第五节 第四节 油源对比(1)
- 格式:doc
- 大小:2.19 MB
- 文档页数:26
油源对比及运移地化指标参考1.1气相色谱(GC)气相色谱广泛用于油与沥青的筛选和对比研究。
气相色谱对于有机质输入,生物降解、热熟化等次生作用是很敏感的。
1.1.1老鲛烷/植烷(Pr/Ph)Powell和Mckirdy(1973)指出,非海相源岩生成的高蜡原油和凝析油,Pr/Ph比的范围为5到11,而海相源岩生成的低蜡原油,Pr/Ph的范围只有1到3。
Pr/Ph比值会随成熟作用增加而象征性地增加(Alexander 等,1981)有些老鲛烷和植烷在成岩作用期间还可能来自除植醇以外的一些母源(ten Haven ,1987)1.1.2类异戊二烯烷烃类/正石蜡烃类在开阔水体条件下沉积岩石生成的石油,Pr/nC17 小于0.5,而源于内陆泥炭-沼泽相沉积的石油,该比值小于1。
Pr/nC17和Ph/nC18都随石油热成熟度而增加。
这比值也容易受生物降解等次生作用的影响。
通常正构石蜡烃类要先于类异戊二烯烷烃类受到喜氧菌的吞食。
1.1.3气相色谱“指纹”正构烷烃的双峰群分布,以及偏nC23至nC30的正构烷烃分布,通常与陆生高等植物腊有关。
与碳酸盐岩生油岩有关的沥青和油,通常表现为偶碳数正构烷烃优势;而与泥岩(页岩)相关的沥青和油一般表现为低于nC20的奇数碳正构烷烃优势。
正构烷烃的奇数碳优势通常见于许多源于页岩类生油岩的湖相油和海相油。
包括生物降解作用、熟化作用和运移作用在内的一些次生过程很容易改变这些化合物。
正构烷烃的双峰群分布以及偶碳数或奇碳数优势,会随着热成熟度的增加而消失。
1.1.4稳定同位素(1)相关的石油之间,成熟度差异引起同位素的变化可达2-3‰(2)碳同位素差值大于约2-3%的油,一般来说是不同油源的(3)一般来说,沥青的13C含量要比源岩干酪根低0.5-1.5‰,同理,石油要比相应的沥青低0-1.5%。
一种元素由重同位素形成的键发生断裂所需要的能量要比轻同位素形成的键要多。
这是同位素动力学效应的基础。
油源对比方法简介油源对比方法简介000在过去进行油源对比时,由于仪器方面的限制,只能依靠油气的总体物理化学性质,如密度、粘度、凝固点等,这些参数获得较为简单,但它们容易受到外界次生因素的影响,以至于造成油源对比的错误。
近年来随着石油地球化学理论的深入发展以及分析试验技术的不断改进,不仅能较科学的解释油气的形成和变化规律,而且也提供了一些新的地球化学对比指标,是油源对比有了新的突破。
造成原油组成差异的原因十分复杂,那么在进行油油对比或油气族组群划分时,必须充分考虑多种地质与地球化学因素。
可以从原油的各种烃类和非烃中选择对比参数,原油中甾烷系列与萜烷系列化合物生物标志物的组成特征可以反映原油的有机质母源输入条件、沉积环境和热演化程度等,影响原油中三萜烷系列化合物的分布特征的关键因素为生源条件,并且生物标志物在原油中的分布是相对稳定的,轻度到中等程度的生物降解作用对其没有明显的影响,运移效应对大部分生物标志物参数也没有明显的影响。
因此,生物标志物参数是划分对比原油族群的最理想的参数,可以根据其指纹特征的差异对原油进行族群划分对比。
根据地质背景和对比对象的不同,可以分别采用轻烃、重烃、饱和烃、芳烃、正构烷烃和异构烷烃,以及非烃和同位素的组成等参数来进行油源对比。
下面简要的介绍一下目前广泛应用的一些对比参数,这些参数有些适于油油对比,有些适于油源对比。
(1)轻烃组成对于凝析油或轻油(>50API)缺少C15+以上的烃类物质,那么利用生物标志物进行油源对比就比较苦难,那么利用轻烃对比参数可以很好的解决凝析油与烃源岩以及凝析油与稠油之间的对比。
