定积分的应用(1)
- 格式:doc
- 大小:471.00 KB
- 文档页数:6
例谈定积分的应用
定积分是利用积分技术来搭建企业系统的一种服务方式,通过定积分,企业可以解决营销,客户追踪,价格管理,订单跟踪等问题,让企业
既有资源利用效率,又能惠及消费者。
一、定积分的应用
1、促销活动:利用定积分可以创建各种丰富多彩的促销活动,满减、
团购、买赠、金币锁定等,激励消费者购买和积累积分。
2、客户管理:定积分能够建立细致复杂的客户档案,包括客户经理内容,购买次数,消费金额,积分余额等,更好地进行客户管理。
3、价格管理:通过定积分,可以根据不同客户的特征,设置特定的价格,比如会员价,大客户价等,更好地提高定价精确度和竞争力。
4、订单追踪:定积分的订单追踪系统可以记录客户的订单信息,有利
于企业更好地追溯客户信息以及及时为客户提供优质服务。
二、定积分的优势
1、可靠性:定积分系统可以提供可靠性能,降低前端和后端系统出现
的异常和故障,防止客户和企业受到损害。
2、安全性:定积分的安全性也得到有效保障,内部数据交换完全采用
加密技术,保证信息不受外部干涉。
3、兼容性:定积分具有可行性和兼容性,它可以按照各种不同环境定
制与企业系统相协调的服务,能够提供企业最适合的解决方案。
4、易用性:定积分使用界面简洁明了,业务流程简单可靠,容易上手,操作简单易懂,为客户提供更贴心的服务。
三、总结
定积分的引入为企业的经营活动带来了更多的便利,有效提高了企业
的经营效率,也让消费者能够从消费上受到更多的好处。
由此可见,
定积分不仅是企业的一种低成本的服务方式,也是一个更加有效的、
更加充分的消费积分服务体系,为企业和消费者都更好地搭建企业系统。
定积分的应用定积分是微积分的重要概念之一,它在许多实际问题的求解中起着重要作用。
本文将介绍一些定积分的应用,并探讨它们在不同领域中的具体应用情况。
1. 几何学中的应用在几何学中,我们经常需要计算曲线与坐标轴之间的面积。
通过使用定积分,可以轻松解决这个问题。
以求解曲线 y = f(x) 与 x 轴之间的面积为例,我们可以将其划分为无穷多个宽度非常小的矩形,然后将这些矩形的面积相加,最终得到曲线与 x 轴之间的面积。
这个过程可以通过定积分来表示,即∫[a,b] f(x) dx,其中 a 和 b 分别是曲线的起始点和终止点。
2. 物理学中的应用在物理学中,定积分广泛应用于求解各种与物理量有关的问题。
例如,在动力学中,我们可以通过计算物体的位移和速度的定积分来求解物体的加速度。
同样地,在力学中,定积分可以用于计算物体所受的力的功。
这些应用都需要将物理量表示成关于时间的函数,并使用定积分来求解相关问题。
3. 经济学中的应用经济学也是定积分的应用领域之一。
在经济学中,我们经常需要计算一段时间内的总收益或总成本。
通过将这段时间划分为无数个非常小的时间段,然后计算每个时间段内的收益或成本,最后再将这些值相加,我们可以用定积分来表示这段时间内的总收益或总成本。
这种方法在经济学中有着广泛的应用,例如计算企业的总利润等。
4. 概率统计学中的应用在概率统计学中,定积分可以用于求解概率密度函数下的某个区间的概率。
在概率密度函数中,曲线下的面积表示了该事件发生的概率。
通过将概率密度函数在某个区间上的定积分,我们可以得到该区间内事件发生的概率。
这种方法在概率论和数理统计中具有重要的应用,例如计算正态分布下的概率,或者计算随机变量的期望值等。
综上所述,定积分在几何学、物理学、经济学和概率统计学等各个领域都有着重要的应用。
无论是计算面积、求解物理量、计算总收益还是计算概率,定积分都提供了一种有效的数学工具。
通过理解和掌握定积分的应用,我们可以更好地解决实际问题,并深入研究各个领域中的相关理论。
定积分的应用在我们的生活中,有很多场景都需要用到定积分。
而在数学上,定积分也起到了重要的作用。
定积分可以计算曲线下的面积,如求函数 $f(x)$ 在区间 $[a,b]$ 上的面积。
接下来,我们将介绍一些常见的定积分的应用。
一、曲线下的面积假设我们有一个区间 $[a,b]$,以及一个函数 $f(x)$。
我们可以使用定积分来计算这个函数在该区间上的曲线下的面积。
这个面积可以用下面的式子来计算:$$ S=\int_{a}^{b}f(x)dx $$ 其中,$\int$ 表示定积分。
如果我们以 $f(x)\geq 0$ 的形式进行了定义,那么定积分就可以计算出曲线下的正面积。
