线性回归方程练习题2
- 格式:doc
- 大小:23.00 KB
- 文档页数:1
计量经济学综合练习题(二元回归)设某商品的需求量Y(百件)、消费者平均收入X1(百元)、该商品价格X2(元)的统计数据如下:∑Y =800 ∑X1 = 80 ∑X2 = 60 n = 10 ∑X1X2 =439∑Y2 = 67450 ∑X12= 740 ∑X22 = 390 ∑YX1 = 6920 ∑YX2 = 4500经TSP计算,部分结果如下(表一、表二、表三中被解释变量均为Y, n = 10):表一VARIABLE COEFFICIENT STD.ERROR T-STAT 2-TAILSIGC 99. 13. 7. 0.000X1 2. 0. 3. 0.013X2 - 6. 1. - 4. 0.002R-squared 0. Mean of dependent var 80.00000Adjusted R- squared 0. S.D. of dependent var 19.57890S.E of regression 4. Sum of squared resid 174.7915Durbin-Watson stat 1. F – statistics 65.58230表二VARIABLE COEFFICIENT STD.ERROR T-STAT 2-TAILSIGC 38.40000 8. 4. 0.002X1 5. 0. 5. 0.001R-squared 0. Mean of dependent var 80.00000Adjusted R- squared 0. S.D. of dependent var 19.57890S.E of regression 9. Sum of squared resid 746.0000Durbin-Watson stat 1. F – statistics 28.99732表三VARIABLE COEFFICIENT STD.ERROR T-STAT 2-TAILSIGC 140.0000 8. 16. 0.000X2 -10.00000 1. -7. 0.000R-squared 0. Mean of dependent var 80.00000Adjusted R- squared 0. S.D. of dependent var 19.57890S.E of regression 7. Sum of squared resid 450.0000Durbin-Watson stat 0. F – statistics 53.33333要求:完成以下任务,并对结果进行简要的统计意义和经济意义解释(要求列出公式、代入数据及计算结果,计算结果可以从上面直接引用)。
回归直线方程1、某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.] (1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入(单位:万元) 1 2 3 4 5 销售收益(单位:万元)2 3 27由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.401221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-==--∑∑4x y x y y x2、某校在规划课程设置方案的调研中,随机抽取160名理科学生,想调查男生、女生对“坐标系与参数方程”与“不等式选讲”这两道题的选择倾向性,调研中发现选择“坐标系与参数方程”的男生人数与选择“不等式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多25人,根据调()完成列联表,并判断在犯错误的概率不超过的前提下,能否认为选题与性 别有关.(Ⅰ)按照分层抽样的方法,从选择“坐标系与参数方程”与选择“不等式选讲”的学生中共抽取8人进行问卷.若从这8人中任选3人,记选择“坐标系与参数方程”与选择“不等式选讲”的人数的差为,求的分布列及数学期望. 附: ,其中.ξξE ξ()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++3、面向全市招聘事业编工作人员,由人事、劳动、纪检等部门联合组织招聘考试,招聘考试分为两个阶段:笔试和面试.现将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.(Ⅰ)求出上表中的x,y,z,s,p的值;(Ⅱ)按规定,笔试成绩不低于90分的应聘人员可以参加面试,且面试的方式采用单循环,以参加面试人员胜出的场数决定是否录用(即参加面试的所有人员中每两人必需进行一个场次的PK比赛).已知松山区有两名应聘人员取得面试资格,在所有的比赛中,求有松山区选手参加比赛的概率.答案1、某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.] (1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入(单位:万元) 1 2 3 4 5 销售收益(单位:万元)2 3 27由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.解:(1)设各小长方形的宽度为,由频率分布直方图中各小长方形的面积总和为1,可知,故,即图中各小长方形的宽度为2. …3分(2)由(1)知各小组依次是, 其中点分别为,对应的频率分别为,故可估计平均值为.7分 (3)由(2)可知空白栏中填5.由题意可知, ,401221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-==--∑∑4x y x y y x m (0.080.10.140.120.040.02)0.51m m +++++⋅==2m =[0,2),[2,4),[4,6),[6,8),[8,10),[10,12]1,3,5,7,9,110.16,0.20,0.28,0.24,0.08,0.0410.1630.250.2870.2490.08110.045⨯+⨯+⨯+⨯+⨯+⨯=12345232573, 3.855x y ++++++++====,,根据公式,可求得 ………………10分, ………………11分 所以所求的回归直线方程为. ………………12分2、某校在规划课程设置方案的调研中,随机抽取160名理科学生,想调查男生、女生对“坐标系与参数方程”与“不等式选讲”这两道题的选择倾向性,调研中发现选择“坐标系与参数方程”的男生人数与选择“不等式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多25人,根据调()完成列联表,并判断在犯错误的概率不超过的前提下,能否认为选题与性别有关.(Ⅰ)按照分层抽样的方法,从选择“坐标系与参数方程”与选择“不等式选讲”的学生中共抽取8人进行问卷.若从这8人中任选3人,记选择“坐标系与参数方程”与选择“不等式选讲”的人数的差为,求的分布列及数学期望. 附: ,其中.【解析】(Ⅰ)51122332455769i ii x y=⨯+⨯+⨯+⨯+⨯==∑522222211234555ii x==++++=∑26953 3.8121.2,555ˆ310b-⨯⨯===-⨯3.8 1.230ˆ.2a=-⨯= 1.20.2y x =+ξξE ξ()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++,故不能认为选题与性别有关.…………………5分(Ⅱ)选择“坐标系与参数方程”与选择“不等式选讲”的人数比例为100:60=5:3, 所以抽取的8人中倾向“坐标系与参数方程”的人数为5,倾向“不等式选讲”的人 数为3.依题意,得,,,, . …………………9分 故的分布列如下:所以. …………………12分 3、面向全市招聘事业编工作人员 ,由人事、劳动、纪检等部门联合组织招聘考试,招聘考试分为两个阶段:笔试和面试.现将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.(Ⅰ)求出上表中的x ,y ,z ,s ,p 的值;(Ⅱ)按规定,笔试成绩不低于90分的应聘人员可以参加面试,且面试的方式采用单循环,以参加面试人员胜出的场数决定是否录用(即参加面试的所有人员中每两人必需进行一个场次的 PK 比赛).