(即高),那么可以使用公式:面积=底×高,来计算四边形的面积。
2.使用对角线的公式对于一个四边形,如果已知两条对角线的长度,可以使用以下公式来计算四边形的面积:面积=1/2×(对角线1×对角线2)。
四、计算五边形面积的方法计算五边形的面积可以使用以下方法:使用分割法:将五边形分割成三角形和四边形,分别计算它们的面积,然后相加即可得到五边形的面积。
五、计算多边形面积的方法计算多边形的面积可以使用以下方法:1.使用分割法:将多边形分割成若干个不重叠的三角形,计算每个三角形的面积,然后相加。
2.使用公式法:对于规则多边形,可以使用特定的公式来计算面积。
例如,对于正n边形(n为正整数),面积=(n×边长×高)÷2六、实例请计算一个正三角形的面积,已知边长为6厘米。
根据公式:面积=边长×高÷2=6×(根号3×6)÷2≈15.59平方厘米。
【导语】当物体占据的空间是⼆维空间时,所占空间的⼤⼩叫做该物体的⾯积,⾯积可以是平⾯的也可以是曲⾯的。
平⽅⽶,平⽅分⽶,平⽅厘⽶,是公认的⾯积单位,以下是⽆忧考为⼤家精⼼整理的内容,欢迎⼤家阅读。
【篇⼀】⼩学五年级上册数学《多边形的⾯积》知识点 1、公式 长⽅形:周长=(长+宽)×2;字母公式:C=(a+b)×2 ⾯积=长×宽;字母公式:S=ab 正⽅形:周长=边长×4;字母公式:C=4a ⾯积=边长×边长;字母公式:S=a 平⾏四边形:⾯积=底×⾼;字母公式:S=ah 三⾓形:⾯积=底×⾼÷2;字母公式:S=ah÷2 底=⾯积×2÷⾼;⾼=⾯积×2÷底 梯形:⾯积=(上底+下底)×⾼÷2;字母公式:S=(a+b)h÷2 上底=⾯积×2÷⾼-下底;下底=⾯积×2÷⾼-上底;⾼=⾯积×2÷(上底+下底) 2、单位换算的⽅法 ⼤化⼩,乘进率;⼩化⼤,除以进率。
3、常⽤单位间的进率 1千⽶=1000⽶1⽶=10分⽶ 1分⽶=10厘⽶1厘⽶=10毫⽶ 1平⽅千⽶=100公顷1公顷=10000平⽅⽶ 1平⽅⽶=100平⽅分⽶1平⽅分⽶=100平⽅厘⽶ 4、图形之间的关系 (1)、平⾏四边形可以转化成⼀个长⽅形;两个完全相同的三⾓形可以拼成⼀个平⾏四边形。
两个完全相同的梯形可以拼成⼀个平⾏四边形。
(2)、等底等⾼的平⾏四边形⾯积相等;等底等⾼的三⾓形⾯积相等。
(3)、等底等⾼的平⾏四边形⾯积是三⾓形⾯积的2倍。
如果⼀个三⾓形和⼀个平⾏四边形等⾯积,等底,则三⾓形的⾼是平⾏四边形的2倍。
如果⼀个三⾓形和⼀个平⾏四边形等⾯积,等⾼,则三⾓形的底是平⾏四边形的2倍。
(4)、把长⽅形框架拉成平⾏四边形,周长不变,⾯积变⼩了。
【知识梳理】1.平行四边形的面积平行四边形的面积=底×高用字母表示:s=ah变形式:平行四边形的底=面积÷高(a=s÷h)平行四边形的高=面积÷底(h=s÷a)要点提示:求平行四边形的面积时,底和高要对应。
2.三角形的面积三角形的面积=底×高÷2用字母表示:s=ah÷2变形式:三角形的底=面积×2÷高(a=2s÷h)三角形的高=面积×2÷底(h=2s÷a)要点提示:①等底等高的三角形的面积相等。
②等底等高的平行四边形和三角形,三角形的面积是平行四边形面积的一半。
3.梯形的面积梯形的面积=(上底+下底)×高÷2用字母表示:s=(a+b)h÷2变形式:梯形的高=面积×2÷(上底+下底) 字母表示为:h=2s÷(a+b)梯形的上底=面积×2÷高-下底字母表示为:a=2s÷h-b梯形的下底=面积×2÷高-上底字母表示为:b=2s÷h-a要点提示:已知梯形的面积,求梯形的高或其中一个底,也可以用方程法解决。
4.组合图形的面积把求组合图形的面积转化成求几个简单图形的面积的和或差。
要点提示:求组合图形的面积时,一定要分清是由哪些基本图形组合而成的,再利用割补、剔除等方法求面积。
5.估计不规则图形的面积方法一:借助方格纸用数方格的方法进行估计。
方法二:根据图形的特点转化为近似的规则图形来估计。
要点提示:数方格时,先确定图形的面积范围,再估计它的面积。
【诊断自测】1.填空题。
(1)=()cm2公顷=()平方米(2)一个三角形的底是米,高是米,它的面积是()平方米,和它等底等高的平行四边形的面积是()平方米。
(3)一个平行四边形的高是12厘米,面积是96平方厘米,它的底是()厘米。
精心整理第五章多边形的面积【知识梳理】1.平行四边形的面积平行四边形的面积=底×高用字母表示:s=ah要点提示2.要点提示3.要点提示:已知梯形的面积,求梯形的高或其中一个底,也可以用方程法解决。
4.组合图形的面积把求组合图形的面积转化成求几个简单图形的面积的和或差。
要点提示:求组合图形的面积时,一定要分清是由哪些基本图形组合而成的,再利用割补、剔除等方法求面积。
5.估计不规则图形的面积方法一:借助方格纸用数方格的方法进行估计。
方法二:根据图形的特点转化为近似的规则图形来估计。
要点提示:数方格时,先确定图形的面积范围,再估计它的面积。
【诊断自测】1.填空题。
(1)3.8dm 2=()cm 20.03公顷=()平方米(2)一个三角形的底是3.6米,高是2.5米,它的面积是()平方米,和它等底等高 的平行四边形的面积是()平方米。