由于这些轻烃化合物在样品采集,保存和测量时容易蒸发,使用这些参数进行油源对比时,必须给予充分注意,Nora等(2003)研究了这些轻烃化合物的不同蒸发率,为精确的应用这些轻烃参数提供了有效地方法。
①轻烃对比星图进行原油对比选择轻烃对比参数时必须满足以下两点,第一,该类化合物具有较强的抗蚀变能力;第二来自相同的烃源岩的原油之间(同一族群不同组群原油之间),该类化合物具有一定的稳定性。
油源对比参数选择及评价油源是指供给燃料和能源的石油资源。
选择合适的油源对于国家的经济和能源安全至关重要。
在进行油源对比参数选择时,需要综合考虑以下几个方面:1.资源量:油源的资源量决定了石油供应的长期稳定性。
大型的油田和石油质量较好的油源更有利于长期稳定供应,因此油源的资源量是一个重要的参数。
2.生产成本:生产成本是指开采和提炼油源所需的费用。
生产成本低的油源有助于降低能源价格,提高国内经济的竞争力。
3.地理位置:地理位置对于油源选择和评价来说至关重要。
地理位置接近主要消费市场的油源有助于减少运输成本和风险,并提高供应的稳定性。
4.环境影响:油源对环境的影响是评价油源质量的重要指标。
选择对环境影响较小的油源可以减少环境污染和气候变化的风险。
5.地缘政治风险:地缘政治风险包括区域冲突、政治不稳定等因素。
选择地缘政治风险较低的油源可以减少可供性的风险,确保能源供应的稳定性。
综合以上几个方面的考虑,以下是对几种常见的油源进行评价和对比参数选择:1.美国页岩油:美国页岩油具有丰富的资源量,并且生产成本相对较低。
然而,由于提炼过程需要使用水资源和可能会导致地下水污染,其环境影响较大。
此外,美国页岩油的生产是由私营部门主导,地缘政治风险相对较低。
2.中东地区石油:中东地区是全球最大的石油生产地,资源量丰富且生产成本相对较低。
然而,该地区政治稳定性较低,地缘政治风险较高。
此外,中东地区的石油生产主要集中在几个国家,有可能因为政治冲突而受到影响。
3.北海石油:北海石油资源量逐渐减少,但质量较好,生产成本相对较高。
该地区的地理位置接近欧洲市场,减少了运输成本和风险。
此外,北海石油的提炼过程较环保,对环境影响较小。
4.加拿大油砂:加拿大油砂是全球最大的石油资源之一,资源量丰富。
然而,提取和提炼油砂的成本较高,且对环境影响较大。
此外,加拿大的石油市场主要依赖美国,地缘政治风险相对较高。
总的来说,选择合适的油源需要在资源量、生产成本、地理位置、环境影响和地缘政治风险等因素之间进行权衡。
油源对比及运移地化指标参考1.1气相色谱(GC)气相色谱广泛用于油与沥青的筛选和对比研究。
气相色谱对于有机质输入,生物降解、热熟化等次生作用是很敏感的。
1.1.1老鲛烷/植烷(Pr/Ph)Powell和Mckirdy(1973)指出,非海相源岩生成的高蜡原油和凝析油,Pr/Ph比的范围为5到11,而海相源岩生成的低蜡原油,Pr/Ph的范围只有1到3。
Pr/Ph比值会随成熟作用增加而象征性地增加(Alexander 等,1981)有些老鲛烷和植烷在成岩作用期间还可能来自除植醇以外的一些母源(ten Haven ,1987)1.1.2类异戊二烯烷烃类/正石蜡烃类在开阔水体条件下沉积岩石生成的石油,Pr/nC17 小于0.5,而源于内陆泥炭-沼泽相沉积的石油,该比值小于1。
Pr/nC17和Ph/nC18都随石油热成熟度而增加。
这比值也容易受生物降解等次生作用的影响。
通常正构石蜡烃类要先于类异戊二烯烷烃类受到喜氧菌的吞食。
1.1.3气相色谱“指纹”正构烷烃的双峰群分布,以及偏nC23至nC30的正构烷烃分布,通常与陆生高等植物腊有关。
与碳酸盐岩生油岩有关的沥青和油,通常表现为偶碳数正构烷烃优势;而与泥岩(页岩)相关的沥青和油一般表现为低于nC20的奇数碳正构烷烃优势。
正构烷烃的奇数碳优势通常见于许多源于页岩类生油岩的湖相油和海相油。
