大功率永磁电机与异步电机对比参考文档
- 格式:ppt
- 大小:1.98 MB
- 文档页数:9
永磁同步电机vs传统异步电机:哪个更优秀近些年来,随着能源危机的加深和环保意识的不断提高,电动车、风力发电、太阳能发电等领域的发展越来越迅速,因此在电机技术方面的研究也越来越深入。
在电机类型中,永磁同步电机(permanent magnet synchronous motor,PMSM)和传统异步电机(induction motor,IM)已经成为两种主流的电机类型,那么,哪个更优秀呢?永磁同步电机是指在电机转子上镶嵌有永久磁铁的同步电机,通过控制转子上的永磁体的磁场与定子磁场交互作用,使得转子能够同步旋转。
PMSM电机具有很好的动态特性、高效率和高功率因数,适用于需要快速启动、停止和定速控制的应用,如电动汽车、数控机床等。
而传统异步电机则是利用交变磁场诱导转子内感应电流,并通过将转子内感应电流和定子磁场力的相互作用转换成转矩,从而带动转子转动,它广泛应用于工业生产、家用电器和电机等领域。
首先,从效率来看,PMSM电机表现更为出色。
由于永磁体的磁场稳定,转子损耗小、寿命长,使得PMSM的效率高达95%以上,远高于IM的80%左右,能有效降低电能消耗和发热量,从而提高了系统的功率密度和工作效率,较为适合中大功率应用。
同时,PMSM电机的功率因数也比IM高,使得能源利用更加高效。
其次,从控制精度来看,PMSM电机要更精确。
由于PMSM电机的转速控制需要通过控制永磁体的磁场,因此其转速控制精度更高,更易于实现更高的定位控制,限流保护和校准等需求,适用于机器人、高精度设备、医疗设备等领域的应用。
再者,从重量来看,PMSM电机相对较轻、小巧,可以让产品更加轻便紧凑,需要埋入器件的空间也会更少,适用于体积有限的产品。
最后,从故障率来看,PMSM电机比IM电机更为可靠。
由于PMSM 电机无需使用碳刷,因此减少了由于碳刷老化而导致的故障率,同时其结构简单、无需单独的故障检测,可以有效提高设备的可靠性和稳定性,降低产品在使用过程中出现关键性能失效的风险。
永磁同步电机与异步电机的比较(精选五篇)第一篇:永磁同步电机与异步电机的比较永磁同步电机与异步电机的比较随着电力电子技术、新型电机控制理论和稀土永磁材料的快速发展,永磁同步电动机得以迅速的推广应用。
永磁同步电机与普通异步速电机相比,具有如下优势:1、效率高这里所说的效率高不仅仅指额定功率点的效率离于普通三相异步电机,而是指其在整个调速范围内的平均效率。
永磁同步电机的励磁磁场由永磁体提供,转子不需要励磁电流,电机效率提高,与异步电机相比,任意转速点均节约电能,尤其在转速较低的时候这种优势尤其明显。
2.启动转矩永磁同步电机一般也采用异步起动方式,由于永磁同步电机正常工作时转子绕组不起作用,在设计永磁电机时,可使转子绕组完全满足高起动转矩的要求,例如使起倍1.8倍上升到2.5倍,甚至更大。
3.对电网运行的影响因异步电机的功率因数低,电机要从电网中吸收大量的无功电流,造成电网翰变电设备及发电设备中有大量无功电流,进而使电网的品质因数下降,加重了电网及枪变电设备及发电设备的负荷,同时无功电流在电网、翰变电设备及发电设备中均要消耗部分电能,造成电力电网效率变低,影晌了电能的有效利用。
同样由于异步电机的效率低,要满足翰出功率的耍求,势必要从电网多吸收电能,进一步增加了电两能量的损失,加重了电网负荷。
在永磁电机转子中无感应电流励班,电机的功率因数高,提高了电网的品质因数使电网中不再需安装补偿器。
同时,因永磁电机的高效率,也节约了电能。
4、体积小,重量轻由于使用了高性能的永磁材料提供磁场,使得永磁电机的气隙磁场较感应电机大先增强,永磁电机的体积和重最较感应电机可以大大的缩小。
