抛物线的对称性
- 格式:doc
- 大小:161.50 KB
- 文档页数:2
巧用抛物线的对称性解题抛物线y=ax 2+bx+c 是轴对称图形,对称轴是x=-ab 2,抛物线有下面对称性质: 1、抛物线上关于对称轴对称的两点的纵坐标相等;反过来,抛物线上纵坐标相等的两点关于对称轴对称;特别地,如果抛物线交x 轴两点,那么这两点是对称点;2、抛物线上有对称的两点,它们的横坐标分别是21,x x ,那么抛物线的对称轴的直线方程是x=221x x +=-a b2;一、选择题1、已知抛物线2(1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB 的长度为( )A.1 B.2 C.3 D.4 2、抛物线c bx x y ++-=2的部分图象如图所示,若0>y ,则的取 值范围是( )A.14<<-xB. 13<<-xC. 4-<x 或1>xD.3-<x 或1>x 3、函数y=x 2-x+m(m 为常数)的图象如图,如果x=a 时,y <0;那么x=a-1时,函数值( )A .y <0B .0<y <mC .y >mD .y=m4、若二次函数2y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x取12x x + 时,函数值为( )A.a c + B.a c - C.c - D.c5、已知关于x 的方程32=++c bx ax 的一个根为1x =2,且二次函数c bx ax y ++=2 的对称轴直线是x=2,则抛物线的顶点坐标是( )A .(2,-3 )B .(2,1)C .(2,3)D .(3,2)6、小明从右边的二次函数2y ax bx c =++图象中,观察得出了下面的五条信息:①0a <,②0c =,③函数的最小值为3-,④当0x <时,0y >,⑤当1202x x <<<时,12y y >.你认为其中正确 的个数为( )A.2 B.3 C.4 D.5 y–1 1 3O x7、小颖在二次函数y=2x 2+4x+5的图象上,依横坐标找到三点(-1,y 1),(21,y 2),(-321,y 3),则你认为y 1,y 2,y 3的大小关系应为( ) A.y 1>y 2>y 3 B.y 2>y 3>y 1 C.y 3>y 1>y 2 D.y 3>y 2>y 18、已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个9、已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( ) A.-1.3 B.-2.3 C.-0.3 D.-3.310、已知二次函数682-+-=x x y ,设自变量x 分别为321,,x x x ,且3214x x x <<<,则对应的函数值321,,y y y 的大小关系是( )A. 321y y y <<B. 132y y y <<C. 123y y y <<D. 231y y y <<11、如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为A. 0B. -1C. 1D. 2二、填空题1、已知抛物线y=ax 2+bx+c 经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是_________·2、已知二次函数2(0)y ax bx c a =++≠,其中a b c ,,满足0a b c ++=和930a b c -+=,则该二次函数图象的对称轴是直线 .3、二次函数2y ax bx c =++(0a ≠,a 、b 、c 是常数)中,自变量x 与函数y 的对应请你观察表中数据,并从不同角度描述该函数图象的特征是: 、 、 .(写出3条即可)x … 0 12 32 52 … y … 1 74 74 14- …y –1 3 3 O x P 14、一元二次方程20ax bx c ++=的两根为1x ,2x ,且214x x +=,点(38)A -,在抛物线y=ax 2+bx+c 上,则点A 关于抛物线的对称轴对称的点的坐标为 .5、抛物线y=ax 2+bx+c 的对称轴是x=2,且过点(3,0),则a+b+c=6、y=a 2x +5与X 轴两交点分别为(x 1 ,0),(x 2 ,0) 则当x=x 1 +x 2时,y 值为____7、请你写出一个b 的值,使得函数22y x bx =+在第一象限内y 的值随着x 的值增大而增大,则b 可以是 .8、一个关于x 的函数同时满足如下三个条件①x 为任何实数,函数值y ≤2都能成立;②当x <1时,函数值y 随x 的增大而增大;③当x >1时,函数值y 随x 的增大而减小;符合条件的函数的解析式可以是 。
数学初三抛物线知识点总结一、抛物线的定义和基本概念1. 抛物线的定义抛物线是平面上到定点的距离等于到定直线的距离的点的轨迹。
2. 抛物线的几何图形抛物线是一种特殊的曲线,在平面直角坐标系中具有特定的几何形状。
其一般方程为:y = ax^2 + bx + c,其中 a、b、c 为实数,且a ≠ 0。
抛物线的开口方向由 a 的正负确定,当a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