例如,如果我们要计算函数 $f(x)=x^2$ 在区间 $[0,1]$ 上的曲线下的面积,我们可以通过下面的定积分来计算:$$ S=\int_{0}^{1}x^2dx $$利用积分的定义,可以将该式子化简为:$$ S=\lim_{n\rightarrow\infty}\sum_{i=1}^{n}f(x_i)\Deltax=\lim_{n\rightarrow\infty}\sum_{i=1}^{n}x_i^2\Delta x $$ 其中,$\Delta x=\frac{1}{n}$ 且 $x_i=i\Delta x$。
如果我们取 $n=100$,你会发现:$$ S=0.010050167\cdots $$ 这时,我们就可以知道函数 $f(x)=x^2$ 在区间 $[0,1]$ 上的曲线下的面积为约为 $0.010050167$。
二、体积类似于计算曲线下的面积,定积分也可以用于计算体积。
我们可以使用定积分来计算旋转曲面的体积,例如旋转曲面、扫描曲面等。
例如,假设我们需要计算曲线 $y=x^2$ 从 $x=0$ 到 $x=1$ 周围在 $y$ 轴旋转一周所形成的立体的体积,我们可以使用下面的公式计算出体积:$$ V=\int_{0}^{1}\pi y^2dx $$替换掉 $y=x^2$ 的值,我们得到:$$ V=\int_{0}^{1}\pi x^4dx $$ 计算该定积分的结果为:$$ V=\frac{\pi}{5} $$ 所以,曲线$y=x^2$ 从 $x=0$ 到 $x=1$ 周围所形成的立体的体积为$\frac{\pi}{5}$。
定积分在数学中有广泛的应用,涵盖了多个领域,包括几何、物理、经济学和工程学等。
以下是一些常见的应用领域:
1. 几何学:定积分可用于计算曲线的弧长、曲线与坐标轴所围成的面积、空间曲面的面积和体积等。
通过将几何问题转化为定积分的计算,可以准确求解各种形状的几何量。
2. 物理学:定积分在物理学中的应用非常广泛。
例如,可以用定积分计算物体的质心、转动惯量、流体的压力和力矩等。
还可以通过定积分计算曲线下的面积来求解物体的位移、速度和加速度等运动学问题。
3. 经济学:定积分在经济学中的应用主要用于计算累积量。
例如,可以使用定积分计算总收益、总成本、总利润等经济指标。
还可以通过定积分计算边际收益和边际成本,从而进行经济决策和优化问题的分析。
4. 工程学:定积分在工程学中也具有重要的应用价值。
例如,可以使用定积分计算电路中的电流、电压和功率等物理量。
在结构工程中,可以通过定积分计算材料的体积、质量和重心位置等。
此外,定积分还在概率论、信号处理、图像处理等领域有各种应用。
总之,定积分作为微积分的重要工具,广泛应用于数学及其他学科的建模、计算和问题求解中,提供了丰富的数学工具和方法,有助于深入理解各个学科中的现象和问题。
图1-1图1-2定积分的应用微积分学是微分学和积分学的统称,它的创立,被誉为“人类精神的最高胜利”.在数学史上,它的发展为现代数学做出了不朽的功绩。
恩格斯曾经指出:微积分是变量数学最重要的部分,是数学的一个重要的分支,它实现带科学技术以及自然科学的各个分支中被广泛应用的最重要的数学工具。
凡是复杂图形的研究,化学反映过程的分析,物理方面的应用,以及弹道﹑气象的计算,人造卫星轨迹的计算,运动状态的分析等等,都要用得到微积分.正是由于微积分的广泛的应用,才使得我们人类在数学﹑科学技术﹑经济等方面得到了长足的发展,解决了许多的困难。
以下将讲述一下定积分在数学﹑经济﹑工程﹑医学﹑物理方面的中的一些应用.1 定积分的概念的提出1.1问题的提出曲边梯形的面积(如图1)所谓曲边梯形,是指由直线a x =、b x =(b a <),x 轴及连续曲线)(x f y =(0)(≥x f )所围成的图形。
其中x 轴上区间],[b a 称为底边,曲线)(x f y =称为曲边。
不妨假定0)(≥x f ,下面来求曲边梯形的面积。
由于c x f ≠)((],[b a x ∈)无法用矩形面积公式来计算,但根据连续性,任两点],[,21b a x x ∈ ,12x x -很小时,)(1x f ,)(2x f 间的图形变化不大,即点1x 、点2x 处高度差别不大。
于是可用如下方法求曲边梯形的面积.(1) 分割 用直线1x x =,2x x =,1-=n x x (b x x x a n <<<<<-121 )将整个曲边梯形任意分割成n 个小曲边梯形,区间上分点为:b x x x x x a n n =<<<<<=-1210这里取0x a =,n x b =。