例如11kW的异步电机重最为220kg,而永磁电机仅为92kg,相当于异步电机重量的45.8%。
5、故障率更低、使用普遍由于使用了高性能的稀土永磁材料提供磁场,因此故障率更低,使用更加普遍为目前应用的主流电梯驱动电机,异步电机目前在客用电梯应用市场上已经完全淘汰,部分低端大载量货用电梯在使用!基于以上对比优势,目前,永磁同步电机它比普通三相异步电机更高效,更节能!第二篇:永磁同步电机特高效永磁电机替换Y2异步电机节能分析效率和功率因数是两个不同的概念。
永磁同步电机与异步电机
永磁同步电机和异步电机都是常见的交流电机,它们在工业和家庭中广泛应用。
永磁同步电机由于具有高效率、高功率密度和精准控制等优点,逐渐成为替代异步电机的主流选择。
永磁同步电机与异步电机最大的区别在于,前者在转子上带有永磁体,能够产生强烈的磁场,而后者则需要通过交流电源产生旋转磁场。
因此,永磁同步电机可以实现高效稳定的电机控制,特别适合需要高精度转矩控制的应用,例如机器人、风力发电和电动汽车。
然而,由于永磁同步电机的磁铁质量和加工精度要求较高,成本较高,仍然存在一定的应用局限性。
与之相比,异步电机虽然低成本、易维护,并且能够适用于各种负载条件,但是其控制效率和精度较低。
总之,永磁同步电机和异步电机在应用领域和控制特点上存在差异,需要根据具体应用需求进行选择和调整。
- 1 -。
交流异步电动机和永磁同步电动机的优缺点比较1.效率永磁同步电动机的效率略高一些。
但6kw的4极交流异步电机效率也能达到90%以上,与永磁同步电机差别并不大。
2.对控制精度的影响。
交流异步电动机和永磁同步电动机都被广泛应用于伺服系统中。
在好的电机控制算法控制下,交流异步伺服系统和永磁同步伺服系统在控制精度上基本没有什么差别。
特别是对于变桨系统来说,交流异步电动机的控制精度能达到±0.1度,已经足够了。
3.可靠性变桨系统的可靠性至关重要。
交流异步电动机可靠性远远高于永磁同步电动机,特别是在变桨系统应用中。
永磁同步电动机有两大可靠性隐患:1)永磁材料在绕组大电流情况下会永久性失磁或磁性能下降。
通常情况下这一点可以通过电机驱动器的过流保护来避免大电流。
但是变桨系统的应用恰恰要求有短时间大电流的能力。
特别是在顺桨时,我们为了保证风机的绝对安全,甚至要冒着牺牲变桨电机和电机驱动器的危险,长时间维持大电流。
对于交流电机来说,只要不造成绕组烧毁,都可以继续使用。
而一旦永磁同步电机的永磁材料磁性能下降,就无法输出足够的力矩,影响风机安全。
2)转子磁钢钕铁硼磁钢的制造工艺复杂,防腐处理不好会造成锈蚀。
钕铁硼磁粉很容易锈蚀,需要有很好的处理,包括电镀工艺来达到防腐蚀。
如果处理不好,时间久了可能会出现内部腐蚀。
虽然现在磁钢的生产技术水平都提高了,但这一点始终是个可靠性隐患。
4.成本永磁同步电机的成本要高于交流异步电机。
永磁同步电机的转子磁钢为钕铁硼。
钕要从稀土中提取。
中国是稀土第一蕴藏大国,也是第一出口大国。
由于近几年中国把稀土列为战略物资,限制出口,造成稀土价格翻了几倍。
而且以后稀土价格会越来越高,会直接对永磁同步电机成本造成很大影响。
综上所述,交流异步电动机的可靠性更高,成本更低,工艺简单成熟,更适合变桨系统应用。
浅谈永磁同步电机与异步电机的区别
永磁同步电机
永磁同步电机是由永磁体励磁产生同步旋转磁场的同步电机,永磁体作为转子产生旋转磁场,三相定子绕组在旋转磁场作用下通过电枢反应,感应三相对称电流,此时转子动能转化为电能,永磁同步电机作发电机用;此外,当定子侧通入三相对称电流,由于三相定子在空间位置上相差120度,所以三相定子电流在空间中产生旋转磁场,转子旋转磁场中受到电磁力作用运动,此时电能转化为动能,永磁同步电机作电动机用。