3. 抛物线顶点抛物线的顶点是最高点或最低点,其坐标可以通过求导或通过抛物线标准式的形式来求解。
4. 抛物线的对称轴抛物线的对称轴是垂直于开口方向,通过顶点的直线,为抛物线的对称轴。
5. 抛物线的焦点抛物线的焦点是到定点和定直线距离相等的点,其在平面直角坐标系中的坐标可以通过一定的方法求解。
二、抛物线的性质1. 抛物线的焦点性质对于平面直角坐标系中的抛物线 y = ax^2 + bx + c,其焦点的坐标为(-b/2a,c-b^2/4a)。
2. 抛物线的顶点性质抛物线的顶点坐标为(-b/2a,c-b^2/4a),即为二次函数的极值点。
3. 抛物线的对称性抛物线相对于其对称轴具有对称性,即对称轴的两侧的点关于对称轴呈镜像对称。
4. 抛物线的焦距性质抛物线的焦距等于定点到定直线的距离,即 |4a|。
5. 抛物线的方程抛物线的一般方程为 y = ax^2 + bx + c,通过这一方程可以求解抛物线的各个性质和参数。
三、抛物线的应用1. 抛物线的应用一:抛物线运动抛物线运动是物理学中常见的一种运动形式,比如抛物线运动的轨迹、抛物线运动的速度、抛物线运动的加速度等,都涉及到抛物线的相关知识。
2. 抛物线的应用二:抛物线方程的图象通过解析几何的方法,可以将抛物线方程转换为几何图形,从而进行相关推导与计算。
3. 抛物线的应用三:抛物线的优化问题在数学建模中,抛物线经常被用于优化问题,比如抛物线的最大值、最小值等问题。
初中抛物线知识点抛物线是初中数学中一个重要而又有趣的概念,它是曲线中的一种特殊形式。
在学习抛物线时,我们需要掌握它的定义、性质以及一些常见的应用场景。
下面,我将为大家介绍有关初中抛物线知识点。
首先,我们来了解什么是抛物线。
抛物线是由平面上一动点P与定点F之间的距离等于动点P到一条定直线l之间的距离的所有点P构成的曲线。
在抛物线上存在两个重要的特殊点,分别是顶点和焦点。
顶点是抛物线的最低点或最高点,而焦点则是定点F到抛物线的任意一点P的最近的距离。
接下来,我们了解抛物线的性质。
抛物线具有对称性,即关于抛物线的轴对称。
抛物线的轴是通过顶点且与抛物线垂直的一条直线。
我们可以通过求解抛物线的轴方程来确定抛物线的轴线位置和方程。
另外,抛物线还具有单调性,也就是说抛物线在轴上的左侧单调递增,在轴上的右侧单调递减。
这一性质在抛物线的应用中非常重要。
抛物线的应用非常广泛,下面就来探讨一些常见的应用场景。
首先是物理学中的抛物线运动。
在自由落体运动中,当物体以一定初速度在无空气阻力下抛出时,其轨迹就是一个抛物线。
通过学习物理抛物线运动,我们可以了解自由落体运动的规律,如最大高度、最大射程等。
此外,在工程学中,抛物线也有很多应用。
例如,在建筑设计中,拱形结构的建筑物就常常采用抛物线形状,因为抛物线能够均匀承载压力,具有结构稳定性。
除了物理和工程学,抛物线还在数学中有广泛的应用。
例如,我们可以通过抛物线来求解一些几何问题。
当给定一抛物线和一定点,我们可以利用抛物线性质推导出与这个点相关的特定性质。
此外,抛物线还被广泛应用于数学模型中。
例如,抛物线方程可以用于描述电磁波在天线中的传播情况,或者用于描述流体中的涡流等。
总结起来,初中抛物线知识点是我们数学学习中的重要部分。
我们需要了解抛物线的定义、性质和常见应用,以此来应对日后的相关问题和挑战。
通过学习抛物线知识点,可以培养我们的思维能力和解决实际问题的能力。
在今后的学习和生活中,我们要注重探索抛物线的更多应用,不断提升自己的数学素养。
高考抛物线知识点总结高中数学中的抛物线是一个重要的知识点,也是高考数学中经常会出现的考点。
在解题过程中,对于抛物线的性质、方程及应用需要有深入的理解。
本文将对高考抛物线知识点进行总结,帮助考生加深对这一部分内容的理解和应用能力。
一、抛物线的基本形状和性质抛物线是一种二次曲线,其基本形状为开口朝上或朝下的弧线。
抛物线由一个定点(焦点)和一条定线(准线)确定,焦点和准线之间的距离称为焦距。
抛物线的顶点为曲线上的最低点或最高点,称为顶点。
在图像上,抛物线呈现出对称性,即以顶点为对称中心将曲线分成两个对称的部分。
抛物线的开口方向取决于二次曲线的二次项的系数正负。
若为开口朝上,则二次项系数为正,反之为负。
二、抛物线的常见方程1. 顶点坐标形式:设抛物线的顶点为(h, k),焦点坐标为(F, k),则抛物线的顶点坐标形式方程为:(x-h)² = 4a(y - k),其中a为焦距的一半。
2. 标准形式:设抛物线的焦点坐标为(F, 0),焦距为2a,则抛物线的标准形式方程为:y² = 4ax。
3. 配方形式:将标准形式方程简化得到的抛物线的配方形式方程为:x = ay² + by + c。
三、抛物线的性质及相关公式1. 抛物线的对称轴是与准线垂直并通过抛物线的顶点的直线。
对称轴的方程为x = h。
2. 离心率和焦距之间的关系:抛物线的离心率e等于焦距与准线之间的比值:e = F/a。
3. 焦点和准线之间的关系:焦点关于对称轴对称,焦点到准线的距离等于焦距。
4. 定点和定线之间的关系:抛物线上任意一点到定点的距离等于该点到准线的距离。
5. 直角坐标系中的曲线长度公式:设函数y = f(x)在闭区间[a,b]上连续,则抛物线上的曲线长度:L = ∫[a,b]√(1+(f'(x))²)dx。