区间],[b a 被分割成n 个小区间],[1i i x x -,用i x ∆表示小区间],[1i i x x -的长度,i S ∆表示第i 块曲边梯形的面积,),,2,1(n i =,整个曲边梯形的面积S 等于n 个小曲边梯形的面积之和,即∑=∆=ni i S S 1(2)近似代替: 对每个小曲边梯形,它的高仍是变化的,但区间长度i x ∆很小时,每个小曲边梯形各点处的高度变化不大,所以用小矩形面积近似代替小曲边梯形的面积,就是,在第i 个小区间],[1i i x x -上任取一点i ξ,用以],[1i i x x -为底,)(i f ξ为高的小矩形面积i i x f ∆)(ξ,近似代替这个小曲边梯形的面积(图1—1), 即i i i x f S ∆≈∆)(ξ。
第五讲 定积分的简单应用[知识梳理][知识盘点]1.定积分在几何中的应用(1)当[,]x a b ∈有()0f x >时,由直线,(),0x a x b a b y ==≠=和曲线()y f x =围成的曲边梯形的面积_______________.S =(2)当[,]x a b ∈有()0f x <时,由直线,(),0x a x b a b y ==≠=和曲线()y f x =围成的曲边梯形的面积_______________.S =(3)当[,]x a b ∈有()()0f x g x >>时,由直线,(),0x a x b a b y ==≠=和曲线(),()y f x y g x ==围成的曲边梯形的面积_______________.S =(4)若()f x 是偶函数,则()________aaf x dx -=⎰;若()f x 是奇函数,则()________.aaf x dx -=⎰2.定积分在物理中的应用(1)作变功直线运动的物体在时间区间[,]a b 上所经过的路程__________S =(2)在恒力F 的作用下,物体沿力F 的方向作直线运动,并且由x a =运动到()x b a b =<,则力F 对物体所做的功__________.W =(3)在恒力F 的作用下,物体沿与力F 的方向成α角的方向作直线运动,并且由x a =运动到()x b a b =<,则力F 对物体所做的功__________.W =(4)在变力()F F x =的作用下,物体沿力F 的方向作直线运动,并且由x a =运动到()x b a b =<,则力F 对物体所做的功__________.W =(5)在变力()F F x =的作用下,物体沿与力F 的方向成α角的方向作直线运动,并且由x a =运动到()x b a b =<,则力F 对物体所做的功__________.W =[特别提醒]1.研究定积分在平面几何中的应用,其实质就是全面理解定积分的几何意义,当平面图形的曲边在x 轴上方时,容易转化为定积分求其面积;当平面图形的一部分在x 轴下方时,其在x 轴下的部分对应的定积分为负值,应取其相反数(或绝对值);2.求含有曲边的平面图形的面积问题时,在平面几何中是很难解决的问题,而定积分为这类问题的求解提供了很好的解决方法,这充分显示了定积分的巨大作用;3.利用定积分解决简单的物理问题,关键是要结合物理学中的相关内容,将物理意义转化为用定积分解决.[基础闯关]1.已知曲线()y f x =在x 轴的下方,则由(),y f x =0,1y x ==-和3x =所围成的曲边梯形的面积S 可表示为( ) A .31()f x dx -⎰B .13()f x dx -⎰ C .13()f x dx -⎰ D .31()f x dx -⎰2.曲线3cos (0)2y x x π=≤≤与坐标轴围成的面积是 ( ) A.4 B.52C.3D.2 3.若)(x f 与)(x g 是],[b a 上的两条光滑曲线,则由这两条曲线及直线b x a x ==,所围图形的面积( ). A .⎰-badx x g x f )()( B .⎰-badx x g x f ))()((C .⎰-badx x f x g ))()(( D .⎰-badxx g x f ))()((4.由2y x =与曲线23y x =-所围成的图形的面积为( ) A. B.9- C .325 D .3535.一物体以初速度9.8 6.5/v t m s =+的速度自由下落,则下落后的第二个4s 内所经过的路程为 。
定积分的计算方法与应用定积分是微积分中的一个重要概念,具有广泛的应用领域。
本文将介绍定积分的计算方法以及它在实际问题中的应用。