包括生物降解作用、熟化作用和运移作用在内的一些次生过程很容易改变这些化合物。
正构烷烃的双峰群分布以及偶碳数或奇碳数优势,会随着热成熟度的增加而消失。
1.1.4稳定同位素(1)相关的石油之间,成熟度差异引起同位素的变化可达2-3‰(2)碳同位素差值大于约2-3%的油,一般来说是不同油源的(3)一般来说,沥青的13C含量要比源岩干酪根低0.5-1.5‰,同理,石油要比相应的沥青低0-1.5%。
一种元素由重同位素形成的键发生断裂所需要的能量要比轻同位素形成的键要多。
这是同位素动力学效应的基础。
222 第四节 油源对比一、不同类型烃源岩的油源贡献分析(一)油源对比参数的选择1.成熟度参数甾、萜类系列化合物中αααC 29甾烷20S/(20S+20R)、C 31升藿烷22S/(22S+22R )、芳烃化合物MPI 、MP/P 等主要受成熟度的影响,能较好地反映原油的成熟度特征。
本区无论是烃源岩还是原油αααC 29甾烷20S/(20S+20R)与C 31升藿烷22S/(22S+22R )均具有较好的相关性(图5-4-1)。
Ts/(Ts+Tm )与αααC 29甾烷20S/(20S+20R)、C 31升藿烷22S/(22S+22R )的相关性并不十分显著(图5-4-2),表明Ts /(Ts+Tm )不完全取决于成熟度,还受到其它因素的制约。
2.烃源岩热演化作用对生物标志物参数的影响为了分析烃源岩中生物标志物参数与成熟度的关系,分别对主要生物标志物参数与具代表性的两个成熟度参数[C 31升藿烷22S/(22S+22R )、αααC 29甾烷20S/(20S+20R)]作了相关图5-4-1 烃源岩及含油砂岩抽提物中αααC 2920S/(20R +20S )与C 31升藿烷22S/(22S +22R )相关图图5-4-2 烃源岩中αααC 2920S/(20R +20S )与Ts/(Ts+Tm)相关图性分析。
结果表明,(孕甾烷+升孕甾烷)/αααC29甾烷、三环萜烷/藿烷、规则甾烷/藿烷、降藿烷/降莫烷等参数受成熟度影响较大(图5-4-3);有机质热演化程度对Ts/(Ts+Tm)、(降藿烷+降莫烷)/(藿烷+莫烷)等参数有一定的影响(图5-4-4a、b);伽马蜡烷/C30藿烷、Pr/Ph及C30重排藿烷/C29Ts和ααα20R甾烷C28/C29等参数受成熟度影响比较小(图5-4-4c-f),有些参数(如规则甾烷/藿烷、三环萜烷/藿烷)既与成熟度参数有相关性,又与其他参数有较好的相关性(图5-4-5、6)。
表明这些参数受成熟度、沉积环境及生源等多种因素的制约。
因此,除了选择伽马蜡烷/C30藿烷、Pr/Ph及C30重排藿烷/C29Ts和ααα20R甾烷C28/C29等参数外,还选择了规则甾烷/藿烷、三环萜烷/藿烷、升藿烷指数、Ts/(Ts+Tm)等参数作为油源对比的参数。
图5-4-3 烃源岩中部分生物标志物参数与成熟度参数关系图(Ⅰ)223224 3.非成熟度生物标志物参数相关性分析选择了部分主要受生源与沉积环境控制的生物标志物参数,比较分析了不同层位烃源岩的分子标志物组成参数的相关性。
分析表明,Ts/(Ts+Tm)、ααα20R 甾烷C 28/C 29、伽马蜡烷/藿烷、Pr/Ph 之间有较好的相关关系(图5-4-7、8),这些参数与规则甾烷/藿烷、升藿烷指数、C 30重排藿烷/C 29Ts 等也有一定的相关关系(图5-4-5、6),主要受沉积环境及生源输入的影响。