四、抛物线的应用抛物线的应用范围广泛,在数学、物理、经济等多个学科中都有应用。
以下是抛物线在几个常见领域中的应用案例:1. 圆锥曲线:抛物线是圆锥曲线的一种,它在天文学、建筑学等领域中有着广泛的应用。
抛物线运动知识点归纳总结抛物线运动知识点归纳总结一、引言抛物线运动是我们在物理学中经常遇到的一种运动形式,它不仅具有理论上的重要性,也与日常生活紧密相关。
本文将对抛物线运动的知识点进行归纳总结,为读者深入了解抛物线运动提供指导。
二、基本概念1. 抛物线的定义抛物线是指平面上一点离定点距离与定直线距离之差保持不变的轨迹。
2. 抛物线的特点抛物线具有对称性,以焦点为中心,顶点为对称轴,对称于焦距的负方向。
三、运动规律1. 抛物线的运动方程对于抛物线的运动,可以通过运动方程来描述:y = ax² + bx + c其中a、b、c为常数,而x、y则分别表示抛物线上的点的横坐标和纵坐标。
2. 抛物线的速度抛物线上的点随时间的变化而变化,速度也随之改变。
在任意一点处的速度与该点处的切线垂直,这是因为切线的斜率是0。
3. 抛物线的加速度抛物线上的点也存在加速度,它总是指向焦点的方向。
这是因为加速度的方向与速度的方向相同,而速度则是沿着法线方向的。
四、运动的影响因素1. 初始速度抛物线的形状和顶点的位置会受到初始速度的影响。
初始速度越大,抛物线越“扁”,顶点的位置也越靠近顶点。
2. 发射角度发射角度决定了抛物线的朝向和形状。
发射角度为45°时,抛物线的高度和水平距离达到最大值。
3. 重力重力是影响抛物线运动的重要因素。
在没有空气阻力的情况下,重力仅改变了抛物线的高度,不会影响抛物线的形状。
五、实际应用1. 炮弹的抛物线轨迹抛射炮弹的运动轨迹可以看作是抛物线。
通过分析炮弹的抛物线轨迹,可以确定炮弹的落点和射程。
2. 投掷运动许多运动项目,如铅球投掷、棒球投掷等,都可以看作是抛物线运动。
通过研究抛物线运动的规律,可以提高投掷的准确性和力度。
3. 桥梁设计在桥梁的设计中,抛物线曲线被广泛运用,因为抛物线具有良好的承重性能和结构稳定性。
六、结论抛物线运动是物理学中的重要概念,通过对抛物线运动的知识点进行归纳总结,我们可以更好地理解和应用这一概念。
第2课时 抛物线的简单几何性质一、抛物线的性质1.抛物线2y =2px(p>0)的简单几何性质(1)对称性:以-y 代y ,方程2y =2px(p>0)不变,因此这条抛物线是以x 轴为对称轴的轴对称图形.抛物线的对称轴叫做抛物线的轴,抛物线只有一条对称轴. (2)顶点:抛物线和它的轴的交点叫做抛物线的顶点.(3)离心率:抛物线上的点到焦点的距离和它到准线的距离的比,叫做抛物线的离心率, (4)通径:过焦点垂直于轴的弦称为抛物线的通径,其长为2p.(5)范围:由y2=2px ≥0,p>0知x ≥0,所以抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸,p 值越大,它开口越开阔. 2.焦半径抛物线上一点与焦点F 连接的线段叫做焦半径,设抛物线上任一点A(x0,y0),则四种标准方程形式下的焦半径公式为3.p 表示焦点到准线的距离,p >0.p 值越大,抛物线的开口越宽;p 值越小,抛物线的开口越窄。
4.焦点弦问题如图所示:AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2),AB 的中点M (x 0,y 0),抛物线的准线为l .(1)以AB 为直径的圆必与准线l 相切; (2)|AB |=2(x 0+p2)=x 1+x 2+p ;(3)A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2=42p ,y 1·y 2=2p.题型一、抛物线的对称性例1、正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y 2=2px (p >0)上,求这个正三角形的边长.[解析] 如图,设正三角形OAB 的顶点A 、B 在抛物线上,且它们坐标分别为(x 1,y 1)和(x 2,y 2)则:y 21=2px 1,y 22=2px 2.又|OA |=|OB |,∴x 21+y 21=x 22+y 22,即x 21-x 22+2px 1-2px 2=0,∴(x 1-x 2)(x 1+x 2+2p )=0. ∵x 1>0,x 2>0,2p >0,∴x 1=x 2, 由此可得|y 1|=|y 2|, 即线段AB 关于x 轴对称.由于AB 垂直于x 轴,且∠AOx =30°.∴y 1x 1=tan30°=33,而y 21=2px 1,∴ y 1=23p . 于是|AB |=2y 1=43p . 例2、等腰Rt △ABO 内接于抛物线2y =2px(p>0),O 为抛物线的顶点,OA ⊥OB ,则△ABO 的面积是()A .82pB .42p C .22pD .2p[答案] B题型二、抛物线焦点弦的性质例3、斜率为2的直线经过抛物线y 2=4x 的焦点,与抛物线相交于两点A 、B ,求线段AB 的长. 解∴|AB|=|AF|+|BF|=x1+x2+2=3+2=5. 