多元函数极值问题的答案详解
- 格式:pdf
- 大小:2.45 MB
- 文档页数:14
多元函数的极值与最值1.求函数z=x3+y3−3xy的极值。
步骤:1)先求驻点(另偏导数等于0,联立)2)再求ABCA=f xx(x0, y0)B=f xy(x0, y0)C=f yy(x0, y0)3)(1)当B2-AC<0时,f(x,y)在点(x o,y o)处取得极值,且当A<0时取得极大值f(x o,y o),当A>0时取得极小值f(x o,y o),当A<0时取得极大值f(x o,y o);(2)当B2-AC>0时,f(x o, y o )不是极值;(3)当B2-AC=0时,f(x o,y o)是否为极值不能确定,需另做讨论.=3x2−3y=0解:∂z∂x∂z=3y2−3x=0∂y联立得驻点为(0,0),(1,1)A=f xx(x0, y0)=6x(对x求偏导,再对x求偏导)B=f xy(x0, y0)=-3(对x求偏导,再对y求偏导)C=f yy(x0, y0)=6y(对y求偏导,再对y求偏导)在点(0,0)处,A=0,B=-3,C=0,由B2-AC=9>0,故在此处无极值。
在点(1,1)处,A=6,B=-3,C=0, B2-AC=-27<0,又因为A>0,故在此处为极小值点,极小值为F (1, 1) =x3+y3−3xy=−12.求函数f(x, y)=x2+(y−1)2的极值。
解:f x’=2x=0F y’=2y-2=0联立得驻点为(0,1)A=f xx(x0, y0) =2B=f xy(x0, y0) =0C=f yy(x0, y0) =2在点(0,1)处A=2,B=0,C=2由B2-AC=-4<0,又因为A>0,故在此处为极小值点,极小值为F (0, 1) = 03.制造一个容积为a的无盖长方体,使之用料最少,则长宽高为多少?解:另长宽高分别为x, y, z故xyz=a, z=axyS=xy+2(x axy +y axy)=xy+2(ay+ax)S x’=y+2(−ax2)=0S y ’= x+2(−ay2)=0解得当X=Y=Z=3√2a的时候用料最少。
多元函数求极值摘要:本文总结了多元函数求极限的各类方法,以及证明多元函数极限不存在的取各种花式路劲的例题。
一、多元函数极限的定义存在的问题:有两种定义方式分别以聚点/去心领域去定义重极限,不同的定义方式可能导致结果不同例1.1:求极限: \lim_{{x\to0}\atop{y\to0}}\frac{\sqrt{xy+1}-1}{xy} .解:法I(聚点定义).\lim_{{x\to0}\atop{y\to0}}\frac{\sqrt{xy+1}-1}{xy}=\lim_{{x\to0}\atop{y\to0}}\frac{xy}{xy(\sqrt{xy+1}+1)}=\l im_{{x\to0}\atop{y\to0}}\frac{1}{\sqrt{xy+1}+1}=\frac{1}{2}或者利用等价无穷小.\lim_{{x\to0}\atop{y\to0}}\frac{\sqrt{xy+1}-1}{xy}=\lim_{{x\to0}\atop{y\to0}}\frac{\frac{1}{2}xy}{xy}=\frac{ 1}{2}法II(去心领域定义).由于函数 f(x,y)=\frac{\sqrt{xy+1}-1}{xy} 在原点的领域内的坐标轴上处处无定义, 因此\lim_{{x\to0}\atop{y\to0}}\frac{\sqrt{xy+1}-1}{xy}\text{不存在}用 \varepsilon-\delta 定义证明的例题选解例1.2:用 \varepsilon-\delta 定义证明: \lim_{x\to0\atopy\to0}\frac{xy^2}{x^2+y^2}=0解:因为当 (x,y)\neq(0,0) 时\left,\frac{xy^2}{x^2+y^2}\right,=,y,\cdot\frac{,xy,}{x^2+y^2}\leqslant,y,\leqslant\sqrt{x^2+y^2}\\从而,对 \forall \varepsilon>0 , 取 \delta=\varepsilon , 则当 0<\sqrt{x^2+y^2}<\delta 时,\left,\frac{xy^2}{x^2+y^2}-0\right,<\varepsilon \\所以 \lim_{x\to0\atop y\to0}\frac{xy^2}{x^2+y^2}=0 .