已知松山区有两名应聘人员取得面试资格,在所有的比赛中,求有松山区选手参加比赛的概率. 解:(1)由题意知,参加招聘考试的人员共有p == 50人, ∴x == 0.18, 22160(9001800) 3.74 5.0241055510060K -=≈<⨯⨯⨯3,1,1,3=--ξ33381(3)56C P C =-==ξ12533815(1)56C C P C =-==ξ21533830(1)56C C P C ===ξ30533810(3)56C C P C ===ξξ115301033(1)135********E =-⨯+-⨯+⨯+⨯=ξ160.32950y = 50×0.38 = 19, Z = 50﹣9﹣19﹣16 = 6, S = = 0.12 ----------------------------------------------------------6分(Ⅱ)由(Ⅱ)知,参加面试的应聘人员共6人.若参加面试的6人分别记为:S 1 , S 2 , a , b , c , d .( 其中S 1 , S 2 表示松山区的参赛选手,a , b , c , d 表示其他旗、县的选手)则所有的比赛为: (S 1 , S 2 ) (S 1 , a ) (S 1 ,b ) (S 1 ,c ) (S 1 , d ) (S 2 , a ) (S 2 , b ) (S 2 , c ) (S 2 ,d ) (a , b ) ( a , c ) ( a , d ) ( b , c ) (b , d ) (c , d ) 共十五个场次的比赛,有松山区选手出现的比赛有9场. 若有松山区选手参加比赛的事件为:A 则P (A ) =-------------------------------12分65035。
回归分析练习题(有答案)作者:日期:1.1回归分析的基本思想及其初步应用一、选择题1.某同学由x 与y 之间的一组数据求得两个变量间的线性回归方程为均值为2,数据y 的平均值为3,则()A .回归直线必过点(2,3)C 点(2,3)在回归直线上方B.回归直线一定不过点(2,3)D 点(2,3)在回归直线下方y bx a ,已知:数据x 的平2.在一次试验中,测得(x, y)的四组值分别是A (1,2),B(2,3),C(3,4),D(4,5),则丫与X 之间的回归直线方程为()A.$x1B .$ x 2C$2x1D.$ x 13.在对两个变量x ,y 进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释;③求线性回归方程;④求未知参数;②收集数据(X j 、y i ),i 1,2,…,n ;⑤根据所搜集的数据绘制散点图)如果根据可行性要求能够作岀变量A.①②⑤③④Bx, y 具有线性相关结论,则在下列操作中正确的是(C.②④③①⑤D .②⑤④③①.③②④⑤①4.下列说法中正确的是()B人的知识与其年龄具有相关关系D 根据散点图求得的回归直线方程都是有意义的A.任何两个变量都具有相关关系C.散点图中的各点是分散的没有规律5.给出下列结论:2 2(1)在回归分析中,可用指数系数R 的值判断模型的拟合效果,R 越大,模型的拟合效果越好;(2)在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;(3)在回归分析中,可用相关系数r 的值判断模型的拟合效果,较合适带状区域的宽度越窄,说明模型的拟合精度越高.A.y 平均增加1.5个单位B.A. 1B )个..2r 越小,模型的拟合效果越好;(4)在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比y 平均增加2个单位C.y 平均减少1.5个单位C.3DD.y 平均减少2个单位.4以上结论中,正确的有(6.已知直线回归方程为y7.2 1.5x ,则变量x 增加一个单位时()下面的各图中,散点图与相关系数r 不符合的是()\ 1V ||一1,— 1 < r<(>■r?■* ■■■■* ■..* .**打4X(7UV1)D.'8.一位母亲记录了儿子39岁的身高,由此建立的身高与年龄的回归直线方程为据此可以预测这个孩子10岁时的身高,则正确的叙述是(A.身高一定是145.83cm C.身高低于145.00cm BD)7.19x 73.93,.身高超过146.00cm身高在145.83cm左右9.(A)预报变量在x轴上,解释变量在y轴上(B)解释变量在x轴上,预报变量在y轴上(C)(D)在画两个变量的散点图时,下面哪个叙述是正确的()可以选择两个变量中任意一个变量在x轴上可以选择两个变量中任意一个变量在y轴上10.两个变量y与x的回归模型中,通常用R2来刻画回归的效果,则正确的叙述是(22)A.R越小,残差平方和小2B.R越大,残差平方和大2c.R于残差平方和无关D.R越小,残差平方和大211.两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的模型是()A.模型1的相关指数R2为0.98 B.模型2的相关指数R2为0.802 2C.模型3的相关指数R为0.50 D.模型4的相关指数R为0.2512.回归直线上相应位置的差异的是A.总偏差平方和B.C.回归平方和13.回归直线方程为残差平方和D.相关指数R2在回归分析中,代表了数据点和它在()工人月工资(元)依劳动生产率(千元)变化的60 90x,下列判断正确的是()A.劳动生产率为1000元时,工资为50元B.劳动生产率提高1000元时,工资提高150元C.劳动生产率提高1000元时,工资提高90元D.劳动生产率为1000元时,工资为90元14.下列结论正确的是()①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.A.①② E.①②③ C.①②④ D.①②③④15.已知回归直线的斜率的估计值为中心为(4,5),则回归直线方程为()1.23,样本点的A.$ 1.23x 4B.$ 1.23x 5C.$ 1.23x 0.08D.y 0.08x 1.2316.在比较两个模型的拟合效果时,甲、乙两个模型的相关指数果好的模型是 __________.17.在回归分析中残差的计算公式为 ____________.18.线性回归模型y bx a e(a和b为模型的未知参数)中,e称为_________________.19.若一组观测值(X1,yJ(X2,y2)…(Xn,y“)之间满足yi=bXi+a+e(i=1、2.…n)若恒为0,则氏为______________R2的值分别约为0.96和0.85,则拟合效20.调查某市出租车使用年限x 和该年支出维修费用y (万元),得到数据如下:使用年限x 维修费用y(求线性回归方程;n22.233.845.556. 567.0(2)由(1)中结论预测第10年所支出的维修费用.i 1(X i x) (y iy).n(X ii 1x)2bx21.以下是某地搜集到的新房屋的销售价格闵屋面积Ey 和房屋的面积x 的数据:11524.Q1102 1. CIB-413G29.21口丘22t 肖年愉梧(1)画岀数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线;(3)据(2)的结果估计当房屋面积为150m2时的销售价格(4)求第2个点的残差。
回归方程大题练习题回归方程大题练习题回归分析是一种统计方法,用于研究变量之间的关系。
通过建立回归方程,我们可以预测一个因变量如何随着一个或多个自变量的变化而变化。
在实际应用中,回归分析常用于预测销售额、人口增长率、股票价格等。
下面我们来看几个回归方程的大题练习题,通过解答这些问题,我们可以更好地理解回归方程的应用。
1. 一家餐馆想预测每天的顾客数量与广告投入之间的关系。
他们收集了过去一年的数据,发现每天的广告投入(以元为单位)与顾客数量(以人数为单位)之间存在一定的关系。
现在他们想知道,如果他们每天投入1000元的广告费用,预计会有多少顾客光顾餐馆?解答:我们可以建立一个简单的线性回归方程来预测顾客数量。
假设顾客数量(Y)是广告投入(X)的线性函数,即Y = a + bX。
通过回归分析,我们可以得到回归方程的系数a和b。
根据给定的问题,我们已经知道广告投入为1000元,那么代入回归方程即可得到预测的顾客数量。