例4、过抛物线2y =8x 的焦点作直线l ,交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则|AB|的值为_____________.[答案] 10 题型三、最值问题例5、设P 是抛物线y 2=4x 上的一个动点,F 为抛物线焦点.(1)求点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值; (2)若B (3,2),求|PB |+|PF |的最小值.[解析] (1)如图,易知抛物线的焦点为F (1,0),准线方程是x =-1,由抛物线的定义知:点P 到直线x =-1的距离等于点P 到焦点F 的距离.于是,问题转化为:在曲线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小.显然,连AF 交抛物线于P 点,故最小值为22+12,即 5. (2)如图把点B 的横坐标代入y 2=4x 中,得y =±12,因为12>2,所以B 在抛物线内部,自B 作BQ 垂直准线于Q ,交抛物线于P 1.此时,由抛物线定义知: |P 1Q |=|P 1F |.那么|PB |+|PF |≥|P 1B |+|P 1Q | =|BQ |=3+1=4. 即最小值为4. 例6、定点M ⎪⎭⎫⎝⎛310,3与抛物线y 2=2x 上的点P 之间的距离为d 1,P 到抛物线准线l 的距离为d 2,则d 1+d 2取最小值时,P 点坐标为( )A .(0,0)B .(1,2)C .(2,2) D.⎪⎭⎫ ⎝⎛-21,81 [答案] C例7、设抛物线C :x 2=2py 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;(2)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m 、n 距离的比值.[正解] (1)由已知可得△BFD 为等腰直角三角形,当p >0时,|BD |=2p ,圆F 的半径|F A |=2p ,由抛物线定义可知A 到l 的距离d =|F A |=2p . 因为△ABD 的面积为42,所以12|BD |·d =42,即12·2p ·2p =42,解得p =2,所以F (0,1),圆F 的方程为x 2+(y -1)2=8. 当p <0时,同理可得p =-2,∴F (-1,0), ∴圆F 的方程为x 2+(y +1)2=8.(2)因为A 、B 、F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB =90°,由抛物线定义知|AD |=|F A |=12|AB |.所以∠ABD =30°,m 的斜率为33或-33. 当m 的斜率为33时,由已知可设n :y =33x +b ,代入x 2=2py 得x 2-233px -2pb =0. 由于n 与C 只有一个公共点,故Δ=43p 2+8pb =0,解得b =-p 6.因为m 的截距b 1=p 2,|b 1||b |=3,所以坐标原点到m ,n 距离的比值为3. 当m 的斜率为-33时,由图形的对称性可知,坐标原点到m ,n 的距离的比值为3. 课后作业一、选择题1.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1)、B (x 2,y 2)两点,若x 1+x 2=10,则弦AB 的长度为( )A .16B .14C .12D .10[答案] C[解析] 设抛物线的焦点为F ,则|AB |=|AF |+|BF |=x 1+1+x 2+1=x 1+x 2+2=10+2=12. 2.设O 是坐标原点,F 是抛物线y 2=2px (p >0)的焦点,A 是抛物线上的一点,F A →与x 轴正向的夹角为60°,则|OA |为( )A.214pB.212pC.136p D.1336p [答案] B[解析] 设A (x 1,y 1),直线F A 的方程为y =3(x -p 2),由⎩⎪⎨⎪⎧ y 2=2px y =3(x -p 2),得⎩⎪⎨⎪⎧x 1=32p y 1=3p. ∴|OA |=x 21+y 21=94p 2+3p 2=212p . 3.过抛物线焦点F 的直线与抛物线相交于A 、B 两点,若点A 、B 在抛物线准线上的射影分别为A 1,B 1,则∠A 1FB 1为( )A .45°B .60°C .90°D .120°[答案] C[解析] 设抛物线方为y 2=2px (p >0). 如图,∵|AF |=|AA 1|,|BF |=|BB 1|, ∴∠AA 1F =∠AF A 1,∠BFB 1=∠FB 1B .又AA 1∥Ox ∥B 1B ,∴∠A 1FO =∠F A 1A ,∠B 1FO =∠FB 1B ,∴∠A 1FB 1=12∠AFB =90°.4.抛物线y 2=2x 的焦点为F ,其准线经过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点,点M 为这两条曲线的一个交点,且|MF |=2,则双曲线的离心率为( ) A.102B .2 C. 5 D.52[答案] A[解析] F (12,0),l :x =-12,由题意知a =12.