(3(42.选择。
(1A.(2)(34 1268A.3.(1)(2)(3)4.(1) 3 5 (2) 75.15.5米,这个花园的面积是多少平方米?6.一个三角形的面积是75平方厘米,高是7.5【考点突破】类型一:平行四边形、三角形、梯形的面积。
例1.13.5 B18C 答案:=18×=243(cm 2例2.0.25答案:905400÷例3.A.C.扩大到原来的4倍D.不变 答案:D解析:平行四边形的面积=底×高, (底×2)×(高×12)=底×高×2×12=底×高,面积不变。
故选D 。
例4.一块三角形绿地的面积是13.5平方米,底是6米,高是多少米?答案:由s=ah÷2推导出h=2s÷a。
h=2s÷a=2×13.5÷6=27÷6=4.5(m)答:高是4.5米。
解析:可以先根据三角形的面积计算公式s=ah÷2推导出h=2s÷a,再计算。
五年级上册多边形的面积引言多边形是我们数学中常见的一个几何形状,它由多个线段构成的封闭图形。
而多边形的面积则是指这个多边形所占据的平面区域的大小。
在五年级上册中,我们将学习如何计算多边形的面积,这是一项重要的数学技能,将在解决各类实际问题中帮助我们。
如何计算多边形的面积计算多边形的面积有多种方法,常用的有以下几种:高度法对于任意多边形,可以使用高度法计算其面积。
具体步骤如下: 1. 选择一个边作为基边,并作为水平线段。
2. 从基边上的一端垂直向上或向下作一条高度线。
3. 计算高度线与多边形各边的交点,将多边形分割为若干个三角形或梯形。
4. 计算每个三角形或梯形的面积,并将它们之和即为多边形的面积。
边长法如果多边形的各边均已知长度,可以使用边长法计算其面积。
具体步骤如下:1. 将多边形分割为若干个三角形或梯形。
2. 计算每个三角形或梯形的面积,并将它们之和即为多边形的面积。
隔离法对于规则多边形(各边长度相等、各角度相等的多边形),可以使用隔离法计算其面积。
具体步骤如下: 1. 选择一个顶点为中心点,并以这个中心点为圆心,作一个外接圆。
2. 将外接圆与多边形的每条边的交点连接,形成若干个三角形。
3. 计算每个三角形的面积,并将它们之和即为多边形的面积。
例题让我们通过一个例题来具体理解如何计算多边形的面积。
问题:请计算下图所示的多边形的面积。
多边形示意图解法:我们可以使用高度法计算该多边形的面积。
1.选择基边AB,并作为水平线段。
2.从基边上的一端C垂直向下作一条高度线。
3.计算高度线与多边形各边的交点,将多边形分割为三个三角形和一个梯形。
4.分别计算每个三角形和梯形的面积。
我们假设多边形的高度为h,得到以下计算结果: - 三角形ACD的面积:(1/2) * AC * h - 三角形BCD的面积:(1/2) * BC * h - 三角形ADE的面积:(1/2) * AD * h - 梯形CDEF的面积:((CD + EF) / 2) * h最后,将每个三角形和梯形的面积相加,即可得到多边形的面积。
第五章多边形的面积【知识梳理】1.平行四边形的面积平行四边形的面积=底×高用字母表示:s=ah变形式:平行四边形的底=面积÷高(a=s÷h)平行四边形的高=面积÷底(h=s÷a)要点提示:求平行四边形的面积时,底和高要对应。
2.三角形的面积三角形的面积=底×高÷2用字母表示:s=ah÷2变形式:三角形的底=面积×2÷高(a=2s÷h)三角形的高=面积×2÷底(h=2s÷a)要点提示:①等底等高的三角形的面积相等。
②等底等高的平行四边形和三角形,三角形的面积是平行四边形面积的一半。
3.梯形的面积梯形的面积=(上底+下底)×高÷2用字母表示:s=(a+b)h÷2变形式:梯形的高=面积×2÷(上底+下底) 字母表示为:h=2s÷(a+b)梯形的上底=面积×2÷高-下底字母表示为:a=2s÷h-b梯形的下底=面积×2÷高-上底字母表示为:b=2s÷h-a要点提示:已知梯形的面积,求梯形的高或其中一个底,也可以用方程法解决。
4.组合图形的面积把求组合图形的面积转化成求几个简单图形的面积的和或差。
要点提示:求组合图形的面积时,一定要分清是由哪些基本图形组合而成的,再利用割补、剔除等方法求面积。
5.估计不规则图形的面积方法一:借助方格纸用数方格的方法进行估计。
方法二:根据图形的特点转化为近似的规则图形来估计。
要点提示:数方格时,先确定图形的面积范围,再估计它的面积。
【诊断自测】1.填空题。
(1)=()cm2公顷=()平方米(2)一个三角形的底是米,高是米,它的面积是()平方米,和它等底等高的平行四边形的面积是()平方米。
(3)一个平行四边形的高是12厘米,面积是96平方厘米,它的底是()厘米。
不规则图形面积的计算(一)我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积.例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