异步电机
当电动机的三相定子绕组通入三相对称交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。
当导体在磁场内切割磁力线时,在导体内产生感应电流,“感应电机”的名称由此而来。
感应电流和磁场的联合作用向电机转子施加驱动力。
永磁电机和异步电机的区别
1、效率高
这里所说的效率高不仅仅指额定功率点的效率离于普通三相异步电机,而是指其在整个调速范围内的平均效率。
永磁同步电机的励磁磁场由永磁体提供,转子不需要励磁电流,电机效率提高,与异步电机相比,任意转速点均节约电能,尤其在转速较低的时候这种优势尤其明显。
2、启动转矩
永磁同步电机一般也采用异步起动方式,由于永磁同步电机正常工作时转子绕组不起作用,在设计永磁电机时,可使转子绕组完全满足高起动转矩的要求,例如使起倍1.8倍上升到2.5倍,甚至更大。
3、对电网运行的影响。
电动自行车用电机的永磁电机与异步电机对比分析自行车作为一种环保、便捷的交通工具,越来越多的人选择使用电动自行车来代替传统自行车。
而电动自行车的核心部件就是电机,而常见的电动自行车电机有两种类型,分别是永磁电机和异步电机。
本文将对这两种电机进行对比分析,以帮助消费者更好地了解电动自行车的电机选择。
1. 永磁电机永磁电机是利用永磁体产生磁场,通过与线圈中的电流相互作用,产生转矩以驱动电动自行车前进的电机。
永磁电机具有以下几个优点:- 高效率:永磁电机能够产生较大的输出功率,转化率高,能够最大限度地提供电动自行车的动力。
- 紧凑设计:永磁电机体积小巧,重量轻,方便安装在电动自行车的车架内,不会占据过多的空间。
- 较高的起动转矩:永磁电机在启动时能够提供较高的转矩,能够迅速启动电动自行车,提高起步时的加速性能。
- 相对较低的成本:与异步电机相比,永磁电机制造成本较低,使得电动自行车的售价相对较低,更容易被普通消费者接受。
然而,永磁电机也存在一些缺点:- 温度敏感:永磁电机对温度较为敏感,高温会导致磁力衰减,从而影响电机的性能。
- 容量限制:永磁电机的容量受到永磁体强度和尺寸的限制,使得其输出功率有一定的限制。
- 需要外部电源:永磁电机需要外部电源供电,因此需要搭配电池等能量储存设备,增加了电动自行车的重量与成本。
2. 异步电机异步电机是利用电磁感应原理,通过变化的电磁场产生转矩以驱动电动自行车前进的电机。
异步电机具有以下几个优点:- 高可靠性:异步电机结构简单,没有永磁体,不受磁力衰减影响,具有较高的可靠性和稳定性。
- 高扭矩:由于采用了绕组的设计,异步电机在低速或启动状态下能够提供较高的转矩,可以快速启动并应对不同路况的需求。
- 较低的维护成本:由于无永磁体,异步电机无需定期更换永磁体或维护,减少了维护成本。
然而,异步电机也有一些缺点:- 较低的效率:相比永磁电机,异步电机的效率较低,能量转化不够高效,会对电动自行车的续航能力产生影响。
三相交流异步电机与永磁同步电机的相同点和异同点下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、相同点1.1 结构相似:三相交流异步电机和永磁同步电机在结构上都属于交流电机,都由定子和转子组成。
一、永磁同步无齿轮曳引机与有齿轮曳引机相比有哪些优点?1 体积小、重量轻伊士顿电梯引进和技术转化的永磁同步曳引机采用高性能钕铁硼稀土永磁材料和现代永磁电机设计技术,使曳引机的功率传输密度大大提高,取消了传统有齿轮曳引机的齿轮减速机构(齿轮减速箱),实现了曳引机的无齿轮传动,使得曳引机的整个体积缩小30%左右,重量减轻30%左右。