由抛物线的定义知,x M -(-12)=2,∴x M =32,∴y 2M =3,∵点(x M ,y M )在双曲线上,∴9414-3b 2=1,∴b 2=38,∴c 2=a 2+b 2=58,∴e 2=c 2a 2=58×4=52,∴e =102. 5.已知A 、B 在抛物线y 2=2px (p >0)上,O 为坐标原点,如果|OA |=|OB |,且△AOB 的垂心恰好是此抛物线的焦点F ,则直线AB 的方程是( ) A .x -p =0 B .4x -3p =0 C .2x -5p =0D .2x -3p =0[答案] C[解析] 如图所示:∵F 为垂心,F 为焦点,OA =OB ,∴OF 垂直平分AB . ∴AB 为垂直于x 轴的直线设A 为(2pt 2,2pt )(t >0),B 为(2pt 2,-2pt ), ∵F 为垂心,∴OB ⊥AF ,∴k OB ·k AF =-1, 即-(2pt )2(2pt 2-p 2)·2pt 2=-1,解得t 2=54∴AB 的方程为x =2pt 2=52p ,∴选C.二、填空题6.已知过抛物线y 2=6x 焦点的弦长为12,则此弦所在直线的倾斜角是__________________.[答案] π4或3π4[解析] 设直线的倾斜角为θ,由题意得12=2p sin 2θ=6sin 2θ,∴sin 2θ=12,∴sin θ=±22,∵θ∈[0,π),∴θ=π4或3π4.7.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=__________________.[答案] 8[解析] 如图,k AF =-3,∴∠AFO =60°,∵|BF |=4,∴|AB |=43, 即P 点的纵坐标为43, ∴(43)2=8x ,∴x =6, ∴|P A |=8=|PF |. 三、解答题8.如图,有一张长为8,宽为4的矩形纸片ABCD ,按如图所示的方法进行折叠,使每次折叠后点B 都落在AD 边上,此时记为B ′(注:图中EF 为折痕,点F 也可落在CD 边上).过点B ′作B ′T ∥CD 交EF 于点T ,求点T 的轨迹方程.[解析] 如图,以边AB 的中点O 为原点,AB 所在的直线为y 轴建立平面直角坐标系,则B (0,-2).连结BT ,由折叠知|BT |=|B ′T |.∵B ′T ∥CD ,CD ⊥AD ,∴B ′T ⊥AD .根据抛物线的定义知,点T 的轨迹是以点B 为焦点,AD 所在直线为准线的抛物线的一部分.设T (x ,y ).∵|AB |=4.即定点B 到定直线AD 的距离为4,∴抛物线的方程为x 2=-8y .在折叠中,线段AB ′的长度|AB ′|在区间[0,4]内变化,而x =|AB ′|,∴0≤x ≤4,故点T 的轨迹方程为x 2=-8y (0≤x ≤4).9.定长为3的线段AB 的端点A 、B 在抛物线y 2=x 上移动,求AB 中点到y 轴距离的最小值,并求出此时AB 中点M 的坐标.[解析] 如图,设F 是抛物线y 2=x 的焦点,A 、B 两点到准线的垂线分别是AC 、BD ,M 点到准线的垂线为MN ,N 为垂足,则|MN |=12(|AC |+|BD |),根据抛物线定义得|AC |=|AF |,|BD |=|BF |,∴|MN |=12(|AF |+|BF |)≥|AB |2=32.设M 点的横坐标为x ,则|MN |=x +14,∴x =|MN |-14≥32-14=54,等号成立的条件是弦AB 过点F , 由于|AB |>2p =1,∴AB 过焦点是可能的,此时M 点到y 轴的最短距离是54,即AB 的中点横坐标为54.当F 在AB 上时,设A 、B 的纵坐标分别为y 1、 y 2,则y 1y 2=-p 2=-14,从而(y 1+y 1)2=y 21+y 22+2y 1y 2=2×54-12=2,∴y 1+y 2=±2, ∴M 点的坐标为(54,±22)时,M 到y 轴距离的最小值为54.。
高中抛物线知识点总结高中抛物线知识点总结抛物线是一条二次函数,它的图像呈现出一个弧形,常见于物理、数学和工工科中。
在高中学习中,抛物线是一个重要的数学概念之一,在数学、物理和工程学中都有广泛的应用。
在此本文将为您介绍抛物线的基本概念、性质以及解题方法等知识点。
1. 抛物线的基本概念抛物线的定义是由一个不在同一平面的点P和一条确定的直线l,绕P旋转一周所形成的曲线叫做抛物线。
其中点P叫做焦点,直线l叫做准线。
抛物线的标准方程是 y = ax^2 + bx +c ,其中a,b,c是常数,a 不等于0。
当 a > 0 时,抛物线开口向上,当a < 0 时,抛物线开口向下。
2. 抛物线的性质(1)对称性抛物线的图像具有对称性,也就是有轴对称线。
这条对称线称为抛物线的轴线,它通过焦点和准线的垂线交点。
(2)焦点、准线和顶点的关系对于对称轴y = k,横坐标为h的点P(x,y), 有以下关系式成立:(i)焦点坐标为 F(h,k+p),其中p=1/(4a)(ii)准线的方程为 y = k-p(iii)顶点坐标为 V(h,k)(3)焦距的意义焦距是从焦点到准线的距离,它的值等于 1/(4a)。
焦距的意义在物理学中有广泛应用,例如椭圆轨道和双曲线轨道等。
(4)最值和拐点抛物线最值和拐点是求解抛物线的重要问题:(i)当抛物线开口向上时,最小值就是它的顶点V(h,k),最大值不存在。