一、定积分的计算方法定积分是求解曲线下面的面积或者曲线上某一区间的长度的数学工具。
在计算定积分时,我们可以使用以下方法:1. 几何解法:当曲线形状较简单且易于几何分析时,可以采用几何解法。
例如,计算一个常数函数在给定区间上的定积分,可以直接计算该区间内的矩形面积。
2. 分割求和法:定积分可以通过将曲线分割为若干个小区间,在每个小区间内取样点,并计算每个小区间的面积或长度,再将这些结果求和得到近似解。
随着小区间的数量增加,这种方法的近似解将逐渐接近准确值。
3. 定积分的定义:根据数学定义,定积分可以通过极限求和的方式得到准确解。
该方法需要将曲线分割为无穷多个微小的小区间,并进行求和。
具体的计算步骤可以参照定积分的定义公式。
二、定积分在实际问题中的应用定积分作为一种数学工具,在许多实际问题的求解中起到了重要作用。
以下是一些常见的应用场景:1. 几何应用:定积分可以用于计算曲线下的面积,例如求解两条曲线之间的面积或计算曲线所围成的区域的面积。
这在建筑设计、地理测量等领域中有广泛应用。
2. 物理学应用:定积分可以用于计算物体的质量、质心、转动惯量等物理量。
例如,在力学中,通过计算质点沿某一曲线的运动轨迹所做的功,可以使用定积分求得。
3. 统计学应用:定积分可以应用于计算概率密度函数下的概率。
在统计学中,通过计算概率密度曲线下的面积,可以得到某一区间内事件发生的概率。
4. 经济学应用:定积分可以用于计算经济学中的消费总额、产出总额等指标。
例如,计算某一产品的总销售额可以通过对销售函数进行定积分得到。
5. 工程学应用:定积分可以应用于计算工程中的功耗、能量损失等问题。
例如,计算电路中的功耗可以通过对电流和电压的乘积进行定积分来求解。
在实际问题中,我们可以根据具体情况将问题转化为曲线的面积或长度的计算,然后应用定积分的方法进行求解。
定积分的应用在微积分中,定积分是一种重要的概念和工具。
它不仅可以用于求解曲线下的面积,还可以应用于多个领域,包括物理、经济学和工程学等。
本文将介绍定积分的应用,并通过实际问题进行说明。
一、曲线下的面积定积分最基本的应用之一是求解曲线下的面积。
假设有一个函数f(x),我们想要计算其在区间[a, b]上的曲线下的面积。
我们可以将[a, b]的区间划分为若干小区间,然后在每个小区间上取一个点,通过计算这些小区间的面积之和来逼近整个曲线下的面积。
随着小区间数目的增加,逼近的精度也会提高,最终可以得到非常准确的结果。
二、物理学中的应用定积分在物理学中有广泛的应用。
例如,在力学中,我们可以利用定积分来计算物体的质量、速度和加速度等。
通过将物体运动过程中的力和加速度关系用函数表示,然后对这个函数在一定时间内的积分,就可以得到物体在该时间内的位移。
同样地,通过对速度函数在一段时间内的定积分,可以计算出物体在该时间内的位移。
三、经济学中的应用定积分在经济学中也有重要的应用。
一种常见的应用是计算曲线下的总收益或总成本。
假设有一个企业的收益函数为R(x),我们可以通过对该函数在某个时间段内的定积分,得到该时间段内企业的总收益。
同样地,如果有一个成本函数C(x),我们可以通过对该函数在某个时间段内的定积分,得到该时间段内企业的总成本。
这种方法可以帮助经济学家更好地了解企业的经营状况并作出相应的决策。
四、工程学中的应用定积分也在工程学中有广泛的应用。
例如,在建筑工程中,我们可以利用定积分来计算建筑物的体积。
假设有一个建筑物的截面曲线为f(x),我们可以通过对该曲线在一定范围内的定积分,得到该范围内建筑物的体积。
同样地,在水力学中,我们可以利用定积分来计算河流的流量,以便更好地了解水流情况并采取相应的措施。
综上所述,定积分是一种重要的工具,可以应用于求解曲线下的面积、物理学、经济学和工程学等多个领域。
通过对函数在一定范围内的定积分,我们可以得到与实际问题相关的重要信息,从而更好地理解和解决问题。
哈尔滨师范大学学年论文题目定积分的计算与应用学生刘影指导教师皮晓明年级2010级6班专业数学与应用数学系别数学系学院数学科学学院哈尔滨师范大学2012年12月电话:180045056定积分的计算与应用刘影摘 要:定积分计算的方法和技巧是非常丰富的,除用定积分性质、基本公式,换元法与分部积分法外,简单的还有定积分的几何意义,函数奇偶性及查积分表等。
本文主要列举了一些定积分计算的方法与技巧以及定积分的一些基本应用。
关键词:牛顿莱布尼兹公式 积分 定积分恩格斯增经指出微积分是变量数学的重要组成部分,微积分是数学一个分支,学技术以及自然科学的各个分支中被广泛应用的最重要的数学工具,定积分在几何学、物理学、经济学、社会学等应用领域中具有广泛的应用。