2 噪音低、振动小由于取消了齿轮减速机,有效降低了曳引机传输系统的噪音和振动,同时消除了传统有齿轮曳引机有可能发生的曳引机机械振动频率与建筑物固有频率发生共振现象,噪音下降可达10分贝.3 少维护或免维护齿轮减速机的取消,不用在使用齿轮油和每年1—2次的更换,大大减少了曳引机的维护成本和工作,使曳引机做到少维护甚至免维护。
4 效率高、节能永磁同步曳引机采用永磁体励磁,没有励磁损耗,电机本身效率提高,另外齿轮减速箱的取消,减少了曳引机曳引传动中的机械能量损耗,使整个曳引传动系统的效率大大提高(可达40%),功率减少30%左右,节能效果显著。
5 可靠性高曳引轮与制动轮采用整体结构形式,安全可靠性提高。
制动系统采用上电释放的双臂闸瓦刹车系统,双臂制动力矩达2.2倍额定转矩,安全性更高。
6 安装过程简化由于无齿轮永磁同步曳引机本身具有上行超速保护功能,不用在另外增加上行安全钳(额外增加上行超速保护装置),简化安装过程,减少故障点。
7.节约成本1)齿轮减速机的取消,不用在使用齿轮油和每年1—2次的更换;2)机房尺寸可以降低和缩小;二、我公司永磁同步无齿轮曳引机产品概况伊士顿电梯率先在国内通过 2.5M/S高速永磁同步无齿轮的国家电梯质量检验中心检验,各项性能指标均符合国家标准要求。
目前永磁同步无齿轮曳引机产品包括N(ESW800)和W(ESW1000)两个系列。
N(ESW800)系列为内转子结构,与普通电机结构相同,即电机的转子位于电机内部,定子位于转子外部并固定在机座内腔。
内转子结构适用于大载重量、高速度应用要求。
永磁同步电机与异步电机性能比较永磁同步电机与异步电机相比,具有明显的优势,它效率高,功率因素高,能力指标好,体积小,重量轻,温升低,技能效果显著,较好地提高了电网的品质因素,充分发挥了现有电网的容量,节省了电网的投资,它较好地解决了用电设备中“大马拉小车”现象。
1. 效率及功率因素异步电机在工作时,转子绕组要从电网吸收部分电能励磁,消耗了电网电能,这部分电能最终以电流在转子绕组中发热消耗掉,该损耗约占电机总损耗的20~30%,它使电机的效率降低。
该转子励磁电流折算到定子绕组后呈感性电流,使进人定子绕组中的电流落后于电网电压一个角度,造成电机的功率因数降低。
另外,从永磁同步电机与异步电机的效率及功率因数曲线(图1)可以看出,异步电动机在负载率(=P2/P n)<50%时,其运行效率和运行功率因数大幅度下降,所以一般都要求其在经济区内运行,即负载率在75%-100%之间。
(a) η--( P2/P n)cos--( P2/P n)(b) ϕ图1 永磁同步电动机与异步电动机的效率和功率因数1. 异步起动永磁同步电动机2.异步电动机永磁同步电机在转子上嵌了永磁体后,由永磁体来建立转子磁场,在正常工作时转子与定子磁场同步运行,转子中无感应电流,不存在转子电阻损耗,只此一项可提高电机效率4%~50%。
由于在水磁电机转子中无感应电流励磁,定子绕组有可能呈纯阻性负载,使电机功率因数几乎为1.从永徽同步电机与异步电机的效率及功率因数曲线(图1)可以看出,永磁同步电机在负载率>20%时,其运行效率和运行功率因数随之变化不大,且运行效率>80%. 2. 起动转矩异步电机起动时,要求电机具有足够大的起动转矩,但又希望起动电流不要太大,以免电网产生过大的电压降落而影响接在电网上的其他电机和电气设备的正常运行。
此外,起动电流过大时,将使电机本身受到过大电做力的冲击,如果经常起动,还有使绕组过热的危险。
因此,异步电机的起动设计往往面临着两难选择。
「对比」电动车上永磁同步电机和交流异步电机的区别,划重点电车的电机种类影响着整车的续航水平,今天我们就来关心一下电动车的动力系统,带大家了解一下电动汽车上常见的几种电机及它们都有什么特点,它们是怎么将电能转化为机械能。
电动汽车目前最常见的就是永磁同步电机和交流异步电机。