例1.3:求证:\lim_{{x\to0}\atop{y\to0}}(x^2+y^2)\sin\frac{1}{x^2+y^2}=0证明: \forall \,\varepsilon>0 , 要使得\left,(x^2+y^2)\sin\frac{1}{x^2+y^2}-0\right,\leqslant\varepsilon\\即 \left,(x^2+y^2)\sin\frac{1}{x^2+y^2}-0\right, =\biggl,x^2+y^2\biggl,\cdot\biggl,\sin\frac{1}{x^2+y^2}-0\biggl,\leqslant x^2+y^2\leqslant\varepsilon\\ 只要\sqrt{x^2+y^2}<\sqrt{\varepsilon} , 取\delta=\sqrt{\varepsilon} , 则当0<\sqrt{(x-0)^2+(y-0)^2}=\sqrt{x^2+y^2}<\delta 时, 有\left,(x^2+y^2)\sin\frac{1}{x^2+y^2}-0\right,\leqslant x^2+y^2\leqslant\varepsilon\\原结论成立.二、多元函数求极限的方法直接代入:先代入看看是不是未定式!如果不是那就是答案略有理化:略有界函数x无穷小量=0略两个重要极限:略夹逼准则:多是夹为0。
x yz xy z x y z定理1 (必要条件)函数偏导数,证:据一元函数极值的必要条件可知定理结论成立.0),(,0),(0000=′=′y x f y x f yx 取得极值,取得极值取得极值且在该点取得极值,则有),(),(00y x y x f z 在点=存在),(),(00y x y x f z 在点因=在),(0y x f z =0x x =故在),(0y x f z =0y y =zox y对于三元函数,若M 0是f (x , y , z )的驻点,f (x , y , z )在M 0处所有的二阶偏导数连续,则当矩阵在M 0处为正定阵时( ),M 0为极小值点,为负定阵时( ),M 0为极大值点.类似的,可以将以上结论推广到三元以上的函数.H=xx xy xz xyyy yz xz yz zz f f f f f f f f f ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦112233H 0,H 0,H 0>>>112233H 0,H 0,H 0<><αcos 24x αcos 22x −)sin (cos 222−+ααx =x A αsin 24αsin 4x −0cos sin 2=+ααx =αA 解得:由题意知,最大值在定义域D 内达到,而在域D 内只有一个驻点,故此点即为所求.,0sin ≠α0≠x ααααsin cos sin 2sin 2422x x x A +−=)0,120:(2πα<<<<x D 0cos 212=+−αx x 0)sin (cos cos 2cos 2422=−+−ααααx x (cm)8,603===x D πα作业P121 4, 6, 7, 13。
第十一讲二元函数的极值要求:理解多元函数极值的观点,会用充足条件判断二元函数的极值,会用拉格朗日乘数法求条件极值。
问题提出:在实质问题中,常常会碰到多元函数的最大值,最小值问题,与一元函数相近似,多元函数的最大值,最小值与极大值,极小值有亲密的关系,所以以二元函数为例,来议论多元函数的极值问题.一.二元函数的极值定义设函数z f ( x, y) 在点( x0 , y0 ) 的某个邻域内有定义,关于该邻域内的所有( x, y) (x 0 , y0 ) ,假如总有 f (x, y) f ( x0 , y0 ) ,则称函数z f (x, y) 在点( x0 , y0 ) 处有极大值;假如总有 f ( x, y) f ( x0 , y0 ) ,则称函数z f ( x, y) 在点( x0 , y0 ) 有极小值.函数的极大值,极小值统称为极值,使函数获得极值的点称为极值点.例 1.函数z xy 在点(0,0) 处不获得极值,由于在点(0,0) 处的函数值为零,而在点(0,0) 的任一邻域内总有使函数值为正的点,也有使函数值为负的点.例 2.函数z 3x2 4 y 2在点 (0,0) 处有极小值.由于对任何 ( x, y) 有 f (x, y) f (0,0) 0 .从几何上看,点( 0,0,0) 是张口向上的椭圆抛物面z 3x 2 4 y2的极点,曲面在点(0,0,0) 处有切平面z0 ,进而获得函数获得极值的必需条件.定理1(必需条件)设函数z f ( x, y) 在点(x0 , y0 ) 拥有偏导数,且在点( x0 , y0 ) 处有极值,则它在该点的偏导数必定为零,即 f x ( x0 , y0 ) 0 , f y ( x0 , y0 ) 0 .几何解说若函数z f ( x, y) 在点(x0 , y0 ) 获得极值z0,那么函数所表示的曲面在点(x0 , y0 , z0 ) 处的切平面方程为z z0 f x ( x0 , y0 )( x x0 ) f y ( x0 , y0 )( y y0 )是平行于 xoy 坐标面的平面z z0.