2. 一家电子产品公司想预测某款产品的销量与价格之间的关系。
他们收集了过去一年的数据,发现产品的价格(以元为单位)与销量(以件为单位)之间存在一定的关系。
现在他们想知道,如果他们将产品的价格降低10%,预计会有多少增加的销量?解答:同样地,我们可以建立一个线性回归方程来预测销量。
假设销量(Y)是价格(X)的线性函数,即Y = a + bX。
通过回归分析,我们可以得到回归方程的系数a和b。
根据给定的问题,我们已经知道价格降低10%,那么代入回归方程即可得到预测的销量增加。
3. 一家保险公司想预测客户的保险费用与年龄之间的关系。
他们收集了一组数据,包括客户的年龄和保险费用。
现在他们想知道,如果一个客户的年龄增加一岁,预计保险费用会增加多少?解答:同样地,我们可以建立一个线性回归方程来预测保险费用。
假设保险费用(Y)是年龄(X)的线性函数,即Y = a + bX。
通过回归分析,我们可以得到回归方程的系数a和b。
8.2 一元线性回归模型及其应用(精练)【题组一 样本中心求参数】1.(2021·全国·高二单元测试)某公司生产某种婴幼儿纸尿裤的产量x 与相应的生产能耗y 有如下样本数据:已知这组样本数据具有线性相关关系,由表中数据,求得回归直线的斜率为0.72,则这组样本数据的回归直线方程是( )A .ˆ0.72 2.05yx =+ B .ˆ0.720.35yx =+ C .ˆ0.720.26yx =+ D .ˆ0.350.72yx =+ 【答案】C【解析】设回归直线方程为ˆˆ0.72yx a =+,由样本数据,可得 4.5x =, 3.5y =, 因为回归直线经过点(),x y ,所以ˆ3.50.72 4.5a=⨯+,解得ˆ0.26a =, 所以回归直线方程为ˆ0.720.26yx =+. 故选:C .2.(2021·江西·吉安一中高二开学考试 )已知x 与y 之间的一组数据:()()()()13253749,,,,,,,,则y 与x 的线性回归方程为y bx a =+必过( )A .()26,B .()38,C .()2.56,D .()3.58,【答案】C【解析】由题意可知:1234 2.54x +++==,357964y +++==, ∴y 与x 的线性回归方程必过点()2.5,6.故选:C.3(2021·河南·孟津县第一高级中学 )为了庆祝建党100周年,某网站从7月1日开始推出党史类书籍免费下载活动,已知活动推出时间x (单位:天)与累计下载量y (单位:万次)的统计数据如表所示:根据上表,利用最小二乘法得到回归直线方程 1.4ˆˆyx a =+,据此模型预测,活动推出11天的累计下载量约A .13.8万次B .14.6万次C .16万次D .18万次【答案】C【解析】由表格数据知4567868910126,955x y ++++++++====,由回归直线方程的性质,得ˆ1.469a⨯+=,所以ˆ0.6a =,故ˆ 1.40.6y x =+, 所以当11x =时, 1.4110.616y =⨯+=(万次), 故选:C.4.(2021·河北·藁城新冀明中学高二月考)(多选)随着养生观念的深入,国民对餐饮卫生条件和健康营养的要求逐渐提高.据了解,烧烤食品含有强致癌物,因此吃烧烤的人数日益减少,烧烤店也随之减少.某市对2014年至2018年这五年间全市烧烤店盈利店铺的个数进行了统计,具体统计数据如下表所示:根据所给数据,得出y 关于t 的回归直线方程为273y bt =+,则下列说法正确的是( ) A .该市2014年至2018年全市烧烤店盈利店铺个数的平均数219y = B .y 关于t 的回归直线方程为18273y t =-+ C .估计该市2020年烧烤店盈利店铺的个数为147D .预测从2025年起,该市烧烤店盈利店铺的个数将不超过100 【答案】ABC【解析】由已知数据得3t =,219y =,故A 正确;因为y 关于t 的回归直线过点()3,219,所以2193273b =+,所以18b =-, 所以y 关于t 的回归直线方程为18273y t =-+.故B 正确;2020年的年份代码为7,故2020年该市烧烤店盈利店铺的个数约为187273147y =-⨯+=.故C 正确; 令18273100t -+≤,由*t N ∈,得10t ≥,故从2023年起,该市烧烤店盈利店铺的个数将不超过100.故D 不正确,故选:ABC.5.(2021·广东惠州 )(多选)某种产品的价格x (单位:元/kg )与需求量y (单位:kg )之间的对应数据如根据表中的数据可得回归直线方程为14.4y bx =+,则以下结论正确的是( ) A .y 与x 正相关 B .y 与x 负相关C .样本中心为()20,8D .该产品价格为35元/kg 时,日需求量大约为3.4kg【答案】BC【解析】由表格数据,随着价格x 的增加,需求量y 随之减少,所以y 与x 负相关. 因为1015202530205x ++++==,111086585y ++++==,故样本中心为()20,8由回归直线14.4y bx =+必过样本点的中心()20,8, 所以有82014.4b =⨯+,解得0.32b =-,所以当35x =时,0.323514.4 3.2y =-⨯+=,日需求量不为最大 故选:BC6.(2021·重庆市秀山高级中学校 )(多选)已知变量x ,y 之间的线性回归方程为0.710.3y x =-+,且变量x ,y 之间的一组相关数据如表所示,则下列说法正确的是( )A .变量x ,y 之间呈负相关关系B .可以预测,当20x 时, 3.7y =-C .4m =D .该回归直线必过点()9,4 【答案】ABD【解析】对于A :由线性回归方程为0.710.3y x =-+可知:0.70-<,所以变量x ,y 之间呈负相关关系,故对于B :当20x 时,0.72010.3 3.7y =-⨯+=-,故选项B 正确;对于C :68101294x +++==,6321144m m y ++++==,因为回归直线过样本中心点,所以110.7910.34m+=-⨯+,解得:5m =,故选项C 不正确; 对于D :由C 可知5m =,所以11544y +==,所以该回归直线必过样本中心点()9,4,故选项D 正确; 故选:ABD.7.(2021·贵州·贵阳一中 )某产品的广告费用x 与销售额y 的统计数据如下表:根据上表已得回归方程为8.6.8ˆ5yx =-,表中一数据模糊不清,请推算该数据的值为___________. 【答案】12【解析】由题中数据可得3,8.63 5.820x y ==⨯-=,故空白数据为12. 故答案为:128.(2021·全国·高二课时练习)已知x ,y 的取值如下表所示,由散点图分析可知y 与x 线性相关,且回归直线方程为ˆ0.95 2.6yx =+,那么表格中的数据m 的值为______.【答案】6.7 【解析】013424x +++==, 2.2 4.3 4.811.344m m y ++++==, 把(),x y 的坐标代入回归直线方程得11.30.952 2.64m+=⨯+, 解得 6.7m =. 故答案为:6.79.(2021·全国·高二课时练习)蟋蟀鸣叫的频率P (每分钟鸣叫的次数)与气温T (单位:℃)有着很大的关系.某观测人员根据下表中的观测数据计算出P 关于T 的线性回归方程ˆ 5.2168PT =-,则下表中k 的值为______.【答案】51【解析】计算()138414239404T =⨯+++=,()110929443644k P k +=⨯+++=, 将点10940,4k +⎛⎫ ⎪⎝⎭的坐标代入P 与T 的线性回归方程ˆ 5.2168P T =-中,得109 5.2401684k +=⨯-, 解得51k =. 故答案为:51.10.(2021·福建宁德·高三期中)某电子产品的成本价格由两部分组成,一是固定成本,二是可变成本,为确定该产品的成本,进行5次试验,收集到的数据如表:由最小二乘法得到回归方程ˆ0.6754.9yx =+,则a =___________. 【答案】75 【解析】1020304050305x ++++==,62688189600.25a y a ++++==+,因为线性回归方程过样本中心点,所以600.20.673054.975a a +=⨯+⇒=,故答案为:75 【题组二 线性回归方程】1.(2021·河北·藁城新冀明中学高二月考)假定产品产量x (千件)与单位成本y (元/件)之间存在相关关系.