(ii)当抛物线咕咕向下时,最大值就是它的顶点V(h,k),最小值不存在。
(iii)抛物线拐点存在的条件为 a 不等于 0。
求抛物线的拐点(x,y),只需要将一阶导数为0的得到解析式,然后代入求y坐标值。
3. 抛物线的应用抛物线在日常生活和工程学中有着广泛的应用,其中的一个典型实例是进行投掷运动的物理解析。
在投射问题中,抛物线成为空气中物体运动的轨迹,其中重力在垂直方向上作用,空气阻力在垂直方向上不作用。
抛物线还有一些其他的应用,包括:(1)建筑物的设计,例如拱形门廊和地理石的建筑设计。
认识抛物线及其性质抛物线是数学中一种重要的曲线形状,它在物理学、工程学以及其他领域中都有广泛的应用。
本文将介绍抛物线的定义和性质,以及它在现实生活中的应用。
一、抛物线的定义抛物线可以通过以下的定义来描述:任意平面上给定一个定点F及一条直线L,不经过定点F,定点到直线上每一点的距离与点到直线的距离之比是一个常数。
这个比值称为离开定点F的距离与到直线L的距离之比的平方根,用e表示。
抛物线上的点P到定点F的距离与点P 到直线L的距离之比也等于e。
二、抛物线的性质1. 焦点和准线:在抛物线上,定点F称为焦点,直线L称为准线。
焦点是抛物线的重要属性之一,它与离开定点F的距离与到直线L的距离的关系密切相关。
2. 对称性:抛物线具有关于准线的对称性,即抛物线上的任意一点P到准线L的距离等于点P关于准线L的对称点P'到准线L的距离。
这一性质使得抛物线具有很好的对称美。
3. 焦半径:抛物线上任意一点P到焦点F的距离称为焦半径,记为r。
焦半径的值与点P在抛物线上的位置有关,它随着点P在抛物线上的移动而变化。
4. 焦直径:抛物线上两个焦点之间的距离称为焦直径,记为d。
焦直径的长度也是与焦半径相关的,它总是等于4倍的焦半径。
三、抛物线的应用抛物线在现实生活中有广泛的应用,下面介绍几个常见的应用领域:1. 抛物线的光学应用:抛物面是抛物线绕其准线旋转一周形成的曲面,它具有将入射光线聚焦到一个点的特性,因此广泛应用于望远镜、反射望远镜和抛物线反射器等光学仪器中。
2. 抛物线的物理应用:抛物线是自由落体运动的轨迹,因此在物理学中,抛物线被用来描述自由落体物体的运动轨迹。
3. 抛物线的工程应用:抛物线的特性使其在工程学中得到广泛应用。
比如,在桥梁设计中,抛物线的形状使得桥梁能够承受更大的重量。
4. 抛物线的图像应用:抛物线因其美观和对称性,经常在艺术和设计中被使用。
比如,建筑物的设计、家具的造型等都可以运用抛物线的形状。
二次函数-------抛物线的对称性秀屿区赤岑中学 詹树文教学目标:理解二次函数的图像关于对称轴对称的性质,会利用抛物线的对称性解决与二次函数有关的问题教学重点:利用抛物线的对称性解决与二次函数有关的问题教学难点:灵活运用抛物线的对称性解决问题教学过程: 一、抛物线的对称轴公式:①2b x a =-, ②122x x x += 二、例题讲解例1、抛物线与x 轴交于A (-1,0)、B 两点,其对称轴是直线1x =,则B 点的坐标是例2、抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线例3、抛物线2y ax bx c =++经过11(1,),(3,)A y B y -,则其对称轴是直线例4、二次函数c bx ax ++=2y 自变量x 与函数值y 之间有下列关系:那么)(c b a ab ++的值为( ) A 、6 B 、6- C 、23 D 、23- 例5、如图,四边形ABCD 是矩形,A,B 两点在x 轴的正半轴上,C,D 两点在抛物线26y x x =-+上,设OA=m(0<m<3),矩形ABCD 的周长为l ,求l 与m 的函数解析式。
3-1.68-1.680-2-3⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅y x例6、将抛物线y =2x 2-12x +16绕它的顶点旋转180°,所得的解析式是 例7、抛物线2y ax bx c =++(a <0)与y 轴交于C 点,与x 轴交于1(,0)A x 和2(,0)B x 两点,其中x 1 和x 2是方程x 2﹣2x ﹣3=0的两个根(120x x )(1)求A 、B 两点的坐标;(2)当∠CAB 的平分线交y 轴于D 、交抛物线于另一点E ,且点E 与C 关于抛物线的对称轴对称时,求抛物线的解析;(3)在对称轴上是否存在一点P ,使PA+PC 的值最小?三、自主演练例1、抛物线22(2)y x t t =---+ (t 是常数, 0≠t )的顶点是P ,与x 轴交于A (2,0)、B 两点 ①PAB ∆能否构成直角三角形?若能,求出t 的值:若不能,说明理由。
抛物线和性质知识点大全1.抛物线的定义:抛物线是一个平面曲线,其距离一个定点(焦点)和一个定直线(准线)的距离都相等。
2.标准方程:抛物线的标准方程是y = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。
3.抛物线的焦点:抛物线的焦点是一个点,其到抛物线上的任意一点的距离与该点到抛物线的准线的距离相等。