例4 如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求△ABD及△ACE的面积.例5 如下页右上图,在正方形ABCD中,三角形ABE的面积是8平方厘例6 如右图,已知:S△ABC=1,例7 如下页右上图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG 的长DG为5厘米,求它的宽DE等于多少厘米?例8 如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.例9 如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.习题一一、填空题(求下列各图中阴影部分的面积):二、解答题:1.如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。
2.如右图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米.求四边形CMGN(阴影部分)的面积.3.如右图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。
五年级多边形的面积计
算公式汇总
集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]
多边形的面积计算公式
1、长方形的面积=长×宽
字母表示:S=ab
长方形的长=面积÷宽a=S ÷b
长方形的宽=面积÷长b=S ÷a
2、正方形的面积=边长×边长
字母表示:S=a2
3 平行四边形的面积=底×高
字母表示:S=ah
平行四边形的高=面积÷底h=S ÷a
平行四边形的底=面积÷高a=S ÷h
4、三角形的面积=底×高÷2
字母表示:S=ah ÷2
三角形的高=2×面积÷底h=2S ÷a
三角形的底=2×面积÷高a=2S ÷h
5、梯形的面积=(上底+下底)×高÷2
字母表示:S=(a+b)·h ÷2
梯形的高=2×面积÷(上底+下底)h=2S ÷(a+b)
梯形的上底=2×面积÷高—下底a=2S ÷h-b
梯形的下底=2×面积÷高—上底b=2S ÷h-a
1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米
1平方米=10000平方厘米1米==10分米=100厘米。
不规则图形面积的计算(一)
我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:
实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算• 一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例1如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12 厘米.求阴影部分的面积。
例2如右图,正方形ABCD勺边长为6厘米,△ ABE △ ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积.
例3两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
例4如右图,ACDE的DE边上中点,BC=CD若厶ABC(阴影部分)面积为5平方厘米.求厶ABD S^ ACE的面积.
D
例5如下页右上图,在正方形ABCD中,三角形ABE的面积是8平方厘氷,它是三角形DEC的面积的、求正方形ABCD的画积.
例6如右图,已知:S A ABC=1
例7如下页右上图,正方形ABCD勺边长是4厘米,CG=3厘米,矩形DEFG 的长DG为5厘米,求它的宽DE等于多少厘米?
例8如右图,梯形ABCD勺面积是45平方米,高6米,△ AED勺面积是5 平方米,BC=10米,求阴影部分面积.
例9如右图,四边形ABCDR DEFC都是平行四边形,证明它们的面积相
习题一
、填空题(求下列各图中阴影部分的面积):
12 1010
6 4
3 1
⑧
1
1
、解答题:
1. 如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB AD中点,且FG=2GE求阴影部分面积。
2. 如右图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米. 求四边形CMGN阴影部分)的面积.
3. 如右图,正方形ABCD的边长为5厘米,△ CEF的面积比厶ADF的面
4. 如右图,已知CF=2DF DE=EA三角形BCF的面积为2,四边形BEDF 的面积为4.求三角形ABE的面积.
5. 如右图,直角梯形ABCD 勺上底BC=10厘米,下底AD=14厘米,高CD= 5厘米.又三角形ABF 三角形BCE 和四边形BEDF 勺面积相等。
求三角形 DEF 的面积.
6. 如右图,四个一样大的长方形和一个小的正方形拼成一个大正方形, 其 中大、小正方形的面积分别是64平方米和9平方米.求长方形的长、宽各 是多少?
c
E D。