数据如下:(1)以x 为解释变量,y 为预报变量,作出散点图;(2)求y 与x 之间的回归直线方程,对于单位成本70元/件时,预报产量为多少; (3)计算各组残差,并计算残差平方和;【答案】(1)散点图见解析;(2)ˆ 1.8277.37yx =-+,4.050千件;(3)各组残差见解析,残差平方和为3.8182. 【解析】(1)解:散点图如下:(2)解:因为2343453.56x +++++==,737271736968716y +++++==,61279ii x==∑,611481i ii x y==∑,所以6162221614816 3.571ˆ 1.82796 3.56i i i i ix yx ybx x==-⋅-⨯⨯==≈--⨯-∑∑,ˆˆ71 1.82 3.577.37ay bx =-=+⨯=, 所以回归直线方程为ˆ 1.8277.37yx =-+,令70y =,则70 1.8277.37x =-+,解得 4.050x ≈, 所以单位成本70元/件时,预报产量约为4.050千件. (3)解:各组残差分别为:()11173 1.822ˆ77.370.73ˆey y =--⨯+=-=-, ()22272 1.82377.370.0ˆˆ9ey y =--⨯+==-, ()33371 1.82477.370.9ˆˆ1ey y =--⨯+==-, ()44473 1.82377.37 1.0ˆˆ9ey y =--⨯+==-, ()55569 1.824ˆ77.37 1.09ˆey y =--⨯+=-=-, ()66668 1.825ˆ77.370.27ˆey y =--⨯+=-=-, 残差的平方和为()()()2222621220.730.090.91 1.09 1.090.27 3.2ˆ818i i i y y=--+++--==++∑. 2.(2021·甘肃张掖)某家庭2015~2019年的年收入和年支出情况统计如表:(1)已知y 与x 具有线性相关关系,求y 关于x 的线性回归方程(系数精确到0.01);(2)假设受新冠肺炎疫情影响,该家庭2021年的年收入为9.5万元,请根据(1)中的线性回归方程预测该家庭2021年的年支出金额.附:回归方程ˆˆˆybx a =+中的斜率的最小二乘估计公式为()()()1122211ˆnni iiii i nniii i x ynx y xxy y b xnxxx====---==--∑∑∑∑.【答案】(1)ˆ0.780.24yx =+;(2)7.65万元. 【解析】(1)依题意,1(99.61010.411)105x =++++=,1(7.37.588.58.7)85y =++++=,则()5212.32i i x x=-=∑,()()511.8i ii x xy y =--=∑,则有()()()125151.8ˆ0.782.32iii ii x x y y bx x ==--==≈-∑∑,则ˆˆ0.24a y bx =-≈, 所以y 关于x 的线性回归方程为ˆ0.780.24yx =+; (2)当2021年的年收入为9.5万元时,即9.5x =,ˆ0.789.50.247.65y=⨯+=, 所以预测该家庭2021年的年支出金额为7.65万元.3.(2021·云南师大附中)大气污染物PM 2.5的浓度超过一定的限度会影响人的健康.为了研究PM 2.5的浓度是否受到汽车流量的影响,研究人员选择了24个社会经济发展水平相近的城市,在每个城市选择一个交通点统计24小时内过往的汽车流量x (单位:千辆),同时在低空相同的高度测定该时间段空气中的PM 2.5的平均浓度y(单位:μg/m 3),制作了如图所示的散点图:(1)由散点图看出,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明(精确到0.01); (2)建立y 关于x 的回归方程;(3)我国规定空气中的PM 2.5浓度的安全标准为24小时平均依度75μg/m 3,某城市为使24小时的PM 2.5浓度的平均值在60~130μg/m 3,根据上述回归方程预测汽车的24小时流量应该控制在什么范围内?附:参考数据: 1.4x =,95y =,2421() 2.1i i x x =-=∑,2421()60343i i y y =-=∑,241()()294i i i x x y y =--=∑,357.参考公式:相关系数()()nii xx y y r --∑,回归方程ˆˆˆya bx =+中斜率和截距的最小二乘估计公式分别为:121()()ˆ()niii nii x x yy b x x ==--=-∑∑,ˆˆay bx =-. 【答案】(1)答案见解析;(2)140101y x =-;(3)24小时的车流量应该控制在1150~1650辆. 【解析】1)由题得2940.82357r =≈, 因为y 与x 的相关系数近似为0.82,说明y 与x 具有很强的相关性, 从而可以用线性回归模型拟合y 与x 的关系.(2)由95y =得2412421()()ˆ()iii ii x x y y bx x ==--=-∑∑2941402.1==,95140 1.4101a y bx =-=-⨯=-, 所以y 关于x 的回归方程为140101y x =-. (3)当60y =时,由14010160x -=得 1.15x =; 当130y =时,由140101130x -=得 1.65x =. 所以24小时的车流量应该控制在1150~1650辆.4.(2021·全国·高三专题练习)实施新规后,某商场2020年1月份至10月份的收入情况如表.并计算得101890i i i x y ==∑,1021385i i x ==∑,101150i i y ==∑75.99.(1)是否可用线性回归模型拟合y 与x 的关系?请用相关系数r 加以说明;(当0.751r ≤≤时,那么变量x ,y 有较强的线性相关关系)(2)建立y 关于x 的回归方程ˆˆˆybx a =+(结果保留1位小数),并预测该商场12月份的收入情况.(结果保留整数)附:()()()1122211ˆn niii ii i nniii i x x y y x y nx ybx x xnx====---==--∑∑∑∑,ˆˆay bx =-. 【答案】(1)y 与x 有较强的线性相关关系,可用线性回归模型拟合,说明答案见解析;(2)ˆ0.810.7yx =+,预测该商场12月份的收入为20万元.【解析】(1)由题中数据得1011155 5.51010i i x x ===⨯=∑,10111150151010i i y y ===⨯=∑,1010 5.515825x y =⨯⨯=,于是得1010111()()1089082565i i i i i x x y y x y y x ==--=-=-=∑∑,75.99,从而10()()650.8675.99iix x y y r --==≈∑,0.75||1r ≤≤, 所以y 与x 有较强的线性相关关系,可用线性回归模型拟合;(2)由(1)知1011065i i i x y x y =-=∑,而1021385i i x ==∑,221010 5.5302.5x =⨯=,从而得10122110106565ˆ0.8385302.582.510i ii i i x y ybx xx ==-===≈--∑∑,65ˆˆ15 5.510.782.5ay bx =-=-⨯=, 所以y 关于x 的线性回归方程为ˆ0.810.7yx =+,当12x =时,ˆ0.81210.720y =⨯+≈, 从而预测该商场12月份的收入为20万元.5(2021·河南许昌 )某新型外贸出口公司对2021年过去9个月的出口销售数据进行整理,得到了今年第x 个月份与截止该月底的销售额y (单位:万元)之间的关系,如下表:(1)若y 与x 满足线性关系,求出y 关于x 的回归方程;(ˆa,ˆb 精确到整数位) (2)预测该公司10月份的销售额附:参考数据:913087i i y ==∑;9117524i i i x y ==∑;921285i i x ==∑;参考公式:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【答案】(1)ˆ35169yx =+;(2)答案见解析. 