如复杂图形的研究,化学反应过程的分析,求数列极限等等。
一、定积分的计算方法1、 按照定义计算定积分定积分的定义其实已经给出了计算定积分的方法,即求面积和的极限:∑⎰=→∆=nk k kT l bax f dx x f 10)()()(limξ例1 求由抛物线2x y =,]1,0[∈x ,及0=y 所围平面图形的面积。
解 根据定积分的几何意义,就是要计算定积分⎰12dx x .显然,这个定积分是存在的。
取分割T 为n 等份,并取k ξnk 1-=,n k ,,2,1 =,则所求面积为: 1220111lim ()nn k k S x dx S n n→∞=-==⋅∑⎰ 2311lim (1)n n k k n →∞==-∑3(1)(21)1lim63n n n n n →∞--==2、用牛顿--莱布尼兹公式计算定积分若函数)(x f 在],[b a 上连续,且存在原函数)(x F ,即)()(x f x F =',x ∈[a,b],则)(x f 在],[b a 上可积,且 ⎰-=baa Fb F dx x f )()()( , 这称为牛顿—莱布尼兹公式,它也常写成⎰=baba x F dx x f )()(有了牛顿—莱布尼兹公式后,计算定积分关键就是找)(x f 的一个原函数)(x F 。
第六章定积分的应用内容概要课后习题全解习题6-2★ 1.求由曲线xy =与直线x y =所围图形的面积。
知识点:平面图形的面积思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1∵所围区域D 表达为X-型:⎩⎨⎧<<<<x y x x 10, (或D 表达为Y-型:⎩⎨⎧<<<<y x y y 210)∴⎰-=10)(dx x x S D61)2132(1223=-=x x (⎰=-=1261)(dy y y S D) ★ 2.求在区间[0,π/2]上,曲线x y sin =与直线0=x 、1=y 所围图形的面积知识点:平面图形面积思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解:见图6-2-2∵所围区域D 表达为X-型:⎪⎩⎪⎨⎧<<<<1sin 20y x x π, (或D 表达为Y-型:⎩⎨⎧<<<<y x y arcsin 010) ∴12)cos ()sin 1(202-=+=-=⎰πππx x dx x S D( 12arcsin 1-==⎰πydy S D)★★3.求由曲线x y =2与42+-=x y 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为Y-型时解法较简单,所以用Y-型做 解:见图6-2-3∵两条曲线的交点:⎩⎨⎧±==⇒⎩⎨⎧+-==22422y x x y x y , ∴所围区域D 表达为Y-型:⎩⎨⎧-<<<<-22422yx y y ,∴2316)324()4(2232222=-=--=--⎰y y dy y y S D(由于图形关于X 轴对称,所以也可以解为:2316)324(2)4(223222=-=--=⎰y y dy y y S D )★★4.求由曲线2x y =、24x y =、及直线1=y 所围图形的面积知识点:平面图形面积思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4∵第一象限所围区域1D 表达为Y-型:⎩⎨⎧<<<<y x y y 210,∴34322)2(22102311=⨯=-==⎰y dy y y S S D D(若用X-型做,则第一象限内所围区域=1D b a D D Y ,其中a D :⎪⎩⎪⎨⎧<<<<22410x y x x ,b D :⎪⎩⎪⎨⎧<<<<14212y x x ;∴12212201422[()(1)]443D D x x S S x dx dx ==-+-=⎰⎰) ★★5.求由曲线xy 1=与直线x y =及2=x 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为X-型,解法较简单,所以用X-型做解:见图6-2-5∵两条曲线xy =和x y =的交点为(1,1)、(-1,-1),又这两条线和2=x 分别交于 21,2(、2) ,2( ∴所围区域D 表达为X-型:⎪⎩⎪⎨⎧<<<<x y xx 121,∴22211113((ln )ln 222DS x dx x x x =-=-=-⎰★★★6.