机器人手部结构详解
- 格式:ppt
- 大小:1.12 MB
- 文档页数:1
机器人机械手爪综述目录一、夹钳式手部设计的基本要求 (3)二、典型机械爪结构 (4)1)回转型 (4)2)移动型 (5)三、夹钳式手部的计算与分析 (9)1)夹紧力的计算 (9)2)夹紧缸驱动力计算 (11)3)计算步骤 (12)4)手爪的夹持误差分析与计算 (12)四、常用气爪 (17)1)气动手指气缸具有如下特点: (17)2)气动手指气缸主要类型与型号 (18)工业机器人的手部(亦称机械爪或抓取机构)是用来直接握持工件的部件,由于被握持工件的形状、尺寸大小、重量、材料性能、表面状况等的不同,所以工业机械手的手部结构是多种多样的,大部分的手部结构是根据特定的工件要求而设计的。
常用的手部,按其握持工件的原理,大致可分成夹持和吸附两大类。
夹持类常见的主要有夹钳式,此外还有钩托式和弹簧式。
夹持类手部按其手指夹持工件时的运动方式,可分为手指回转型和手指平移型两种,如图1所示。
吸附类中,有气吸式和磁吸式。
a)回转型内撑式b)回转型外夹式c)平移型外夹式d)钩托式e)弹簧式f)气吸式g)磁吸式图1 机械爪类型夹钳式手部是由手指、传动机构和驱动装置三部分组成的,它对抓取各种形状的工件具有较大的适应性,可以抓取轴、盘、套类零件。
一般情况下,多采用两个手指,少数采用三指或多指。
驱动装置为传动机构提供动力,驱动源有液压、气动和电动等几种形式。
常见的传动机构往往通过滑槽、斜楔、齿轮齿条、连杆机构实现夹紧或松开。
平移型手指的张开闭合靠手指的平行移动,适于夹持平板、方料。
在夹持直径不同的圆棒时,不会引起中心位置的偏移。
但这种手指结构比较复杂、体积大,要求加工精度高。
回转型手指的张开闭合靠手指根部(以枢轴支点为中心)的回转运动来完成。
枢轴支点为一个的,称为单支点回转型;为两个的,称为双支点回转型。
这种手指结构简单,形状小巧,但夹持不同工件会产生夹持定位偏差。
a)单支点回转型b)双支点回转型C)平移型(平直指)图2 回转型和平移型手指一、夹钳式手部设计的基本要求1. 应具有适当的夹紧力和驱动力。
一、机器人手部结构的基本形式在机器人技术领域,机器人手部结构是非常重要的组成部分,它直接影响着机器人在不同场景下的灵活性和功能性。
简单来说,机器人手部结构的基本形式包括指关节、腕关节和手掌等部分。
这些部分共同构成了机器人手部的基本结构,可以让机器人实现不同程度的灵活和复杂动作。
1. 指关节指关节是机器人手部结构中非常重要的一部分,它主要由指骨和关节组成。
机器人手部通常会有多个指关节,每个指关节通常都具有弯曲和伸直的功能。
这种设计可以让机器人手部更好地模拟人类手部的动作,具有更高的灵活性和精准度。
指关节的设计可以让机器人实现握取、抓取、放置等动作,从而更好地适应不同的操作场景。
2. 腕关节腕关节是连接机器人手部和机器人手臂的重要部分。
它可以让机器人手部在三维空间内进行自由度的转动和灵活的运动。
腕关节的设计可以让机器人手部更好地适应复杂的操作环境,实现更广泛的操作范围和更多样化的动作。
腕关节的设计也直接影响着机器人手部的力学性能和稳定性,是机器人手部结构中不可或缺的一部分。
3. 手掌手掌是机器人手部结构中的末端部分,它直接和外界环境进行接触和交互。
机器人手掌通常会设计成有感知和反馈功能的结构,可以实现对外界物体的感知和控制。
手掌的设计可以让机器人实现更精细和复杂的动作,如抓取物体、搬运物品等。
手掌的设计也是机器人手部结构中非常注重的部分,可以直接影响着机器人手部的抓取力和稳定性。
二、机器人手部结构的发展趋势随着人工智能和机器人技术的不断发展,机器人手部结构也在不断创新和改进。