【解析】(1)5x =,343y =,919175249534317524154352089i i i x y xy =∴-=-⨯⨯=-=∑92221952859560ii x=-⨯=-⨯=∑,2089ˆ3560b ∴=≈, 2089ˆ343516960a=-⨯≈, ˆ35169yx ∴=+ (2)当10x =时,ˆ3510169519y=⨯+=, 所以预测该公司10月份销售额为519万元.6.(2021·福建·莆田第二十五中学高三月考)2021年东京奥运会,中国举重选手8人参赛,7金1银,在全世界面前展现了真正的中国力量;举重比赛根据体重进行分级,某次举重比赛中,男子举重按运动员体重分为下列十级:每个级别的比赛分为抓举与挺举两个部分,最后综合两部分的成绩得出总成绩,所举重量最大者获胜,在该次举重比赛中,获得金牌的运动员的体重以及举重成绩如下表 (1)根据表中的数据,求出运动员举重成绩y 与运动员的体重x 的回归直线方程(保留1位小数); (2)某金牌运动员抓举成绩为170公斤,挺举成绩为204公斤,则该运动员最有可能是参加的哪个级别的举重?参考数据:()()()992112620,7076i i i i i x x x x y y ==-=--=∑∑;参考公式:()()()121ˆˆˆ,niii nii x x yy bay bx xx ==--==--∑∑. 【答案】(1) 2.7155.4y x =+;(2)83公斤级举重. 【解析】(1)依题意,5459647076839199106789x ++++++++==,2913043373533633894064214303669y ++++++++==,()()()1217076ˆ 2.702620nii i nii xx y y bxx ==--===-∑∑, 则366 2.778155.4a y bx =-=-⨯=, 故回归方程为: 2.7155.4y x =+.(2)该运动员的抓举和挺举的总成绩为374公斤,根据回归方程可知:374 2.7155.4x =+, 解得81x ≈,即该运动员的体重应该在81公斤左右,即参加的应该是83公斤级举重.7.(2021·西藏·拉萨中学高二月考)珠海国际赛车场(简称ZIC)位于珠海经济特区金鼎镇.创建于1996年,是中国国内第一座符合国际汽车联盟一级方程式标准的国际级赛车场.目前该赛事已打造成集赛车竞技运动、汽车文化极致体验、主题休闲度假为一体的超级汽车文化赛事娱乐综合体.为了减少对环境的污染,某环保部门租用了特制环保车清洁现场垃圾.通过查阅近5年参会人数(万人)与所需环保车辆数量(辆),得到如下统计表:(1)根据统计表所给5组数据,求出关于,x y 的线性回归方程ˆˆy bxa =+. (2)已知租用的环保车平均每辆的使用成本费用C (元)与数量(辆)的关系为3000200035,N 2900t t 35,N t t t C t +<<∈⎧=⎨≥∈⎩,主办方根据实际参会人数投入所需环保车,租车每辆支付费用6000元,超出实际需要的车辆,主办方不支付任何费用.预计本次赛车会大约有14万人参加,根据(1)中求出的线性回归方程,预测环保部门在确保清洁任务完成的前提下,应租用多少辆环保车?获得的利润是多少? (注:利润L =主办方支付费用-使用成本费用C ).参考公式:()()()1122211ˆ,ˆˆn niii ii i nniii i x x y y x y nxybay bx x x xnx ====---===---∑∑∑∑ 【答案】(1) 2.32y x =+;(2)为确保完成任务,需要租用35辆环保车,获得的利润108500元. 【解析】(1)11981012105x ++++==2823202529255y ++++== ()()()()()()()()()22222131******** 2.310111091081010101210ˆb ⨯+-⨯-+-⨯-++⨯===-+-+-+-+- ˆˆ2ay bx =-= 关于,x y 的线性回归方程 2.32y x =+ (2)将14x =代入 2.32y x =+得34.2y =为确保完成任务,需要租用35辆环保车, 所以290035101500C =⨯=获得的利润600035101500108500L =⨯-=元8.(2021·江西·新余市第一中学高二月考)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:(1)从3月1日至3月5日中任选2天,记发芽的种子数分别为m ,n ,求事件“m ,n 中至少有一个数小于25”的概率;(2)请根据3月2日至3月4日的数据,求出y 关于x 的线性回归方程y bx a =+.(参考公式:回归直线方程为y bx a =+,其中()1221ni ii nii x y nxyb xn x==-=-∑∑,a y bx =-)【答案】(1)710(2)532y x =-【解析】(1)从3月1日至3月5日中任选2天,m ,n 构成的基本事件(m ,n )有:(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),共有10个.记“m ,n 至少有一个数小于25”为事件A ,包括:(23,25),(23,30),(23,26),(23,16),(25,16),30,16),(26,16),共有7个基本事件 由古典概型概率公式:7()10P A = (2)11131225302612,27,33x y ++++==== 22221125133012263122751113123122b ⨯+⨯+⨯-⨯⨯==++-⨯. 于是,5271232a =-⨯=-故所求线性回归方程为532y x =- 9.(2021·全国·高二单元测试)某地区2013年至2019年居民纯收入y (单位:千元)的部分数据如表所示:2018和2019年的居民纯收入y (单位:千元)数据采用随机抽样的方式获得,用样本的均值来代替当年的居民人均纯收入,其数据如下:2018年抽取的居民纯收入(单位:千元)数据:5.2 4.8 6.5 5.6 6.0 7.1 6.1 7.3 5.9 7.5 2019年抽取的居民纯收入(单位:千元)数据:6.2 7.8 6.6 5.8 7.1 6.8 7.2 7.9 5.9 7.7 (1)求y 关于t 的线性回归方程;(2)当地政府为了提高居民收入水平,现从2018和2019年居民纯收入(单位:千元)高于7.0千元的样本中随机选择3人进行座谈,了解其工作行业及主要收入来源.设X 为选出的3人中2018年纯收入高于7.0千元的人数,求随机变量X 的分布列和数学期望.附:回归直线的斜率和截距的最小二乘法估计公式分别为:121()()()niii nii t t y y b tt ==--=-∑∑,a y bt =-.【答案】(1)ˆ0.5 3.3yt =+;(2)分布列见解析;期望为98. 【解析】(1)根据2018年的抽样数据可得2018年的人均纯收入为1(5.2 4.8 6.5 5.6 6.07.1 6.17.3 5.97.5) 6.210+++++++++= 千元,根据2019年的抽样数据可得2019年的人均纯收入为1(6.27.8 6.6 5.87.1 6.87.27.9 5.97.75) 6.910+++++++++=千元,由所给的数据得1(1234567)47t =++++++=,1(3.9 4.3 4.6 5.4 5.8 6.2 6.9) 5.37y =++++++=, ∴721()941014928i i t t =-=++++++=∑,71()()(3)( 1.4)(2)(1)(1)(0.7)00.110.520.93 1.614ii i tt y y =--=-⨯-+-⨯-+-⨯-+⨯+⨯+⨯+⨯=∑,∴71721()()14ˆ0.528()ii i ii tt y y btt ==--===-∑∑, 则ˆˆ 5.30.54 3.3ay bt =-=-⨯=, 则所求y 关于t 的线性回归方程为ˆ0.5 3.3yt =+; (2)由2018年和2019年的抽样数据可知,2018年居民纯收入高于7.0千元的有3人,2019年居民纯收入高于7.0千元的有5人,由题意可得,随机变量X 的可能取值为0,1,2,3,则35385(0)28C P X C ===,12353815(1)28C C P X C ===,21353815(2)56C C P X C ===,33381(1)56C P X C ===,∴随机变量X 的分布列为则X 的分布列为:则5151519()0123282856568E X =⨯+⨯+⨯+⨯= 【题组三 非线性回归方程】1.