近似地有三元及三元以上函数的极值观点,对三元函数也有获得极值的必需条件为f x ( x0 , y0 , z0 ) 0 , f y ( x0 , y0 , z0 ) 0 , f z ( x0 , y0 , z0 ) 0说明上边的定理固然没有完整解决求极值的问题,但它明确指出找极值点的门路,即f x ( x0 , y0 ) 0( x n , y n ) ,那么极值点必包只需解方程组,求得解 ( x1 , y1 ), ( x2 , y2 )f y (x0 , y0 ) 0含在此中,这些点称为函数z f ( x, y) 的驻点.注意 1.驻点不必定是极值点,如z xy 在(0,0)点.如何鉴别驻点是不是极值点呢?下边定理回答了这个问题.定理 2(充足条件)设函数 z f ( x, y) 在点 (x0 , y0 ) 的某邻域内连续,且有一阶及二阶连续偏导数,又f x ( x0 , y0 ) 0 , f y ( x0 , y0 ) 0 ,令 f xx (x0 , y0 ) A , f xy ( x0 , y0 ) B , f yy (x0 , y0 ) C ,则( 1)当AC B 2 0 时,函数 z f ( x, y) 在点 (x0 , y0 ) 获得极值,且当 A 0 时,有极大值 f ( x0 , y0 ) ,当 A 0 时,有极小值 f ( x0 , y0 ) ;( 2)当AC B 2 0 时,函数 z f ( x, y) 在点 ( x0 , y0 ) 没有极值;( 3)当AC B 2 0 时,函数 z f ( x, y) 在点 ( x0 , y0 ) 可能有极值,也可能没有极值,还要另作议论.求函数 z f ( x, y) 极值的步骤:(1)解方程组 f x ( x0 , y0 ) 0 , f y ( x0 , y0 ) 0 ,求得一确实数解,即可求得全部驻点( x1 , y1 ), ( x2 , y2 )( x n , y n ) ;(2)关于每一个驻点( x , y )(i 1,2,L n) ,求出二阶偏导数的值A,B, C;i i(3)确立AC B2 的符号,按定理 2 的结论判断 f ( x i , y i ) 是不是极值,是极大值仍是极小值;(4)观察函数 f ( x, y) 能否有导数不存在的点,如有加以鉴别能否为极值点.例 3.观察解由于z x 2 y2能否有极值.z x,z y在x0, y0 处导数不存在,可是对所x x2y 2y x 2y2有的 (x, y) (0,0) ,均有 f ( x, y) f (0,0) 0 ,所以函数在( 0,0) 点获得极大值.注意 2.极值点也不必定是驻点,若对可导函数而言,如何?例 4.求函数f ( x, y) x3 y3 3x 2 3y2 9x 的极值.解先解方程组f x 3x 2 6x 9 03,0), ( 3,2) ,f y 3y2 6 y 0,求得驻点为 (1,0), (1,2), (再求出二阶偏导函数fxx 6x 6 , f xy, f yy 6 y 6 .在点 (1,0) 处, AC B 2 12 6 72 0 ,又 A 0 ,所以函数在点(1,0) 处有极小值为f (1,0) 5 ;在点 (1,2) 处, AC B2 72 0 ,所以 f (1,2) 不是极值;在点 ( 3,0) 处, AC B2 72 0 ,所以 f ( 3,0) 不是极值;在点 ( 3,2) 处, AC B2 72 0,又A 0,所以函数在点( 3,2) 处有极大值为f ( 3,2) 31.二.函数的最大值与最小值求最值方法:⑴将函数 f ( x, y) 在地区D内的所有极值点求出;⑵求出 f ( x, y) 在D界限上的最值;即分别求一元函数 f ( x, 1 (x)) , f ( x, 2 ( x))的最值;⑶ 将这些点的函数值求出,而且相互比较,定出函数的最值.实质问题求最值依据问题的性质,知道函数 f ( x, y) 的最值必定在地区 D 的内部获得,而函数在 D 内只有一个驻点,那么能够必定该驻点处的函数值就是函数 f ( x, y) 在D上的最值.例 4.求把一个正数 a 分红三个正数之和,并使它们的乘积为最大.解设 x, y 分别为前两个正数,第三个正数为 a x y ,问题为求函数u xy(a x y) 在地区D :x, y 0 ,x y a内的最大值.0由于u y(a x y) xy y(a 2x y) ,ux(a 2 y x) ,x y解方程组a 2x y 0 a, ya.a 2y x,得 x30 3由实质问题可知,函数必在 D 内获得最大值,而在地区 D 内部只有独一的驻点,则函数必在该点处获得最大值,即把a 分红三等份,乘积 ( a) 3 最大.z a x y ,则 3 此外还可得出,若令u xyz( a)3 ( x y z ) 33 3 即3xyz x y z.3三个数的几何均匀值不大于算术均匀值.