未来,机器人手部结构的发展趋势主要包括以下几个方面:1. 柔性化设计未来的机器人手部结构将更加注重柔性化设计,使得机器人手部可以更好地适应不同形状、大小和硬度的物体。
柔性化设计可以让机器人手部具有更好的适应性和灵活性,从而实现更多样化的操作和任务。
2. 多功能化应用未来的机器人手部结构将更加注重多功能化应用,使得机器人手部可以实现更多样化和复杂化的功能。
第三章机器人的机械结构系统3.4机器人手部结构【内容提要】本课主要学习工业机器人手部结构。
介绍机器人手部的特点、手部分类、夹持类手部、吸附式手部、仿人手机器人手部。
知识要点:✓机器人手部的特点✓机器人手部分类✓夹持手部✓吸附式手部✓仿人手机器人手部重点:✓掌握机器人手部分类✓掌握机器人夹持手部✓掌握机器人吸附式手部难点:✓机器人手部分类✓夹持手部✓吸附式手部关键字:✓手部、夹持手部、吸附式手部【本课内容相关资料】3.4机器人的手部机构人类的手是最灵活的肢体部分,能完成各种各样的动作和任务。
同样,机器人的手部是完成抓握工件或执行特定作业的重要部件,也需要有多种结构。
机器人的手部也叫做末端执行器,它是装在机器人腕部上,直接抓握工件或执行作业的部件。
人的手有两种定义:一种是医学上把包括上臂、腕部在内的整体叫做手;另一种是把手掌和手指部分叫做手。
机器人的手部接近于后一种定义。
机器人的手部是最重要的执行机构,从功能和形态上看,它可分为工业机器人的手部和仿人机器人的手部。
目前,前者应用较多,也比较成熟。
工业机器人的手部是用来握持工件或工具的部件。
由于被握持工件的形状、尺寸、重量、材质及表面状态的不同,手部结构是多种多样的。
大部分的手部结构都是根据特定的工件要求而专门设计的。
3.4.1机器人手部的特点1.机器人手部的特点(1)手部与腕部相连处可拆卸手部与腕部有机械接口,也可能有电、气、液接头。
工业机器人作业对象不同时,可以方便地拆卸和更换手部。
(2)手部是机器人末端执行器它可以像人手那样具有手指,也可以不具备手指;可以是类人的手爪,也可以是进行专业作业的工具,比如装在机器人腕部上的喷漆枪、焊接工具等。
(3)手部的通用性比较差机器人手部通常是专用的装置,例如,一种手爪往往只能抓握一种或几种在形状、尺寸、重量等方面相近似的工件;一种工具只能执行一种作业任务。
2.机器人手部的性质机器人手部是—个独立的部件。
假如把腕部归属于手臂,那么机器人机械系统三大件就是机身、手臂和手部。
机器人手部结构详解机器人手是指机器人的末端执行器件,负责具体的抓取、控制、操作等任务。
机器人手的结构设计直接关系到机器人的功能和性能,因此机器人手的结构设计是机器人技术领域中的一个重要研究方向。
机器人手的结构通常由手指、关节、驱动器和传感器等组成。
手指是机器人手部的关键部位,通过手指可以实现抓取、握持、操纵等功能。
手指通常由多个关节连接而成,通过关节的灵活运动,实现对目标物体的精确控制。
机器人手的关节通常采用伺服驱动器或步进驱动器来实现精确的控制。
伺服驱动器通过反馈控制系统,可以实现对关节位置、速度和力矩的精确控制,使机器人手能够完成复杂的操作任务。
步进驱动器则通过精确的步进运动控制,实现关节的位置控制,适用于一些简单的操作任务。
机器人手的传感器通常包括力传感器、触觉传感器和位置传感器等。
力传感器可以测量机器人手对物体施加的力或力矩,从而实现对力的感知和控制。
触觉传感器可以模拟人手的触觉感知功能,使机器人手能够感知物体的质量、硬度、形状等特征。
位置传感器用于测量机器人手的位置和姿态,实现对手指和关节的精确控制。
机器人手的结构设计不仅要考虑功能和性能,还要满足实际应用的需求。
例如,在工业机器人中,机器人手通常需要具备高负载、高速度和高精度的特点;在服务机器人中,机器人手需要具备轻巧、柔软和安全的特点,以适应不同的环境和任务。