(2021·福建·泉州科技中学 )数独是源自18世纪瑞士的一种数学游戏,玩家需要根据99⨯盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫(33⨯)内的数字均含1﹣9,不重复.数独爱好者小明打算报名参加“丝路杯”全国数独大赛初级组的比赛.(1)赛前小明在某数独APP 上进行一段时间的训练,每天的解题平均速度y (秒)与训练天数x (天)有关,经统计得到如表的数据:现用by a x=+作为回归方程模型,请利用表中数据,求出该回归方程,并预测小明经过100天训练后,每天解题的平均速度y约为多少秒?(2)小明和小红在数独APP 上玩“对战赛”,每局两人同时开始解一道数独题,先解出题的人获胜,两人约定先胜4局者赢得比赛.若小明每局获胜的概率为34,已知在前3局中小明胜2局,小红胜1局.若不存在平局,请你估计小明最终赢得比赛的概率.参考数据(其中1i t x =)参考公式:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计公式分别为:1221ni i i nii u v nu vunuβ==-⋅=-∑∑,v u αβ=-⋅.【答案】(1)1000130y x=+,经过100天训练后,每天解题的平均速度y 约为140秒;(2)243256.【解析】(1)由题意,1(990990450320300240210)5007y =++++++=,令1t x=,设y 关于t 的线性回归方程为y bt a =+,则 717221184570.3750010000.5577i ii i i t y t yb t t==-⨯-⨯-===⋅∑∑,则50010000.37130a =-⨯=. ∴1000130y t =+,又1t x=,∴y 关于x 的回归方程为1000130y x=+, 故100x =时,140y =.∴经过100天训练后,每天解题的平均速度y 约为140秒.(2)设比赛再继续进行X 局小明最终赢得比赛,则最后一局一定是小明获胜, 由题意知,最多再进行4局就有胜负.当2X =时,小明4:1胜,∴339(2)4416P X ==⨯=;当3X =时,小明4:2胜,∴123339(3)144432P X C ⎛⎫==⨯⨯-⨯= ⎪⎝⎭;当4X =时,小明4:3胜,∴21333327(4)1444256P X C ⎛⎫==⨯⨯-⨯= ⎪⎝⎭.∴小明最终赢得比赛的概率为99272431632256256++=. 2.(2021·云南大理 )2021年6月17日9时22分,我国酒泉卫星发射中心用长征2F 遥十二运载火箭,成功将神舟十二号载人飞船送入预定轨道,顺利将聂海胜、刘伯明、汤洪波3名航天员送入太空,发射取得圆满成功,这标志着中国人首次进入自己的空间站.某公司负责生产的A 型材料是神舟十二号的重要零件,该材料应用前景十分广泛.该公司为了将A 型材料更好地投入商用,拟对A 型材料进行应用改造、根据市场调研与模拟,得到应用改造投入x (亿元)与产品的直接收益y (亿元)的数据统计如下:当017x <≤时,建立了y 与x 的两个回归模型:模型①: 4.1109ˆ.y x =+,模型②:ˆ14.4y =;当17x >时,确定y 与x 满足的线性回归方程为ˆˆ0.7yx a =-+. (1)根据下列表格中的数据,比较当017x <≤时模型①,②的相关指数2R 的大小,并选择拟合精度更高、更可靠的模型,预测对A 型材料进行应用改造的投入为17亿元时的直接收益;(2)为鼓励科技创新,当应用改造的投入不少于20亿元时,国家给予公司补贴5亿元,以回归方程为预测依据,根据(1)中选择的拟合精度更高更可靠的模型,比较投入17亿元与20亿元时公司收益(直接收益+国家补贴)的大小.附:刻画回归效果的相关指数()()22121ˆ1ni i i nii y yR y y ==-=--∑∑,且当2R 越大时,4.1≈.用最小二乘法求线性回归方程ˆˆˆybx a =+的截距:ˆˆa y bx =-. 【答案】(1)模型②拟合精度更高、更可靠,72.93亿;(2)投入17亿元比投入20亿元时收益小. 【解析】(1)对于模型①, 对应的15222740485460=387y ++++++=,故对应的()12222111271750i i i i y y y y ==-=-=∑∑,故对应的相关指数2179.1310.9551750R =-≈, 对于模型②,同理对应的相关指数2220.210.9881750R =-≈, 故模型②拟合精度更高、更可靠.故对A 型材料进行应用改造的投入为17亿元时的直接收益为ˆ14.472.93=≈y. (2)当17x >时, 后五组的2122232425235x ++++==,68.56867.5+66+65675y ++==,由最小二乘法可得()ˆ670.72383.1a=--⨯=, 故当投入20亿元时公司收益(直接收益+国家补贴)的大小为:0.72083.1+574.172.93-⨯+=>,故投入17亿元比投入20亿元时收益小.3.(2021·全国·高二单元测试)某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成,每件产品的非原料成本y (元)与生产的产品数量x (千件)有关,经统计得到如下数据:根据以上数据,绘制了如下散点图.参考数据:(其中1iu x =) (1)观察散点图判断,by a x=+与y c dx =+哪一个适宜作为非原料成本y 与生产的产品数量x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程; (3)试预测生产该产品10千件时,每件产品的非原料成本为多少元? 【答案】(1)b y a x =+;(2)100ˆ11y x=+;(3)21元.【解析】(1)由题意,根据题设中的散点图,可得这些点分布在b y a x =+的两侧,所以选择函数by a x=+作为非原料成本y 与生产的产品数量x 的回归方程类型. (2)令1u x =,则by a x=+可转化为y a bu =+,则y 与u 的关系可看成线性相关关系. 因为360458y ==,所以8182218183.480.344561ˆ1001.5380.1150.618i ii ii u yu y b uu==-⋅-⨯⨯====-⨯-∑∑,则ˆˆ451000.3411a y bu =-=-⨯=,所以ˆ11100y u =+,代入1u x =,得100ˆ11y x=+.(3)当10x =时,100ˆ112110y=+=,所以预测生产该产品10千件时,每件产品的非原料成本为21元. 4.(2021·全国·高三课时练习)某芯片公司为制订下一年的研发投入计划,需了解年研发资金投入量x (单位:亿元)对年销售额y (单位:亿元)的影响,该公司对历史数据进行对比分析,建立了两个函数模型:①2y x αβ=+,②e x t y λ+=,其中α,β,λ,t 均为常数,e 为自然对数的底数.现该公司对收集的近12年的年研发资金投入量i x 和年销售额i y (1,2,,12i =⋅⋅⋅)的数据作了初步处理,令2u x =,ln v y =,经计算得到如下数据:(1)设u 和y 的样本相关系数为1r ,x 和v 的样本相关系数为2r ,请从样本相关系数(精确到0.01)的角度判断,哪个模型拟合效果更好;(2)(i)根据(1)的选择及表中数据,建立y 关于x 的非线性经验回归方程;(ii)若下一年销售额y 需达到90亿元,预测下一年的研发资金投入量x 约为多少亿元? 参考数据为308477=⨯9.4868, 4.4998e 90≈.【答案】(1)模型e x t y λ+=的拟合效果更好;(2)(i)0.018 3.84ˆe x y+=;(ii)36.66亿元. 【解析】(1)()()121215000.8625000iiu u y y r --====∑,()()12214100.91770.211iix x v v r --====≈⨯∑,因为12r r <,所以从样本相关系数的角度判断,模型e x t y λ+=的拟合效果更好. (2)(i)先建立v 关于x 的经验回归方程. 由e x t y λ+=,得ln y x t λ=+,即v λx t =+.