三.条件极值,拉格朗日乘数法引例求函数 zx 2y 2 的极值.该问题就是求函数在它定义域内的极值,前方求过在(0,0) 获得极小值;若求函数 zx 2 y 2 在条件 xy 1下极值,这时自变量遇到拘束,不可以在整个函数定义域上求极值,而只好在定义域的一部分x y1 的直线上求极值,前者只需求变量在定义域内变化, 而没有其余附带条件称为 无条件极值 ,后者自变量遇到条件的拘束, 称为 条件极值 .如何求条件极值?有时可把条件极值化为无条件极值, 如上例从条件中解出 y 1 x ,代 入 z x 2 y 2 中 , 得 zx 2 (1 x)2 2x 2 2x 1 成 为 一 元 函 数 极 值 问 题 , 令z x 4 x 21 1 1 10 ,得 x,求出极值为 z(, )2 .22 2可是在好多情况下, 将条件极值化为无条件极值其实不这样简单, 我们还有一种直接追求条件极值的方法, 可不用先把问题化为无条件极值的问题, 这就是下边介绍的拉格朗日乘数法.利用一元函数获得极值的必需条件.求函数 zf ( x, y) 在条件( x, y) 0下获得极值的必需条件.若函数 zf ( x, y) 在 (x 0 , y 0 ) 获得所求的极值,那么第一有(x 0, y 0 )0 .假设在 ( x 0 , y 0 ) 的某一邻域内函数 z f ( x, y) 与均有连续的一阶偏导数, 且 y ( x 0 , y 0 )0 .有隐函数存在定理可知,方程(x, y) 0 确立一个单值可导且拥有连续导数的函数y (x) ,将其代入函数 zf ( x, y) 中,获得一个变量的函数z f (x,( x))于是函数 zf ( x, y) 在 ( x 0 , y 0 ) 获得所求的极值, 也就是相当于一元函数 z f (x, ( x)) 在x x 0 获得极值.由一元函数获得极值的必需条件知道dz f x (x 0 , y 0 ) f y (x 0 , y 0 ) dy0 ,dx x x 0dx x x 0而方程(x, y) 0 所确立的隐函数的导数为dyx( x 0, y 0 ).dx x x 0y ( x 0 , y 0 )将上式代入 f( x , y ) f (x , y )dy0 中,得x 0 0 y0 0dx x xf x ( x 0 , y 0 )f y ( x 0 , y 0 ) x(x 0, y 0)0 ,y (x 0 , y 0 )所以函数 z f ( x, y) 在条件 ( x, y) 0 下获得极值的必需条件为 f x ( x 0 , y 0 )f y ( x 0 , y 0 ) x(x 0, y 0)y (x 0 , y 0 ).(x 0 , y 0 ) 0为了计算方便起见,我们令f y ( x 0 , y 0 ),y (x 0 , y 0 )则上述必需条件变成f x ( x 0 , y 0 )x ( x 0 , y 0 ) 0 f y ( x 0 , y 0 )y ( x 0 , y 0 )0 ,( x 0 , y 0 ) 0简单看出,上式中的前两式的左正直是函数F ( x, y) f ( x, y)(x, y)的两个一阶偏导数在(x 0 , y 0 ) 的值,此中是一个待定常数.拉格朗日乘数法求函数 zf ( x, y) 在条件 (x, y) 0 下的可能的极值点.⑴ 组成协助函数F (x, y) f (x, y)(x, y) ,(为常数)⑵求函数 F 对x,对 y 的偏导数,并使之为零,解方程组f x ( x, y)x ( x, y)0f y ( x, y)y ( x, y)0(x, y)0得 x, y,,此中x, y就是函数在条件(x, y)0 下的可能极值点的坐标;⑶ 如何确立所求点能否为极值点?在实质问题中常常可依据实质问题自己的性质来判断.拉格朗日乘数法推行求函数 u f ( x, y, z,t ) 在条件(x, y, z, t) 0 ,(x, y, z, t) 0 下的可能的极值点.组成协助函数F (x, y, z, t ) f ( x, y, z, t) 1 ( x, y, z,t ) 2 ( x, y, z,t )此中1 , 2为常数,求函数 F 对 x, y, z 的偏导数,并使之为零,解方程组f x 1 x 2 x f y 1 y 2 y f z 1 z 2 z f t 1 t 2 t0 0 0 0(x, y, z,t )0( x, y, z, t)0得 x, y, z 就是函数u f (x, y, z, t) 在条件( x, y, z,t) 0 ,( x, y, z,t )0 下的极值点.注意:一般解方程组是经过前几个偏导数的方程找出x, y, z 之间的关系,而后再将其代入到条件中,即能够求出可能的极值点.