4.抛物线的准线:抛物线的准线是一个直线,与抛物线的对称轴平行,并且距离对称轴固定的距离。
5.抛物线的对称轴:抛物线的对称轴是垂直于准线,通过焦点和抛物线的顶点的一条直线。
6.抛物线的顶点:抛物线的顶点是曲线的最高或最低点,即y轴距离最大或最小的点。
7.抛物线的焦距:抛物线的焦距是焦点到顶点的距离。
焦距等于准线与对称轴的距离的两倍。
8.抛物线的直径:抛物线的直径是通过焦点和曲线上两个对称的点的线段。
直径等于焦距的两倍。
9.抛物线的离心率:抛物线的离心率是焦距与准线与顶点的距离的比值。
离心率等于110.抛物线的焦点方程:如果抛物线的焦点为(F,p),则焦点到顶点的距离为p,焦点的横坐标为F,抛物线方程为(x-F)^2=4p(y-c),其中c为抛物线的顶点纵坐标。
11.抛物线的顶点方程:如果抛物线的顶点为(h,k),则抛物线方程为(y-k)=a(x-h)^212.抛物线的对称性:抛物线具有对称性,对称轴将抛物线分成两个对称的部分。
13.抛物线的焦点和准线的关系:抛物线上任意一点的到焦点的距离等于该点到准线的距离的两倍。
14.抛物线的切线:抛物线上任意一点处的切线与该点到焦点的连线重合。
15.抛物线的渐近线:当抛物线的开口向上时,抛物线没有水平渐近线;当抛物线的开口向下时,抛物线有一条水平渐近线。
16.抛物线的面积:抛物线所围成的面积等于焦点到顶点的纵坐标与准线的距离之积的1/317.抛物线的长度:抛物线的长度等于8/3倍焦距的立方根。
18.抛物线的应用:抛物线广泛应用于物理学、工程学和计算机图形学等领域。
抛物线知识点归纳总结1. 定义- 抛物线是二次函数的图像,具有一个顶点和一个对称轴。
- 它是平面上所有与一个固定点(焦点)和一条固定直线(准线)距离相等的点的集合。
2. 标准方程- 顶点形式:y = a(x - h)^2 + k其中 (h, k) 是顶点的坐标,a 是抛物线的开口系数。
- 一般形式:y = ax^2 + bx + c其中 a, b, c 是常数,且a ≠ 0。
3. 图像特征- 开口方向:当 a > 0 时,抛物线开口向上;当 a < 0 时,开口向下。
- 对称性:抛物线关于其对称轴(垂直于 x 轴的直线)对称。
- 焦点和准线:焦点是抛物线上所有点到准线距离的最小值点,准线是与抛物线焦点等距的一条直线。
4. 焦点和准线的性质- 焦点:对于标准方程 y = a(x - h)^2 + k,焦点坐标为 (h, k+ 1/(4a))。
- 准线:对于标准方程 y = a(x - h)^2 + k,准线的方程为 y =k - 1/(4a)。
5. 顶点- 顶点是抛物线的最高点(开口向下时)或最低点(开口向上时)。
- 顶点坐标可以通过方程的顶点形式直接获得。
6. 对称轴- 对称轴是一条垂直线,其方程为 x = h。
7. 抛物线的变换- 水平变换:抛物线可以通过在 x 或 y 方向上平移来改变位置。
- 垂直变换:抛物线可以通过在 x 或 y 方向上缩放来改变大小。
8. 应用- 物理:抛物线运动(如物体在重力作用下的抛射运动)。
- 工程:建筑设计中的拱形结构。
- 经济学:成本和收益分析中的收益最大化问题。
9. 求导与极值- 对于一般形式 y = ax^2 + bx + c,求导得到 y' = 2ax + b。
- 顶点处的导数为零,即 y'(h) = 0,这是找到顶点的方法。
10. 抛物线与直线的交点- 通过解方程组 {y = ax^2 + bx + c, y = mx + n} 可以找到抛物线与直线的交点。
抛物线知识点总结_高三数学知识点总结抛物线是解析几何中的一个重要概念,在高中数学中经常遇到。
抛物线的定义是平面上到定点和定直线的距离相等的点的集合。
抛物线有许多基本性质和相关公式,下面是对抛物线的知识点的总结。
1. 抛物线的定义抛物线是平面上到定点(焦点)和定直线(准线)的距离相等的点的集合。
2. 抛物线的方程抛物线的一般方程形式为:y = ax^2 + bx + c,其中a、b、c为常数,a ≠ 0。
3. 抛物线的顶点抛物线的顶点是抛物线的最低点(顶点在上凸抛物线中为最高点)。
抛物线的顶点坐标为(-b/2a, f(-b/2a)),其中f(x)为抛物线方程。
4. 抛物线的对称轴抛物线的对称轴是通过抛物线顶点且垂直于准线的直线。
5. 抛物线的焦点和准线焦点是到定点相等距离的点,准线是到定直线相等距离的点。
焦点的坐标为(-b/2a, c - (b^2-1)/4a),准线的方程为y = c - (b^2-1)/4a。
6. 抛物线的开口方向抛物线的开口方向取决于系数a的正负。
如果a > 0,则抛物线开口向上;如果a < 0,则抛物线开口向下。
7. 抛物线的对称性抛物线具有对称性,即抛物线上的任意一点关于对称轴的对称点也在抛物线上。
8. 抛物线的性质- 抛物线是一条连续曲线。
- 抛物线没有最大值或最小值。
- 开口向上的抛物线在对称轴上方的点的纵坐标都大于或等于对称轴上的点的纵坐标。
- 开口向下的抛物线在对称轴上方的点的纵坐标都小于或等于对称轴上的点的纵坐标。
9. 抛物线与二次函数的关系二次函数是一种特殊的抛物线,即二次函数的图像为一条抛物线。
10. 抛物线的平移和缩放抛物线的平移可以通过改变抛物线方程中的常数项b和c的值来实现。
抛物线的缩放可以通过改变抛物线方程中的系数a的值来实现。