bdf图5-4-4 烃源岩中部分生物标志物参数与成熟度参数关系图(Ⅱ)图5-4-5 烃源岩中规则甾烷/藿烷与其他生物标志物参数关系图225226 (二)油源对比及不同层位烃源岩油源贡献分析1.饱和烃生物标志物组合特征根据原油的生物标志物组合(饱和烃中正构烷烃、β-胡萝卜烷、甾烷和五环三萜烷等)特征,将抽提物划分为A 、B 两类、原油划分为D Ⅰ、D Ⅱ两类(第五章第三节),烃源岩划分为MA 、MB 、MC 三大类(第三章第一节),以下分析不同类型原油与烃源岩的对比关系。
(1)A Ⅰ类(抽提物)这类原油与E 1f 2的MA Ⅰ、MA Ⅱ类、E 1t 的MA Ⅰ类烃源岩有较好的对比关系(图5-3-2、图3-1-10~图3-1-14,图3-1-3)。
正构烷烃谱图呈正态分布(部分样品呈单峰态前峰型分布),奇偶优势不明显,Ph 含量很高,Ph 明显高于nC 18,Ph 含量>Pr 含量;β-胡萝卜烷含量较高;含三环萜烷,C 20、C 21、C 23三环萜烷呈上升型分布,伽马蜡烷含量较高-很高(明显高于C 31升藿烷,部分样品伽马蜡烷含量接近于藿烷),Ts 含量明显低于Tm ;ααα20RC 27、C 28、C 29甾烷呈“V ”型分布,ααα20RC 27、C 29甾烷含量接近或ααα20RC 27甾烷含量<ααα20RC 29甾烷含量。
原油与烃源岩的差别主要在于,烃源岩的C 3122S 升藿烷含量与C 3122R 升藿烷含量比较接近,而油砂的C 3122S 升藿烷含量明显高于C 3122R 升藿烷含量,E 1t 的MA Ⅰ烃源岩的三环萜烷相对含量比油砂的低。
这些差别主要是由成熟度的差异造成的。
图5-4-6 烃源岩中三环萜烷/藿烷、Ts/(Ts+Tm )与其他生物标志物参数关系图227图5-4-7 部分反映沉积环境与有机质来源的生物标志物参数之间相关关系228229(2)A Ⅱ类(抽提物)这类原油与E 1f 2段MA Ⅱ类、E 1f 4段MA Ⅰ类烃源岩比较接近(图5-3-3、图3-1-14~图3-1-19,图3-1-38~图3-1-42)。
正构烷烃谱图呈正态分布,Ph 含量较高,Pr /nC 17和Ph /nC 18均小于1,Ph 含量>Pr 含量;β-胡萝卜烷含量较低—中等;含三环萜烷,但含量不高,C 20、C 21、C 23三环萜烷呈上升型分布,伽马蜡烷含量中等(与C 31升藿烷接近或略高于C 31升藿烷),Ts 含量低于Tm ;ααα20R C 27、C 28、C 29甾烷呈“V ”型分布。
二者的主要差别在于C 27、C 28、C 29ααα20R 甾烷的相对含量,可能是母源输入存在微小差别的缘故。
(3)A Ⅲ类(抽提物)A Ⅲ类原油(图5-3-4)与各类烃源岩均存在一定的差别,可能是由成藏后作用造成的。
(4)B Ⅰ-1类(抽提物)B Ⅰ-1类(油砂抽提物)与E 1f 3段MB Ⅰ、MB Ⅱ类烃源岩有一定的可比性(图5-3-5,图3-1-27,图3-1-28)。
正构烷烃谱图呈双峰态前峰型(前峰明显高于后峰),原油中Ph 含量明显高于Pr ,不含β-胡萝卜烷或含量很低;含三环萜烷,C 20、C 21、C 23三环萜烷呈山峰型(为主)或下降型, C 3122S 升藿烷>C 3122R 升藿烷;ααα20RC 27、C 28、C 29呈“V ”型分布,ααα20RC 27、C 29甾烷含量接近或C 27<C 29。
但是与E 1f 3烃源岩相比,原油中伽马蜡烷含量中等—较高,但烃源岩中伽马蜡烷含量为图5-4-8 部分反映沉积环境与有机质来源的生物标志物参数之间相关关系(续)中等—偏低,原油中Ts与Tm含量比较接近,但烃源岩中Ts含量明显低于Tm。
三环二萜烷的分布特征与F1f4段MAⅡ烃源岩存在较大的差别,推测与成熟度有关。
这类原油与E1f3MCⅡ也有一定的相似性,但烃源岩中Pr含量高于Ph,原油中不具有这一现象。
推测这类抽提物主要来源于E1f3或阜四段成熟度较高的烃源岩,这类抽提物所分布的储层中抽提物含量很低,没有形成工业性油流。