例 6. 求表面积为 a 2而体积为最大的长方体的体积.解设长方体的三棱长分别为x, y, z ,则问题是在条件(x, y, z) 2xy 2yz 2xz a 20下,求函数 v xyz (x0, y 0, z0) 的最大值.组成协助函数 F (x, y, z) xyz(2xy 2 yz 2xz a 2 ) ,求函数 F 对 x, y, z 偏导数,使其为0 ,获得方程组yz 2 ( y z) 0 (1)xz 2 (x z) 0 (2)xy 2 ( x y) 0 (3)2xy 2yz 2xz a2 0 (4)由 (2) ,得x x z ,由(3) ,得y x y ,(1) y y z ( 2) z x z即有,x( y z) y( x z), x y , y(x z) z( x y), y z ,可得 x y z ,将其代入方程2xy 2 yz 2xz a2 0 中,得x y z6a .6这是独一可能的极值点,由于由问题自己可知最大值必定存在,所以最大值就是在这可能的极值点处获得,即在表面积为a2的长方体中,以棱长为6a 的正方体的体积为最大,6最大概积为 v 6 a3.36例 7.试在球面x2 y2 z2 4 上求出与点 (3,1, 1) 距离近来和最远的点.解设 M (x, y, z) 为球面上随意一点,则到点(3,1, 1) 距离为d (x 3)2 ( y 1)2 (z 1)2可是,假如考虑d2,则应与d有同样的最大值点和最小值点,为了简化运算,故取f (x, y, z) d 2 ( x 3)2 ( y 1)2 ( z 1)2,又由于点 M ( x, y, z) 在球面上,附带条件为( x, y, z) x2 y2 z2 4 0 .组成协助函数 F (x, y, z) ( x 3)2 ( y 1)2 ( z 1)2 (x2 y2 z2 4) .求函数 F 对 x, y, z 偏导数,使其为0 ,获得方程组2(x 3) 2 x 0 (1)2( y 1) 2 y 0 (2)2(z 1) 2 z 0 (3)x2 y2 z2 4 (4)以前三个方程中能够看出x, y, z 均不等于零(不然方程两头不等),以作为过渡,把这三个方程联系起来,有x 3y 1 z 1 3 1 1xyz 或xy,z故 x 3z, yz ,将其代入 x 2 y 2 z 24 中,得( 3z)2( z)2 z 2 4 ,2,再代入到 x 3z, yz 中,即可得求出 z11x m6, y m2,1111进而得两点 (62 26 22,,) , (,,) ,11 1111 1111 11比较表达式看出第一个点对应的值较大,第二个点对应的值较小,所以近来点为( 6 , 2 ,2) ,最远点为 (6 , 2,2).11 11 11111111。
887§7 多元函数Taylor 公式和极值问题练习参考解答1. 下列函数极值(1) )2(),(22y y x e y x f x ++=; (2) )4)(6(),(22y y x x y x f −−=; (3) )0(333>−−=a y x axy z ; (4)2. 都很小时,将超越函数当z y x , ,z y x z y x z y x f cos cos cos )cos(,,(−++=).,y x,的多项式近似表示z解 二阶偏导数),有展成马克劳林公式(到将函数),,(z y x f)),,(0,0,0()0,0,0()0,0,0(000),,('z y x f z f y f x f z y x f ′+′+′+= []0,0,0( )0,0,0(2)0,0,0(2)0,0,0(20,0,0()0,0,0(0,0,0(''21222=′′+′′+′′+′′+′′++)))!f f zx f yz f xy f z f y f x zx yz xy zz yy xx []()[]()0cos cos cos )cos()0,0,0( 0)0,0,0( 00,0,0( 0cos cos sin )sin()0,0,0( 0,0,00,0,0=+++−=′=′=′=+++−=′z y x z y x f f f z y x z y x f xxz y x )同样[]())(),,( 10,0,0( 1)0,0,0( 1cos sin sin )cos()0,0,0( 0)0,0,0( 00,0,0( 0,0,0zx yz xy z y x f f f z y x z y x f f f zx yz xyzz yy ++−=−=′′−=′′−=−++−=′′=′′=′′于是,)同样,)同样,即 )(cos cos cos cos(zx yz xy z y x z y x ++−=−++) 3. 求函数x y x y x y x f 933),(2233−++−=的极值。