交流异步电机先来说交流异步电机,交流异步电机也叫感应电机,最主要的组成部件有两个,一个是定子,一个是转子。
定子铁芯装在机座中,一般由0.35mm-0.5mm厚的硅钢片叠压而成,有良好的导磁性能,定子铁芯的内圆上有分布均匀的槽口,这个槽口就是用来放定子绕组的,绕组就是大家看到电动机中非常密集的古铜色线圈,给线圈通电即能产生磁场(电生磁)。
电动车汽车的电机通的是三相交流电,磁场的方向会随着电流方向的变化而变化,从而形成了旋转的磁场。
转子铁芯同样由0.35mm-0.5mm后的硅钢片叠压而成,外圆上均匀分布着槽孔,用来安放导电杆(绕组)。
、好了说完了交流异步电机最重要的两个组成部件,我们再来看看它是怎么转起来的。
首先电池组中的直流电通过逆变器变为交流电,供给定子上的绕组线圈,产生旋转磁场,转子上的导电杆可以看做导线,这时候虽然导线是静止的,但是磁场是在旋转运动的,所以导线不由自主的在做切割磁感线的运动,转子导电杆中产生感应电动势,而转子导线杆又是闭合通路,导电杆中便有了电流产生(磁生电)。
交流异步电机就是这样将电能转化为了机械能。
电机转子旋转的速度与磁场旋转的速度有个有个转速差,转子的转速是一直追着磁场的旋转速度的,这也是其名:交流异步电机中异步之处。
想要控制交流异步电机的旋转速度,只需要改变交流电的频率即可改变定子磁场旋转的速度,达到控制电机转速的目的。
倒车也不需要额外的倒挡齿轮,只需要改变电源相位的顺序即可实现。
虽然看上去很简单,但逆变器在其中默默付出了很多。
永磁同步电机永磁同步电机在结构上与交流异步电机非常相似,最主要的组成部件同样是定子和转子,其中定子的结构与交流异步电机上的一致,但转子由一块永磁体构成。
永磁同步电机与交流异步电动机的比较永磁同步电机是一种新型电机。
永磁同步电机具有结构简单、体积小、效率高、节能环保、功率因数高、故障率低等优点。
永磁同步电机使用永磁体代替励磁绕组进行励磁。
当永磁电机的三相定子绕组(每个绕组具有120°的电角度差)被供给频率为F的三相交流电时,将产生以同步速度运动的旋转磁场。
在稳态下,主极磁场与旋转磁场同步旋转,因此转子转速也同步。
定子的旋转磁场和永磁体建立的主极磁场保持相对静止,它们相互作用产生电磁转矩,驱动电机旋转,进行能量转换。
与交流异步电机相比,永磁电机具有以下优点:首先,高效率可以从以下几个方面来解释1.由于永磁同步电机的磁场由永磁体产生,可以避免励磁电流产生的磁场造成的励磁损耗。
2.永磁同步电机的外特性效率曲线与异步电机相比,在轻载下具有高得多的效率值,这是永磁同步电机与异步电机相比在节能方面的最大优势。
通常,当电机驱动负载时,它很少满功率运行。
这是因为:一方面,用户在选择电机时,通常是根据负载的极端工况来确定电机的功率,极端工况出现的机会很少。
同时,为了防止电机在异步工况下烧毁,用户还会给电机的功率留余量;另一方面,在设计电机时,为了保证电机的可靠性,设计者通常在用户要求的功率基础上留有一定的功率裕度,这就导致实际运行中90%以上的电机工作在额定功率的70%以下,尤其是驱动风机或水泵时。
因此,电机通常工作在轻负载区。
对于感应电机来说,轻载下效率很低,而永磁同步电机在轻载下仍然可以保持高效率。
3.由于永磁同步电机的高功率因数,电机的电流比异步电机小,相应地,电机的定子铜耗更小,效率更高。
4.系统效率高。
永磁电机的参数,尤其是功率因数,不受电机极数的影响,所以容易设计多极电机。
这样就可以把传统的需要减速箱驱动的负载电机做成永磁同步电机驱动的直驱系统,从而省去减速箱,提高传动效率。
异步电动机跟永磁同步电动机的工作原理1.引言1.1 概述本文将详细介绍异步电动机和永磁同步电动机的工作原理。
异步电动机和永磁同步电动机都属于常用的交流电动机,应用广泛于各个领域,包括工业、农业、家庭科技等。