(5)BⅠ-2类(抽提物)与E1f4段MAⅠ、MAⅡ和Et组MCⅠ类烃源岩有很好的相似性(图5-3-6,图3-1-39,图3-1-45)。
正构烷烃谱图呈正态分布,Pr含量<Ph含量;β-胡萝卜烷含量低;含三环萜烷(含量较低),C20、C21、C23三环萜烷呈上升型分布,伽马蜡烷含量较高,C3122S升藿烷>C3122R升藿烷,Ts明显低于Tm,ααα20RC27、C28、C29甾烷呈“V”型分布,ααα20R甾烷C27>C29或接近。
砂岩与泥岩抽提物的主要差别在于:泰州组砂岩中抽提物的伽马蜡烷的含量相对中等,戴南组砂岩抽提物的伽马蜡烷的含量相对较高,泰州组MC1和阜四段MB1烃源岩也有类似的特征,推测戴南组的抽提物主要来源于阜四段MAⅠ类烃源岩,泰州组的抽提物主要来自于泰州组的MC1类烃源岩。
(6)B-Ⅱ类(抽提物)与E1t段MC1很相近(图5-3-7,图3-1-4)。
正构烷烃谱图呈正态分布,Ph含量>Pr 含量;β-胡萝卜烷含量较低;含三环萜烷,C20、C21、C23三环萜烷含量高呈山峰型分布,伽马蜡烷含量不高,C3122S升藿烷含量大于C3122R升藿烷含量;ααα20RC27、C28、C29甾烷呈V型分布,ααα20R甾烷含量C27<C29。
主要差别在于油砂抽提物中Ts与Tm接近,而E1f4MBⅠ烃源岩抽提物中Ts明显小于Tm。
这可能是由于成熟度存在差别的原因,推测此类原油主要来源于E1t段MC1类烃源岩。
(7)DⅠ类原油与E1f2段MAⅡ、E1t段MAⅠ烃源岩比较接近(图5-3-8,图3-1-15~图3-1-19,图3-1-1~图3-1-3)。
正烷烃谱图呈单峰态前峰型分布,Ph含量>Pr含量;β-胡萝卜烷含量较低-中等;C20、C21、C23三环萜烷呈上升型分布,伽马蜡烷含量中等—较高,Ts含量低于Tm;C3122S升藿烷含量与C3122R升藿烷含量接近;ααα20RC27、C28、C29甾烷呈V型分布,C29>C27。
所不同的是原油中低分子量(小于C18)正构烷烃含量相对较高,主要是由于烃源岩实验室加热萃取过程而导致轻组份挥发造成的。
(8)DⅡ类原油与泰州组MCⅠ类烃源岩有较好对比性(图5-3-9,图3-1-4)。
正烷烃谱图呈单峰态前峰型分布,Ph含量>Pr含量;β-胡萝卜烷含量较低;C20、C21、C23三环萜烷呈上升型分布,伽马蜡烷含量较低,Ts含量低于Tm;C3122S升藿烷含量与C3122R升藿烷含量接近;C27、C28、C29ααα甾烷呈V型分布,ααα20R甾烷C29 >C27。
所不同的是原油中低分子量230(小于C18正构烷烃含量相对较高,其原因同上所述)。
不同类型原油与烃源岩的对比关系列于表5-4-1。
表5-4-1 不同类型原油与烃源岩的对比关系2.五环三萜烷指纹特征对比主要根据z/m191系列化合物(五环三萜烷、伽马蜡烷及三环二萜烷等)的分布特征将烃源岩划成六组。
第一组:伽马蜡烷含量很高(接近于藿烷),Tm明显高于Ts,三环萜烷含量中等,C20、C21、C23三环萜烷以呈上升型分布为主(5-4-9a、表5-4-2)。
对应于MAⅠ类烃源岩,主要分布在E1f2(戴南北、许庄、茅山及北汉庄)。
第二组:伽马蜡烷含量较高(高于C31升藿烷,低于藿烷),Tm含量高于Ts,烃源岩中三环萜烷含量较低(E1f4)至中等(E1f2、Et)(图5-4-9b、表5-4-2),这类烃源岩对应于MAⅠ、MAⅡ和MCⅠ,在E1f4(祝庄、草舍、戴南北、叶甸-刘唐-茅山)、E1f2(祝庄)和E1t (刘唐、祝庄、淤溪)均有分布。
第三组:伽马蜡烷含量中等(略高于C31升藿烷含量接近),Tm明显高于Ts,三环萜烷含量中等,C20、C21、C23三环萜烷呈上升型或山峰型分布,C29Ts含量相对较高(图5-4-9c、表5-4-2)。