11. 抛物线的判别式抛物线的判别式D用来判断抛物线的开口方向和是否与x轴相交。
当D > 0时,抛物线与x轴有两个交点;当D = 0时,抛物线与x轴有一个交点;当D < 0时,抛物线与x 轴无交点。
抛物线的概念抛物线的概念及其应用1. 引言抛物线是数学中一个重要的曲线,其形状独特而美妙。
在几何学和物理学中,抛物线广泛应用于各种领域,包括力学、光学、天文学等。
本文将深入探讨抛物线的概念、性质和应用,以便更深入地理解这一曲线。
2. 抛物线的定义抛物线是所有离一个定点(称为焦点)距离与其到一条直线(称为准线)的距离成正比的点构成的曲线。
准线和焦点之间的距离称为焦距,并用字母p表示。
3. 抛物线的性质3.1 对称性抛物线具有关于准线对称的性质。
如果抛物线上的点P到准线的距离为d,则点P'到准线的距离也为d并且两点在准线的同一侧。
3.2 焦点与准线的距离关系对于抛物线上的任意一点P,其距离焦点的距离与其到准线的距离之间存在以下关系:d = |PF| = |PL| = p,其中PF表示点P到焦点的距离,PL表示点P到准线的距离。
3.3 焦点的确定方法通过对称性和焦点与准线的距离关系,可以确定焦点的位置。
以焦点为圆心、焦距为半径作圆与准线相交于点O,连接PO即可确定焦点的位置。
4. 抛物线的方程抛物线的方程可以通过焦点、准线和直角坐标系来求得。
一般来说,抛物线的顶点位于坐标轴上,其坐标表示为(h,k)。
根据抛物线的定义,可以得到一般式方程:y = ax^2 + bx + c。
5. 抛物线的重要应用5.1 物体的抛射运动在力学中,抛物线被广泛应用于描述物体的抛射运动。
当物体在水平面上以一定初速度和发射角度被抛出时,其运动轨迹正是一个抛物线。
通过抛物线方程,可以计算物体的运动轨迹、最大高度和最远距离等参数。
5.2 反射聚焦在光学中,抛物线被用于反射聚焦。
抛物面反射器是一种利用抛物线形状的曲面来聚焦光线的光学器件。
这种曲面具有将接近光轴的入射平行光束反射到焦点上的特点,因此被广泛应用于望远镜、卫星接收器等光学设备中。
5.3 天体运动轨迹在天文学中,抛物线也用于描述天体的运动轨迹。
彗星经常沿着抛物线轨道绕太阳运行,其中太阳位于焦点上。
抛物线运动的特点
抛物线运动是物理学中的经典运动之一,它的特点主要有以下几个方面:
1. 运动轨迹呈抛物线形状,具有对称性。
2. 运动速度在垂直方向上保持恒定,而在水平方向上则呈匀变速直线运动。
3. 运动加速度在水平方向上为零,在垂直方向上则受重力加速度的作用,大小为9.8m/s。
4. 运动的时间与初速度、初位移、重力加速度等因素有关,可以通过抛物线运动公式进行计算和预测。
5. 抛物线运动广泛应用于物理、工程、航天等领域,例如弹道学、炮弹轨迹计算、卫星轨道设计等。
- 1 -。
抛物线的对称性
萧县 纵强
二次函数的图像是具有对称性的抛物线,合理的利用这一特征所带来的性质对于解决二次函数的这一类问题会取得很好的效果,在今年的中考中也常出现这类问题,为帮助同学们学好这部分内容,本文对这部分内容剖析如下。
二次函数()2
(0)y a x h k a =-+≠的图像是抛物线,抛物线是轴对称图形,对称轴为直线x h =。
根据轴对称的性质,我们容易得出以下几个结论。
结论1:、对于抛物线上两个不同点A (x y 11,)、B (x y 22,)
A 、
B 两点是关于对称轴x h =对称点⇔纵坐标满足12y y =(纵坐标相等)
由以上两个结论知,已知一点的坐标A (1x ,m )和对称轴直线x h =就可以确定A 点的对称点B 的坐标:由结论1对称点的纵坐标相等得:B 的纵坐标也是m 由结论2得:122
x x h +=即B 的横坐标是212x h x =- 即:结论3:A (1x ,m )是抛物线上的一点,则它关于对称轴直线x h =的对称点B 一定
也在抛物线上,且B 点的坐标为(12,h x m -)
一、利用对称性求抛物线的解析式
例1. 二次函数的图像经过A (-3,1)、B (1,1)、C (-1,3)三点,求二次函数的解析式。
分析:由结论1可知点A (-3,1)、B (1,1)是抛物线上对称的两点。
再根据结论2,可知直线3112
x -+==-是此抛物线的对称轴,所以点C (-1,3)恰为抛物线的顶点。
解:设二次函数的解析式为y a x =++()132(顶点式),
由图像经过B (1,1)所以1113122=++=-
a a (),。
从而可确定二次函数的解析式为y x =-
++12132()。
二、利用对称性求函数值
例2.已知二次函数2y ax bx c =++(0a ≠)中自变量x 和函数值y 的部分对应值 如下表:
则该二次函数图像的对称轴为x= ;
x=2-对应的函数值y = ;
分析:如果用待定系数法会相当麻烦,观察表中的数据你会发现当1x =-和0x =时的函数值都是2-,因结论1得(1,2)--和(0,2)-对称,再由结论2得对称轴为x=10122-+=- 由对称轴为x=12
=-利用对称性可确定2x =-的对称点的横坐标: 由结论2变化得对称点的横坐标()21122212x h x ⎛⎫=-=⨯-
--= ⎪⎝⎭ 由结论1得1x =与2x =-的函数值相同所以2x =-的函数值y 也是0。