()()()121122114ˆ0.018770iii ii x x v v x x λ==--==≈-∑∑, ˆˆ 4.20.01820 3.84tv x λ=-=-⨯=, 所以v 关于x 的经验回归方程为0.01838ˆ.4vx +=, 所以0.0134ˆln 8.8x y=+,即0.018 3.84ˆe x y +=.(ii)若下一年销售额y 需达到90亿元,则由0.018 3.84ˆe x y+=,得0.018 3.8490e x +=, 又 4.4998e 90≈,所以4.49980.018 3.84x ≈+, 所以 4.4998 3.8436.660.018x -≈≈,所以预测下一年的研发资金投入量约为36.66亿元.5.(2021·全国·高二课时练习)噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了解声音强度D (单位:dB )与声音能量I (单位:2W cm -⋅)之间的关系,将测量得到的声音强度D 和声音能量I 的数据作了初步处理,得到如图所示的散点图:参考数据:111.0410I -⨯=,45.7D =,11.5W =-,()1022111.5610i i I I-=-=⨯∑,()10210.51i i W W=-=∑,()()101116.8810iii IID D -=--=⨯∑,()()1015.1i i i W W D D =-⋅-=∑,其中lg i i W I =,101110i i W W ==∑.(1)根据散点图判断,11D a b I =+与22lg D a b I =+哪一个适宜作为声音强度D 关于声音能量I 的回归模型?(给出判断即可,不必说明理由)(2)求声音强度D 关于声音能量I 的非线性经验回归方程.(3)假定当声音强度大于60dB 时,会产生噪声污染.城市中某点P 处共受到两个声源的影响,这两个声源的声音能量分别是a I 和b I ,且101410a bI I +=.已知点P 处的声音能量等于a I 与b I 之和.请根据(2)中的非线性经验回归方程,判断点P 处是否受到噪声污染,并说明理由.【答案】(1)22lg D a b I =+更适合;(2)ˆ10lg 160.7DI =+;(3)P 会受到噪声污染,理由见解析. 【解析】(1)22lg D a b I =+更适合. (2)设ˆˆD bW a =+,则 ∵()()()10110215.1ˆ100.51iii i i W W D D bW W==--===-∑∑, ∴ˆˆ160.7a D bW=-=, ∴D 关于W 的经验回归方程是ˆ10160.7DW =+,则D 关于I 的非线性经验回归方程是ˆ10lg 160.7DI =+. (3)设点P 处的声音能量为1I ,则1a b I I I =+. ∵101410a bI I +=, ∴()101010141410105910b a a b a b a b a b I I I I I I I I I I I ---=+=++=++≥⎛⎫⎛⎫ ⎪⎝⨯ ⎪⎝⎭⎭(当且仅当10310a I =,93510bI =⨯时等号成立) 根据(2)中非线性经验回归方程,知点P 处的声音强度D 的预报值的最小值,()10min 10lg 910160.710lg960.760D -=⨯+=+>,∴点P 会受到噪声污染.6.(2021·福建·福州三中高二期中)某地从2月20日开始的连续7天的某传染病累计确诊人数如下表:由上述表格得到如下散点图.(1)根据散点图判断lg =+y a b x 与x y c d =⋅(,c d 均为大于0的常数)哪一个更适合作为累计确诊人数y 与天数x 的回归方程类型(给出判断即可,不必说明理由),并求出y 关于x 的回归方程;(2)3月20日,该地的疾控中心接受了1000份血液样本,假设每份样本的检验结果是阳性还是阴性是相互独立的,且每份样本是阳性的概率是0.6,试剂把阳性样本检测出阳性结果的概率是0.99(试剂存在阳性样本检测不出来的情况,但不会把阴性样本检测呈阳性样本),求这1000份样本中检测出呈阳性的份数的期望.参考数据:其中11lg ,7i i i i v y v v ===∑参考公式:对于一组数据()()()1122,,,,,,n n u v u v u v ⋯,其回归直线ˆvu αβ=+的斜率和截距的最小二乘估计公式分别为1221,ni i i ni i u v nuvv u unuβαβ==-==--∑∑,v u αβ=-.【答案】(1)0.253.4710x x y c d y =⋅=⨯; (2)594【解析】(1)由散点图可知,x y c d =⋅更适合作为累计确诊人数y 与天数x 的回归方程类型. 把x y c d =⋅两边取对数,得lg lg lg y c x d =+, 令lg v y =,则lg lg v c x d =+,1(1234567)47x =++++++=,7211.54140i i v x ===∑,, 7172221750.1274 1.54lg 0.25140747i i i i i x v xvd x x==--⨯⨯===-⨯-∑∑,所以lg 1.540.2540.54c =-⨯=,则0.540.25v x =+, 所以y 关于x 的回归方程为0.253.4710x y =⨯; (2)设这1000份样本中检测出呈阳性的份数为X , 每份样本检测出阳性的概率为0.60.990.594P =⨯=, 由题意可知,(10000.594)XB ,,所以()10000.594594E X =⨯=份.故这1000份样本中检测出呈阳性的份数的期望为594.7.(2021·山西太原·高二期中(文))为了更好的指导青少年健康饮食,某机构调查了本地区不同身高的未成年男性,得到他们的体重的平均值,并对数据作了初步处理,得到下面的散点图及一些统计量的值.表中ln i i w y =(1)根据散点图判断,可采用x y a b =⋅作为这个地区未成年男性体重y 千克与身高x 厘米的回归方程.利用表中数据建立y 关于x 的回归方程;(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地区一名身高为175厘米,体重为78千克的在校男生的体重是否正常? 参考数据:0.020.71751.02,2,1.0231.99e e ===. 参考公式:对于一组数据()()()1122,,,,,,n n u v u v u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()121ˆˆˆ,nii i nii uu v v v u uu βαβ==--==--∑∑.【答案】(1)2 1.02x y =⨯;(2)体重偏胖. 【解析】(1)由x y a b =⋅,得ln ln ln y a x b =+⋅, 设ˆˆˆw cx d=+,由表格中数据,得801ˆ0.02400050c ===, ˆ 3.40.021350.7d=-⨯=, 则0.70.02ln 0.7,ln 0.02,2, 1.02a b a e b e ======, 则y 关于x 的回归方程为2 1.02x y =⨯.(2)当175x =时,1752 1.02231.9963.98y =⨯=⨯=,因为63.98 1.276.77678⨯=<,所以该名在校男生的体重偏胖.。
第10课时线性回归方程(1)
分层训练
1.长方形的面积一定时,长和宽具有( ) (A)不确定性关系 (B)相关关系 (C)函数关系 (D)无任何关系 2.三点(3,10),(7,20),(11,24)的线性回归方程是 ( )
(A) x y
175ˆ-= (B) x y 517ˆ+= (C) x y 517ˆ-= (D) x y 517ˆ+-= 3.已知线性回归方程为:81.050.0ˆ-=x y
,则x =25时,y 的估计值为________ 4.一家保险公司调查其总公司营业部的加班效果,收集了10周中每周加班时间y (小时)与签发新保单数目x
则y 关于x 估计的线性回归方程为____________________(保留四位有效数字) 5
求y 与x 的线性回归方程。
(小数点后保留两位有效数字)
思考∙运用
6.在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y 与腐蚀时间x 之间相应的一组观察值如下表:
y (万元),有如下的统计资料:
试求:(1)线性回归方程a bx y
+=ˆ的回归系数a , b ; (2)估计使用年限为10年时,维修费用是多少?