抛物线x y 22=分圆822=+y x 的面积为两部分,求这两部分的面积知识点:平面图形面积思路:所围图形关于X 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-6,设阴影部分的面积为1D S ,剩余面积为2D S∵两条曲线x y 22=、822=+y x 的交于(2,2)±(舍去4-=x 的解),∴所围区域1D 表达为Y-型:⎪⎩⎪⎨⎧-<<<<-228222y x y y ;又图形关于x 轴对称,∴342)342(2)68(2)28(220320220221+=-+=--=--=⎰⎰ππy y dy y y S D(其中222cos 18cos 22cos 22844sin 2222+=+=⨯=-⎰⎰⎰=πππdt ttdt t dyy ty ) ∴34634282-=--=πππDS ★★★7.求由曲线x e y =、x e y -=与直线1=x 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为X-型时,解法较简单,所以用X-型做 解:见图6-2-7∵两条曲线x e y =和x e y -=的交点为(0,1),又这两条线和1=x 分别交于) ,1(e 和) ,1(1-e∴所围区域D 表达为X-型:⎩⎨⎧<<<<-x x e y e x 10,∴2)()(1101-+=+=-=---⎰e e e e dx e e S x x x x D★★★8.求由曲线x y ln =与直线a y ln =及b y ln =所围图形的面积)0(>>a b知识点:平面图形面积思路:由于所围图形表达为Y-型时,解法较简单,所以用Y-型做 解:见图6-2-8∵在x ln 的定义域范围内所围区域D :⎩⎨⎧<<<<ye x by a 0ln ln , ∴a b edy e S b ay bayD-===⎰ln ln ln ln★★★★9.求通过(0,0),(1,2)的抛物线,要求它具有以下性质:(1)它的对称轴平行于y 轴,且向下弯;(2)它与x 轴所围图形面积最小知识点:平面图形面积和求最值思路:首先根据给出的条件建立含参变量的抛物线方程,再求最值时的参变量解:由于抛物线的对称轴平行于y 轴,又过(0,0),所以可设抛物线方程为bx ax y +=2,(由于下弯,所以0<a),将(1,2)代入bx ax y +=2,得到2=+b a ,因此x a ax y )2(2-+=该抛物线和X 轴的交点为0=x 和aa x 2-=, ∴所围区域D :2200(2)a x ay ax a x-⎧<<⎪⎨⎪<<+-⎩ ∴23223226)2()223(])2([a a x a x a dx x a ax S aa a a D-=-+=-+=--⎰)4()2(61)]2()2()2(3[61)(233322+-=-⨯-+-⨯='---a a a a a a a a S D得到唯一极值点:4-=a ,∴所求抛物线为:x x y 642+-=★★★★10.求位于曲线x e y =下方,该曲线过原点的切线的左方以及x 轴上方之间的图形的面积知识点:切线方程和平面图形面积思路:先求切线方程,再作出所求区域图形,然后根据图形特点,选择积分区域表达类型解:x e y =⇒xe y =',∴在任一点0x x =处的切线方程为)(000x x e ey x x -=-而过(0,0)的切线方程就为:)1(-=-x e e y ,即ex y =所求图形区域为21D D D Y =,见图6-2-10X-型下的1D :⎩⎨⎧<<<<∞-x e y x 00,2D :⎩⎨⎧<<<<xey ex x 1∴222)(12110e e e x eedx ex e dx e S x x x D=-=-=-+=∞-∞-⎰⎰ ★★★11.求由曲线θcos 2a r =所围图形的面积知识点:平面图形面积思路:作图可知该曲线是半径为a 、圆心(0 ,a )的圆在极坐标系下的表达式,可直接求得面积为2a π,也可选择极坐标求面积的方法做。