随着机器人技术的不断发展和应用的不断扩大,机器人手的结构设计也在不断创新和进化。
一些新兴的结构设计包括柔性手指、并联机构和生物启发式结构等。
柔性手指是一种利用柔性材料构造的手指,具有良好的柔软性和适应性。
柔性手指可以通过变形来适应不同形状和大小的物体,具有良好的握持能力和抓取精度。
并联机构是一种由多个并联连接的杆件和关节组成的手指结构,通过并联机构的运动,可以实现更高的载荷和更大的工作空间。
生物启发式结构则是借鉴生物的结构和运动原理,设计具有类似生物手的机器人手,具有更强的适应性和灵活性。
工业机器人技术机器人手部结构随着工业自动化的发展,越来越多的企业开始采用工业机器人来完成各种工作任务。
而机器人手部结构是机器人的关键组成部分之一,它直接影响着机器人的灵活性、精确性和稳定性。
因此,研究和设计高性能机器人手部结构是非常重要的。
机器人手部结构主要包括机器人手臂、手指和手腕三个部分。
下面我将逐一介绍这三个部分的结构和功能。
首先是机器人手臂。
机器人手臂是机器人手部结构的基础,它连接着机器人的身体和手指,起到支撑和移动手指的作用。
机器人手臂通常由多个关节和连接件组成,可以在一定范围内进行自由运动。
根据机器人的需求和任务,手臂的长度和关节数可以有所不同。
同时,机器人手臂的材料也需要具备一定的刚性和韧性,以承受较大的载荷。
其次是机器人手指。
机器人手指是机器人手部结构的“手”,负责抓取、夹持和放置物体。
机器人手指一般由指节、指骨和指关节组成,通过关节的运动实现手指的伸缩、曲率和旋转。
为了保证机器人手指的精确性和稳定性,手指的设计需要考虑力触觉和位置控制等方面。
此外,机器人手指的表面覆盖材料也需要具备一定的抓握性能,以适应不同形状和材质的物体。
最后是机器人手腕。
机器人手腕起到连接机器人手臂和手指的作用,它能够使手指在多个平面上进行旋转和倾斜。
机器人手腕通常由多个旋转关节和连接件组成,通过关节的运动使机器人手指更加灵活。
为了增加机器人手腕的力矩和刚度,通常会采用外部传动装置来提高机器人手腕的精确性和控制能力。
在工业机器人的应用中,机器人手部结构的设计和研究涉及到多学科的知识,包括机械工程、电子工程和控制工程等。
目前,一些先进的机器人手部结构开始采用柔性和可变形材料,以适应更加复杂和多样化的工作环境。
同时,机器人手部结构的智能化和感知能力也成为了研究的热点。
总之,机器人手部结构是工业机器人的核心组成部分,它直接决定了机器人的灵活性、精确性和稳定性。
随着技术的不断进步,机器人手部结构将会变得更加复杂和智能化,为工业自动化带来更多的便利和效益。
机器人机械手爪综述目录一、夹钳式手部设计的基本要求 (3)二、典型机械爪结构 (4)1)回转型 (4)2)移动型 (5)三、夹钳式手部的计算与分析 (9)1)夹紧力的计算 (9)2)夹紧缸驱动力计算 (11)3)计算步骤 (12)4)手爪的夹持误差分析与计算 (12)四、常用气爪 (17)1)气动手指气缸具有如下特点: (17)2)气动手指气缸主要类型与型号 (18)工业机器人的手部(亦称机械爪或抓取机构)是用来直接握持工件的部件,由于被握持工件的形状、尺寸大小、重量、材料性能、表面状况等的不同,所以工业机械手的手部结构是多种多样的,大部分的手部结构是根据特定的工件要求而设计的。
常用的手部,按其握持工件的原理,大致可分成夹持和吸附两大类。
夹持类常见的主要有夹钳式,此外还有钩托式和弹簧式。
夹持类手部按其手指夹持工件时的运动方式,可分为手指回转型和手指平移型两种,如图1所示。
吸附类中,有气吸式和磁吸式。
a)回转型内撑式b)回转型外夹式c)平移型外夹式d)钩托式e)弹簧式f)气吸式g)磁吸式图1 机械爪类型夹钳式手部是由手指、传动机构和驱动装置三部分组成的,它对抓取各种形状的工件具有较大的适应性,可以抓取轴、盘、套类零件。