了解它们的工作原理对于正确选用和使用这两种电动机至关重要。
1.2 目的本文旨在对异步电动机和永磁同步电动机进行深入的分析和解释,通过探讨它们的工作原理,帮助读者更好地理解和使用这两种电动机。
我们将介绍它们产生磁场的过程、转子与定子的交互作用以及它们各自的工作特点和应用领域。
此外,我们还将比较两种电动机之间的性能差异以及运行效率,并指出它们在不同领域中的适用性。
1.3 文章结构本文主要分为五个部分,按照以下结构展开:第一部分是引言部分,简要概述了整篇文章内容,并明确了文章撰写目标。
第二部分主要介绍异步电动机的工作原理。
我们将关注磁场产生的过程,并深入探讨转子与定子之间的交互作用。
最后,我们将介绍异步电动机的工作特点和应用领域。
第三部分将详细讲解永磁同步电动机的工作原理。
我们将阐述磁场形成机制以及稳态运行条件的分析,同时强调永磁同步电动机的特点和优势。
第四部分是对异步电动机和永磁同步电动机进行比较。
我们将从性能、运行效率以及应用领域等方面进行对比分析,帮助读者更好地了解两种电动机之间的差异和适用性。
最后一部分是结论与展望部分,总结全文并展望未来的发展方向。
通过本文内容的阅读,读者将能够充分了解异步电动机和永磁同步电动机的工作原理,并在实际应用中选择合适的电动机类型。
2.异步电动机工作原理2.1 磁场产生过程异步电动机的磁场产生是通过定子上的三相交流电流引起的。
当三相交流电源加在定子绕组上时,电流会在绕组中形成一个旋转磁场。
这个旋转磁场由于不断变化的电流方向而产生磁通量。
这个旋转磁通量与定子和转子之间的空气间隙产生作用,将力线传递到转子上。
2.2 转子和定子交互作用当转子放置在旋转磁场中时,通过感应效应,定子的磁场会感应出一部分磁通量进入转子。
永磁同步电机与异步电机性能比较.(优选)永磁同步电机与异步电机性能比较永磁同步电机与异步电机相比,具有明显的优势,它效率高,功率因素高,能力指标好,体积小,重量轻,温升低,技能效果显著,较好地提高了电网的品质因素,充分发挥了现有电网的容量,节省了电网的投资,它较好地解决了用电设备中“大马拉小车”现象。
1. 效率及功率因素异步电机在工作时,转子绕组要从电网吸收部分电能励磁,消耗了电网电能,这部分电能最终以电流在转子绕组中发热消耗掉,该损耗约占电机总损耗的20~30%,它使电机的效率降低。
该转子励磁电流折算到定子绕组后呈感性电流,使进人定子绕组中的电流落后于电网电压一个角度,造成电机的功率因数降低。
另外,从永磁同步电机与异步电机的效率及功率因数曲线(图1)可以看出,异步电动机在负载率(=P2/P n)<50%时,其运行效率和运行功率因数大幅度下降,所以一般都要求其在经济区内运行,即负载率在75%-100%之间。
(a) --( P2/P n)(b)cos--( P2/P n)图1 永磁同步电动机与异步电动机的效率和功率因数1. 异步起动永磁同步电动机2.异步电动机永磁同步电机在转子上嵌了永磁体后,由永磁体来建立转子磁场,在正常工作时转子与定子磁场同步运行,转子中无感应电流,不存在转子电阻损耗,只此一项可提高电机效率4%~50%。
由于在水磁电机转子中无感应电流励磁,定子绕组有可能呈纯阻性负载,使电机功率因数几乎为1.从永徽同步电机与异步电机的效率及功率因数曲线(图1)可以看出,永磁同步电机在负载率>20%时,其运行效率和运行功率因数随之变化不大,且运行效率>80%.2. 起动转矩异步电机起动时,要求电机具有足够大的起动转矩,但又希望起动电流不要太大,以免电网产生过大的电压降落而影响接在电网上的其他电机和电气设备的正常运行。
此外,起动电流过大时,将使电机本身受到过大电做力的冲击,如果经常起动,还有使绕组过热的危险。