定积分的应用一 元素法1.能用定积分计算的量U ,应满足下列三个条件(1) U 与变量x 的变化区间],[b a 有关;(2) U 对于区间],[b a 具有可加性; (3) U 部分量i U ∆可近似地表示成i i x f ∆⋅)(ξ.2.写出计算U 的定积分表达式步骤(1) 根据问题,选取一个变量x 为积分变量,并确定它的变化区间[,]a b ; (2) 设想将区间[,]a b 分成若干小区间,取其中的任一小区间[,]x x dx +,求出它所对应的部分量∆U 的近似值dx x f U )(≈∆( f x ()为[,]a b 上一连续函数)则称f x dx ()为量U 的元素,且记作dx x f dU )(=。
(3) 以U 的元素dU 作被积表达式,以[,]a b 为积分区间,得()ba U f x dx =⎰这个方法叫做元素法,其实质是找出U 的元素dU 的微分表达式)()(b x a dx x f dU ≤≤=平面图形的面积一、直角坐标的情形由曲线 ()y f x = 与()y g x = 及直线x a =,x b =()a b <且所围成的图形面积A 。
()()baA f x g x dx =-⎰例 计算抛物线x y 22=与直线4-=x y 所围成的图形面积。
解:选取y 为积分变量,则 42≤≤-y ,dy y y dA ]21)4([2-+=,()42214182A y y dy -⎡⎤=+-=⎢⎥⎣⎦⎰例 求椭圆12222=+by a x 所围成的面积 )0,0(>>b a 。
解:据椭圆图形的对称性,整个椭圆面积应为位于第一象限内面积的4倍。
取x 为积分变量,则 a x ≤≤0, 221a x b y -=,dx ax b ydx dA 221-==故04()4aaA f x dx ==⎰⎰作变量替换 t a x cos = )20(π≤≤t ,得A ab π=二、极坐标情形设平面图形是由曲线 )(θϕ=r 及射线αθ=,βθ=所围成的曲边扇形。
曲边梯形的面积元素 θθϕd dA 2])([21=,从而21()2A d βαϕθθ=⎰例 计算心脏线ra a =+>(cos )()10θ所围成的图形面积。
解: 由于心脏线关于极轴对称,2220132(1cos )22A a d a πθθπ=+=⎰ 例计算r θ=,2cos2r θ=围成图形的面积解:交点5,66ππ⎛⎛⎝⎭⎝⎭)24606112cos 222A dx dx πππθθ⎡⎤⎢⎥=+⎢⎥⎣⎦⎰⎰ 46061cos 2122cos 2244d d πππθθθθ⎡⎤-⎢⎥=+⎢⎥⎣⎦⎰⎰6π=+体积一、旋转体的体积1)计算由曲线y f x =()直线x a =,x b =及x 轴所围成的曲边梯形,绕x 轴旋转一周而生成的立体的体积。
体积元素为[]dx x f dV 2)(π=,所求的旋转体的体积为[]2()baV f x dx π=⎰,2)由曲线0,0()a x b y f x ≤≤≤≤≤绕y 轴旋转一周而生成的立体的体积。
2()baV xf x dx π=⎰3)由曲线)(y x ϕ=直线c y =,d y =及y 轴所围成的曲边梯形,绕y 轴旋转一周而生成的立体的体积。
体积元素为[]2()dV y dy πϕ=,所求的旋转体的体积为[]2()dcV y dy πϕ=⎰二、平行截面面积为已知的立体的体积( 截面法 )取定轴为x 轴, 且设该立体在过点a x =,b x =且垂直于x 轴的两个平面之内, 以)(x A 表示过点x 且垂直于x 轴的截面面积。
体积元素为 dx x A dV )(=,该立体的体积为 ()ba V A x dx =⎰例 计算椭圆12222=+by a x 所围成的图形绕x 轴旋转而成的立体体积。
解:这个旋转体可看作是由上半个椭圆22x a aby -=及x 轴所围成的图形绕x 轴旋转所生成的立体。
解:在x 处)(a x a ≤≤-,用垂直于x 轴的平面去截立体所得截面积为222)()(x a a b x A -⋅=π,()222224()3a aa ab V A x dx a x dx ab aππ--==-=⎰⎰例 计算摆线的一拱(sin )(0,02)(1cos )x a t t a t y a t π=-⎧>≤≤⎨=-⎩以及0=y 所围成的平面图形绕y 轴旋转而生成的立体的体积。
