机器人手部结构
- 格式:ppt
- 大小:1.16 MB
- 文档页数:4
探秘机器人手部的特点
机器人手部是机器人最为重要的构成之一,其特点决定了机器人
在不同领域的应用。
以下将从机器人手部的结构、功能、灵活性以及
精度等方面进行探讨。
首先,机器人手部的结构分为爪式和手指式两种。
爪式多用于物流、工厂等领域,具有稳定的抓力和负重能力;而手指式多用于医疗、服务等领域,具有更高的灵活性和精度。
其中,手指式结构在手指数量、材质、长度、连接方式等方面都有所区别,根据应用场景选择不
同的手指结构是机器人手部设计中的重要环节。
其次,机器人手部在功能上需要具备抓取、放置、旋转、翻转、
拔取等操作。
为了实现这些功能,机器人手部还需要配备各种传感器
和执行器,如摄像头、力传感器、角度传感器、电机等。
这些传感器
和执行器配合使用,可以让机器人手部实现更加精细的操作,如对物
品进行分类、装配、拆卸等。
再次,机器人手部需要具备灵活性和精度。
灵活性指机器人手部
可以在不同姿态进行抓取、放置操作,同时还需要具备避免碰撞和识
别物品大小、形状、重量等能力。
而精度则体现在机器人手部能够实
现微调、精细操作,如医疗机器人手术操作、电子产品的贴片等。
这
就需要机器人手部配备高精度的传感器和执行器,并且通过良好的控
制算法使其实现精确操作。
综上所述,机器人手部的特点决定了机器人在不同领域的应用。
机器人手部的结构、功能、灵活性和精度等因素需要综合考虑,并根据应用场景进行巧妙设计。
机器人手部结构详解机器人手是指机器人的末端执行器件,负责具体的抓取、控制、操作等任务。
机器人手的结构设计直接关系到机器人的功能和性能,因此机器人手的结构设计是机器人技术领域中的一个重要研究方向。
机器人手的结构通常由手指、关节、驱动器和传感器等组成。
手指是机器人手部的关键部位,通过手指可以实现抓取、握持、操纵等功能。
手指通常由多个关节连接而成,通过关节的灵活运动,实现对目标物体的精确控制。
机器人手的关节通常采用伺服驱动器或步进驱动器来实现精确的控制。
伺服驱动器通过反馈控制系统,可以实现对关节位置、速度和力矩的精确控制,使机器人手能够完成复杂的操作任务。
步进驱动器则通过精确的步进运动控制,实现关节的位置控制,适用于一些简单的操作任务。
机器人手的传感器通常包括力传感器、触觉传感器和位置传感器等。
力传感器可以测量机器人手对物体施加的力或力矩,从而实现对力的感知和控制。
触觉传感器可以模拟人手的触觉感知功能,使机器人手能够感知物体的质量、硬度、形状等特征。
位置传感器用于测量机器人手的位置和姿态,实现对手指和关节的精确控制。
机器人手的结构设计不仅要考虑功能和性能,还要满足实际应用的需求。
例如,在工业机器人中,机器人手通常需要具备高负载、高速度和高精度的特点;在服务机器人中,机器人手需要具备轻巧、柔软和安全的特点,以适应不同的环境和任务。
随着机器人技术的不断发展和应用的不断扩大,机器人手的结构设计也在不断创新和进化。
一些新兴的结构设计包括柔性手指、并联机构和生物启发式结构等。
柔性手指是一种利用柔性材料构造的手指,具有良好的柔软性和适应性。
柔性手指可以通过变形来适应不同形状和大小的物体,具有良好的握持能力和抓取精度。
并联机构是一种由多个并联连接的杆件和关节组成的手指结构,通过并联机构的运动,可以实现更高的载荷和更大的工作空间。
生物启发式结构则是借鉴生物的结构和运动原理,设计具有类似生物手的机器人手,具有更强的适应性和灵活性。
工业机器人技术机器人手部结构随着工业自动化的发展,越来越多的企业开始采用工业机器人来完成各种工作任务。
而机器人手部结构是机器人的关键组成部分之一,它直接影响着机器人的灵活性、精确性和稳定性。
因此,研究和设计高性能机器人手部结构是非常重要的。
机器人手部结构主要包括机器人手臂、手指和手腕三个部分。
下面我将逐一介绍这三个部分的结构和功能。
首先是机器人手臂。
机器人手臂是机器人手部结构的基础,它连接着机器人的身体和手指,起到支撑和移动手指的作用。
机器人手臂通常由多个关节和连接件组成,可以在一定范围内进行自由运动。
根据机器人的需求和任务,手臂的长度和关节数可以有所不同。