一般情况下,多采用两个手指,少数采用三指或多指。
驱动装置为传动机构提供动力,驱动源有液压、气动和电动等几种形式。
常见的传动机构往往通过滑槽、斜楔、齿轮齿条、连杆机构实现夹紧或松开。
平移型手指的张开闭合靠手指的平行移动,适于夹持平板、方料。
在夹持直径不同的圆棒时,不会引起中心位置的偏移。
但这种手指结构比较复杂、体积大,要求加工精度高。
回转型手指的张开闭合靠手指根部(以枢轴支点为中心)的回转运动来完成。
枢轴支点为一个的,称为单支点回转型;为两个的,称为双支点回转型。
这种手指结构简单,形状小巧,但夹持不同工件会产生夹持定位偏差。
a)单支点回转型b)双支点回转型C)平移型(平直指)图2 回转型和平移型手指一、夹钳式手部设计的基本要求1. 应具有适当的夹紧力和驱动力。
回转型图例
平动型图例
用作图法分析当主动件左移才处于某个位置时,手指所处的位置。
平移型图例
⏹手指式:
⏹外夹式、内撑式、内外夹持式。
⏹平移式、平动式、旋转式。
⏹二指式、多指式。
⏹单关节式、多关节式。
⏹吸盘式:
⏹负压吸盘:真空式、喷气式、挤气式。
⏹磁力吸盘:永磁吸盘、电磁吸盘。
可用来吸附鸡蛋、锥颈瓶等物件。
扩大了真空吸盘在机器人上的应用。
回转动力源1和6驱动构件2和5顺时针或逆时针旋转,通过平行四边形机构带动手指3和4作平动,夹紧或释放工件。
手爪装有限位开关5和7。
在指爪4沿垂直方向接近工件6的过程中,限位开关检测手爪与工件的相对位置。
当工件接触限位开关时发信号,汽缸通过连杆3驱动指爪夹紧工件。
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。
机器人机械手爪综述目录一、夹钳式手部设计的基本要求 (3)二、典型机械爪结构 (4)1)回转型 (4)2)移动型 (5)三、夹钳式手部的计算与分析 (9)1)夹紧力的计算 (9)2)夹紧缸驱动力计算 (11)3)计算步骤 (12)4)手爪的夹持误差分析与计算 (12)四、常用气爪 (17)1)气动手指气缸具有如下特点: (17)2)气动手指气缸主要类型与型号 (18)工业机器人的手部(亦称机械爪或抓取机构)是用来直接握持工件的部件,由于被握持工件的形状、尺寸大小、重量、材料性能、表面状况等的不同,所以工业机械手的手部结构是多种多样的,大部分的手部结构是根据特定的工件要求而设计的。
常用的手部,按其握持工件的原理,大致可分成夹持和吸附两大类。
夹持类常见的主要有夹钳式,此外还有钩托式和弹簧式。
夹持类手部按其手指夹持工件时的运动方式,可分为手指回转型和手指平移型两种,如图1所示。
吸附类中,有气吸式和磁吸式。
a)回转型内撑式b)回转型外夹式c)平移型外夹式d)钩托式e)弹簧式f)气吸式g)磁吸式图1 机械爪类型夹钳式手部是由手指、传动机构和驱动装置三部分组成的,它对抓取各种形状的工件具有较大的适应性,可以抓取轴、盘、套类零件。
一般情况下,多采用两个手指,少数采用三指或多指。
驱动装置为传动机构提供动力,驱动源有液压、气动和电动等几种形式。
常见的传动机构往往通过滑槽、斜楔、齿轮齿条、连杆机构实现夹紧或松开。
平移型手指的张开闭合靠手指的平行移动,适于夹持平板、方料。
在夹持直径不同的圆棒时,不会引起中心位置的偏移。
但这种手指结构比较复杂、体积大,要求加工精度高。
回转型手指的张开闭合靠手指根部(以枢轴支点为中心)的回转运动来完成。
枢轴支点为一个的,称为单支点回转型;为两个的,称为双支点回转型。
这种手指结构简单,形状小巧,但夹持不同工件会产生夹持定位偏差。
a)单支点回转型b)双支点回转型C)平移型(平直指)图2 回转型和平移型手指一、夹钳式手部设计的基本要求1. 应具有适当的夹紧力和驱动力。