本节学习疑点:
6.4.1 线性回归方程(1)
1.C 2.D 3.11.69
4.x y
003585.01181.0ˆ+= 5.x y
96.168.183ˆ+= 6.x y
304.036.5ˆ+= 7.(1) 23.1=b , 08.0=a
(2) 线性回归方程是 08.023.1ˆ+=x y
当x=10时,38.1208.01023.1ˆ=+⨯=y
即估计使用10年时的维修费用是12.38万元。
第二、三章 回归方程复习题一、 单项选择题1、将内生变量的前期值作解释变量,这样的变量称为( D )。
A .虚拟变量 B. 控制变量C .政策变量 D. 滞后变量2、把反映某一总体特征的同一指标的数据,按一定的时间顺序和时间间隔排列起来,这样的数据称为( B )。
A .横截面数据 B. 时间序列数据C .修匀数据 D. 原始数据3、在简单线性回归模型中,认为具有一定概率分布的随机数量是( A )。
A .内生变量 B. 外生变量C .虚拟变量 D. 前定变量4、回归分析中定义的( B ) 。
A .解释变量和被解释变量都是随机变量B .解释变量为非随机变量,被解释变量为随机变量C .解释变量和被解释变量都为非随机变量D .解释变量为随机变量,被解释变量为非随机变量5、双对数模型μββ++=X Y ln ln ln 10中,参数β1的含义是( C )。
A .Y 关于X 的增长率 B. Y 关于X 的发展速度C .Y 关于X 的弹性 D. Y 关于X 的边际变化6、半对数模型i i i X Y μββ++=ln 10中,参数β1的含义是( D )。
A .Y 关于X 的弹性 B. X 的绝对量变动,引起Y 的绝对量变动C .Y 关于X 的边际变动 D. X 的相对变动,引起Y 的期望值绝对量变动7、在一元线性回归模型中,样本回归方程可表示为:( C )。
A .t t t X Y μββ++=10 B. t t t t X Y E Y μ+=)|(C .t t X Y 10ˆˆˆββ+= D. t t t X X Y E 10)|(ββ+= (其中t=1,2,…,n )8、设OLS 法得到的样本回归直线为i i i e X Y ++=10ˆˆββ,以下说法不正确的是( D )。
A .0=∑i e B. ),(Y X 在回归直线上C .Y Y =ˆ D. 0),(≠i i e X COV9、同一时间,不同单位相同指标组成的观测数据称为( B )。
第二章 简单线性回归模型练习题一、术语解释 1 解释变量 2 被解释变量 3 线性回归模型 4 最小二乘法 5 方差分析 6 参数估计 7 控制 8 预测 二、填空1 在经济计量模型中引入反映( )因素影响的随机扰动项t ξ,目的在于使模型更符合( )活动。
2 在经济计量模型中引入随机扰动项的理由可以归纳为如下几条:(1)因为人的行为的( )、社会环境与自然环境的( )决定了经济变量本身的( );(2)建立模型时其他被省略的经济因素的影响都归入了( )中;(3)在模型估计时,( )与归并误差也归入随机扰动项中;(4)由于我们认识的不足,错误的设定了( )与( )之间的数学形式,例如将非线性的函数形式设定为线性的函数形式,由此产生的误差也包含在随机扰动项中了。
3 ( )是因变量离差平方和,它度量因变量的总变动。
就因变量总变动的变异来源看,它由两部分因素所组成。
一个是自变量,另一个是除自变量以外的其他因素。
( )是拟合值的离散程度的度量。
它是由自变量的变化引起的因变量的变化,或称自变量对因变量变化的贡献。
( )是度量实际值与拟合值之间的差异,它是由自变量以外的其他因素所致,它又叫残差或剩余。
4 回归方程中的回归系数是自变量对因变量的( )。
某自变量回归系数β的意义,指的是该自变量变化一个单位引起因变量平均变化( )个单位。
5 模型线性的含义,就变量而言,指的是回归模型中变量的( );就参数而言,指的是回归模型中的参数的( );通常线性回归模型的线性含义是就( )而言的。
6 样本观察值与回归方程理论值之间的偏差,称为( ),我们用残差估计线性模型中的( )。
三、简答题1 在线性回归方程中,“线性”二字如何理解?2 用最小二乘法求线性回归方程系数的意义是什么?3 一元线性回归方程的基本假设条件是什么?4 方差分析方法把数据总的平方和分解成为两部分的意义是什么?5 试叙述t 检验法与相关系数检验法之间的联系。
欢迎阅读线性回归方程
1.【2014高考全国2第19题】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
∧
b
2.【2016年全国3】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1–7分别对应年份2008–2014.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
欢迎阅读
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:7
1
9.32 i
i
y =
=
∑,7
1
40.17
i i
i
t y =
=
∑
0.55
=,≈2.646.
3.【2015全国1】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x
8
(I关于年宣传费x
(II
(III)已知这种产品的年利润z与x,y的关系为0.2
z y x
=-,根据(II)的结果回答下列问题:
(i)当年宣传费x=49时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?。
线性归划练习
1.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )
A.y∧=1.23x+4
B. y∧=1.23x+5
C. y∧=1.23x+0.08
D. y∧=0.08x+1.23
2.某产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下数据:
(1)画出散点图.
(2)求y关于x的回归直线方程.
(3)预测广告费为9百万元时的销售额是多少?(12分)
3
下列选项中,哪一个样本所得的k值没有充分的证据显示“X与Y有关系”()A)k=6.665 B)k=3.765 C)k=2.710 D)k=2.700
4、若在散点图中所有的样本点都在一条直线上,那么解释变量和预报变量之间的相关系数是()
A)—1 B)0 C)1 D)2
5.在线性回归模型中,以下哪些量的变化表示回归的效果越好()
A)总偏差平方和越小; B)残差平方和越小;
C)回归平方和越大; D)相关指数R2越大
6、
在进行回归分析时,预报变量的变化由()决定
A)解释变量; B)残差变量; C)解释变量与残差变量; D)都不是
7、14.已知必过点。