同时,机器人手臂的材料也需要具备一定的刚性和韧性,以承受较大的载荷。
其次是机器人手指。
机器人手指是机器人手部结构的“手”,负责抓取、夹持和放置物体。
机器人手指一般由指节、指骨和指关节组成,通过关节的运动实现手指的伸缩、曲率和旋转。
为了保证机器人手指的精确性和稳定性,手指的设计需要考虑力触觉和位置控制等方面。
此外,机器人手指的表面覆盖材料也需要具备一定的抓握性能,以适应不同形状和材质的物体。
最后是机器人手腕。
机器人手腕起到连接机器人手臂和手指的作用,它能够使手指在多个平面上进行旋转和倾斜。
机器人手腕通常由多个旋转关节和连接件组成,通过关节的运动使机器人手指更加灵活。
为了增加机器人手腕的力矩和刚度,通常会采用外部传动装置来提高机器人手腕的精确性和控制能力。
在工业机器人的应用中,机器人手部结构的设计和研究涉及到多学科的知识,包括机械工程、电子工程和控制工程等。
目前,一些先进的机器人手部结构开始采用柔性和可变形材料,以适应更加复杂和多样化的工作环境。
同时,机器人手部结构的智能化和感知能力也成为了研究的热点。
总之,机器人手部结构是工业机器人的核心组成部分,它直接决定了机器人的灵活性、精确性和稳定性。
随着技术的不断进步,机器人手部结构将会变得更加复杂和智能化,为工业自动化带来更多的便利和效益。
机器人机械手爪综述目录一、夹钳式手部设计的基本要求 (3)二、典型机械爪结构 (4)1)回转型 (4)2)移动型 (5)三、夹钳式手部的计算与分析 (9)1)夹紧力的计算 (9)2)夹紧缸驱动力计算 (11)3)计算步骤 (12)4)手爪的夹持误差分析与计算 (12)四、常用气爪 (17)1)气动手指气缸具有如下特点: (17)2)气动手指气缸主要类型与型号 (18)工业机器人的手部(亦称机械爪或抓取机构)是用来直接握持工件的部件,由于被握持工件的形状、尺寸大小、重量、材料性能、表面状况等的不同,所以工业机械手的手部结构是多种多样的,大部分的手部结构是根据特定的工件要求而设计的。
常用的手部,按其握持工件的原理,大致可分成夹持和吸附两大类。
夹持类常见的主要有夹钳式,此外还有钩托式和弹簧式。
夹持类手部按其手指夹持工件时的运动方式,可分为手指回转型和手指平移型两种,如图1所示。
吸附类中,有气吸式和磁吸式。
a)回转型内撑式b)回转型外夹式c)平移型外夹式d)钩托式e)弹簧式f)气吸式g)磁吸式图1 机械爪类型夹钳式手部是由手指、传动机构和驱动装置三部分组成的,它对抓取各种形状的工件具有较大的适应性,可以抓取轴、盘、套类零件。
一般情况下,多采用两个手指,少数采用三指或多指。
驱动装置为传动机构提供动力,驱动源有液压、气动和电动等几种形式。
常见的传动机构往往通过滑槽、斜楔、齿轮齿条、连杆机构实现夹紧或松开。
平移型手指的张开闭合靠手指的平行移动,适于夹持平板、方料。
在夹持直径不同的圆棒时,不会引起中心位置的偏移。
但这种手指结构比较复杂、体积大,要求加工精度高。
回转型手指的张开闭合靠手指根部(以枢轴支点为中心)的回转运动来完成。
枢轴支点为一个的,称为单支点回转型;为两个的,称为双支点回转型。
这种手指结构简单,形状小巧,但夹持不同工件会产生夹持定位偏差。
a)单支点回转型b)双支点回转型C)平移型(平直指)图2 回转型和平移型手指一、夹钳式手部设计的基本要求1. 应具有适当的夹紧力和驱动力。
回转型图例
平动型图例
用作图法分析当主动件左移才处于某个位置时,手指所处的位置。
平移型图例
⏹手指式:
⏹外夹式、内撑式、内外夹持式。
⏹平移式、平动式、旋转式。
⏹二指式、多指式。
⏹单关节式、多关节式。
⏹吸盘式:
⏹负压吸盘:真空式、喷气式、挤气式。
⏹磁力吸盘:永磁吸盘、电磁吸盘。
可用来吸附鸡蛋、锥颈瓶等物件。
扩大了真空吸盘在机器人上的应用。
回转动力源1和6驱动构件2和5顺时针或逆时针旋转,通过平行四边形机构带动手指3和4作平动,夹紧或释放工件。
手爪装有限位开关5和7。
在指爪4沿垂直方向接近工件6的过程中,限位开关检测手爪与工件的相对位置。
当工件接触限位开关时发信号,汽缸通过连杆3驱动指爪夹紧工件。
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。