解:2222210()()aaV x y dy x y dy ππ=⋅-⋅⎰⎰222220(sin )sin (sin )sin a t t a tdt a t t a tdt πππππ=---⎰⎰336a π=平面曲线的弧长一、直角坐标情形:设函数)(x f 在区间],[b a 上具有一阶连续的导数,弧长元素为[]dx x f ds 2)(1'+=,弧长为as =⎰二、参数方程的情形:若曲线由参数方程)()()(βαφϕ≤≤⎩⎨⎧==t t y t x 给出,计算它的弧长时,弧微分为[][]dt t t dy dx ds 2222)()()()(φϕ'+'=+=,[][]⎰'+'=βαφϕdt t t s 22)()(三、极坐标情形若曲线由极坐标方程)()(βθαθ≤≤=r r 曲线的参数方程为x r y r ==⎧⎨⎩≤≤()cos ()sin ()θθθθαθβ 此时θ变成了参数,且弧长元素为ds θ===所以s βαθ=⎰例1 计算曲线)(3223b x a x y ≤≤=的弧长。
解:dx x dx x ds +=+=1)(12,33222[(1)(1)]3as b a ==+-+⎰例2 计算摆线的一拱(sin )(0,02)(1cos )x a t t a t y a t π=-⎧>≤≤⎨=-⎩的长解:2sin 2tds a dt ===202sin 82ts a dtdt a π==⎰例3 计算心脏线r a =+≤≤(cos )()102θθπ的弧长。
解:θθθd a a ds 222)sin ()cos 1(-++==+42222422a d [cos sin cos ]θθθθ θθd a 2cos 2=22cos82s a d a πθθ==⎰面积、体积、弧长部分习题1.在曲线2(0)y x x =≥上某点A 处作一切线,使之与曲线及x 轴所围成平面图形的面积为112,求:1)切点A 的坐标; 2)求过A 点的切线方程;3)上述平面图形绕x 轴旋转一周所成旋转体的体积解:设切点为()200,x x ,切线斜率02k x =,切线方程为2002y x x x =-2020001212x y x A dy x ⎛+== ⎝⎰,0x =, 2.在椭圆22221x y a b+=的第一象限部分上求一点p ,使该点处的切线与椭圆及两个坐标轴围成的平面图形面积最小(0,0)a b >> 3.给定曲线21y x=,求:1)曲线在横坐标为0x 点处的切线方程; 2)曲线的切线被坐标轴所截线段最短长度。
4.求曲线231y x =--与x 轴所围成的封闭平面图形绕直线3y =旋转所得的旋转体的体积5.设曲线y =x 轴所围成的平面图形绕x 轴旋转所得的旋转体的表面积6.过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴所围成的平面图形D 1)求D 的面积2)求D 绕直线x e =旋转一周所得的旋转体的体积7.设曲线的极坐标方程为()r r θ=,(,)M r θ为L 上的任意一点,0(2,0)M L 上的一点,若极径0OM 、OM 与曲线L 所围成的曲边扇形面积值等于L 上0M 、M 两点间弧长值的一半,求曲线L 的方程。
解:[]2011()22r d θθθθθ=⎰⎰ 8.已知,A B 两点的坐标分别为(1,0,0),(0,1,1),线段AB 绕z 轴旋转一周所得曲面S , 求:由S 及0,1z z ==所围成立体的体积解:直线AB 方程为1111x y z-==-,即1x z y z =-⎧⎨=⎩,S 被过(0,0,)z 与z 轴垂直的平面截出的截口为一个圆,此圆与AB 交于(1,,)C z z z -,所以,此圆半径为r =积为()22()1s z z z π⎡⎤=-+⎣⎦,所以V =()1220213z z dz ππ⎡⎤-+=⎣⎦⎰ 物理应用1.有一供实验用的长方体箱子,浸没在深H 的水池中,设箱底为边长为a 的正方形,高h ,密度为1μ>,先在水池底沿一侧的法向平移l 位置,此时,水阻力与受的水压力成正比,再竖直提出水面,求所做的功。
(箱底与池底的摩擦力不计) 解:计算平移时所做的功,0W lf lkp k ==>是比例系数,p 为压力在水深()x H h x H -≤≤到x dx +处的压力微元dp gxadx =(adx 为受力面积,x 为水深,水的比重为1)计算将箱子的()x H h x H -≤≤处到x d x +处的一层从水里提出水面所做的功为222()()()(1)H x F H x a dx g a dxg H x a gdx μμ⎡⎤-=--=--⎣⎦再计算将该层提到指定位置所做的功为2xa dx g μ2.为清除井底的污泥,用缆绳将抓斗放入井底,抓起污泥后提出井口,已知井深30m ,抓斗重400N ,缆绳每米重50N ,抓斗在提升的过程中污泥以20NS的速度从斗缝中漏掉,现将抓起污泥的抓斗提升至井口,问克服重力需做多少焦耳的功? (111N m J ⨯=,抓斗高度及位于井口上方的缆绳长度忽略)。