高等数学-第3章 3.3 曲线的弯曲程度——曲率
- 格式:doc
- 大小:346.00 KB
- 文档页数:4
曲线的曲率与弯曲性质的解析几何描述曲线是解析几何中的重要概念,它在数学以及其他领域中都有广泛的应用。
曲线的曲率和弯曲性质是描述曲线形状的重要指标,它们可以帮助我们理解曲线的特征和性质。
在本文中,我们将从解析几何的角度出发,对曲线的曲率和弯曲性质进行详细的描述和解释。
一、曲线的曲率曲线的曲率是描述曲线弯曲程度的量度,它反映了曲线在某一点的弯曲程度。
要计算曲线的曲率,我们首先需要了解曲线的切线和法线。
1. 切线:曲线上的任意一点,都可以通过该点的切线来描述曲线在该点的方向。
切线的斜率等于曲线在该点的导数,即切线的斜率等于曲线的导数。
切线的方向与曲线在该点的切线方向相同。
2. 法线:曲线上的任意一点,都可以通过该点的法线来描述曲线在该点的垂直方向。
法线与切线垂直,即切线和法线的斜率的乘积等于-1。
曲线的曲率可以通过计算曲线在某一点的切线与曲线的夹角来得到。
曲线的曲率越大,说明曲线在该点的弯曲程度越大;曲率越小,则说明曲线在该点的弯曲程度越小。
二、曲线的弯曲性质曲线的弯曲性质描述了曲线的整体形状和特征,包括曲线的凸性和凹性。
1. 凸曲线:如果曲线上的任意两点的连线都位于曲线的上方或者曲线上,那么这条曲线被称为凸曲线。
凸曲线的弯曲方向向外,如圆的外弯部分。
2. 凹曲线:如果曲线上的任意两点的连线都位于曲线的下方或者曲线上,那么这条曲线被称为凹曲线。
凹曲线的弯曲方向向内,如圆的内弯部分。
曲线的弯曲性质可以通过曲线的曲率来判断。
如果曲线的曲率在某一点大于零,则该点属于凸曲线;如果曲率小于零,则该点属于凹曲线。
三、曲线的解析几何描述在解析几何中,我们可以使用数学模型来描述曲线的曲率和弯曲性质。
常见的数学模型包括参数方程和隐式方程。
1. 参数方程:曲线的参数方程是用参数表示曲线上的点的坐标。
例如,对于平面上的曲线,可以使用参数方程x=f(t)和y=g(t)来描述曲线上的点的坐标,其中t为参数。
通过对参数方程求导,我们可以计算曲线在某一点的切线和曲率。
*§3.3 曲线的弯曲程度——曲率一、曲率的概念在上一节中,我们研究了曲线的凹凸性,即曲线的弯曲方向问题。
本节研究曲线的弯曲程度问题,这是在生产实践和工程技术中,常常会遇到的一类问题。
例如,设计铁路、高速公路的弯道时,就需要根据最高限速来确定弯道的弯曲程度。
为此,本节我们介绍描述曲线弯曲程度的概念——曲率及其计算公式。
直觉上,我们知道,直线不弯曲,半径小的圆比半径大的圆弯曲得厉害些,抛物线上在顶点附近比远离顶点的部分弯曲得厉害些。
那么如何用数量来描述曲线的弯曲程度呢?如图3.6所示, 12M M 和23M M 是两段等长的曲线弧, 23M M 比12M M 弯曲得厉害些,当点2M 沿曲线弧移动到点3M 时,切线的转角2α∆比从点1M 沿曲线弧移动到点2M 时,切线的转角1α∆要大些。
如图3.7所示, 12M M 和12N N 是两段切线转角同为α∆的曲线弧, 12N N 比12M M 弯曲得厉害些,显然, 12M M 的弧长比12N N 的弧长大。
这说明,曲线的弯曲程度与曲线的切线转角成正比,与弧长成反比。
由此,我们引入曲率的概念。
如图3.8所示,设,M N 是曲线()y f x =上的两点,当点M 沿曲线移动到点N 时,切线相应的转角为α∆, 曲线弧 MN 的长为s ∆。
我们用s∆∆α来表示曲线弧 MN 的平均弯曲程1M图3.6图3.7图3.81度,并称它为曲线弧MN 的平均曲率,记为K ,即K sα∆=∆。
当0s ∆→(即N M →)时,若极限0lims d s dsαα∆→∆=∆存在,从而极限l i ms d s d s αα∆→∆=∆存在,则称0lim s d s dsαα∆→∆=∆为曲线()y f x =在M 点处的曲率,记为K ,即d K dsα=。
(3.1) 注意到,d dsα是曲线切线的倾斜角相对于弧长的变化率。
二、曲率的计算公式设函数)(x f 的二阶导数存在,下面导出曲率的计算公式.先求d α,因为α是曲线切线的倾斜角,所以αtan ='y ,从而y '=arctan α,两边微分,得())(11arctan 2y d y y d d ''+='=αdx y y '''+=211(3.2) 其次求ds ,如图 3.9,在曲线上任取一点0M ,并以此为起点度量弧长。
曲线的曲率推导曲线的曲率是曲线局部上的一种本质性质,它描述了曲线的弯曲程度。
在工程、物理、生物学等领域,曲率的概念都有着广泛的应用。
在本文中,我们将从几何和数学角度出发,详细介绍曲线的曲率的定义、性质以及推导过程。
一、曲率的定义假设我们有一条平面曲线C,并以P为曲线上的一个点,同时过该点P可以画出曲线的切线L。
记曲线C在点P处的曲率为k,则有如下公式:k = |\frac{d\boldsymbol{T}}{ds}|其中,T是曲线在点P处的切向量,s为曲线上从起点到点P的弧长,d\boldsymbol{T}/ds为切向量在弧长方向的导数。
此处符号“| |”表示向量的模长。
从上述定义中可以看出,曲率k刻画的是曲线在局部上的弯曲情况。
当k值越大时,曲线的弯曲程度越大;反之,当k值越小或为0时,曲线的弯曲程度越小或没有弯曲。
二、曲率的推导过程现在,我们来推导一下曲率的公式。
在P处切线L上选取一个点A,并以AP为半径画出一个圆弧BC,其中B和C分别是圆弧上AP两侧的点。
则有如下关系:AC = 2APsin(\theta/2)其中,\theta是圆弧BC对应的圆心角的大小,即∠BPC。
又有:\boldsymbol{T} = \frac{\boldsymbol{AP}}{AP}此处的AP是向量AP的模长。
考虑将\boldsymbol{AP}写成曲线上的表示,即\boldsymbol{AP} = s\boldsymbol{T}。
因此,我们可以得到:AC = 2s\sin(\theta/2)根据三角函数的定义,可以得到:\frac{\mathrm{d}\theta}{\mathrm{d}s} =\frac{2}{AC}\cdot\frac{\mathrm{d}AC}{\mathrm{d}s}将上述两式相乘并代入之前的定义公式中,得到:k = \frac{1}{s}\cdot\frac{\mathrm{d}\theta}{\mathrm{d}s} = \frac{\dot{\boldsymbol{T}}}{s}其中,符号“·”表示向量的点积,\dot{\boldsymbol{T}}是切向量在固定坐标系下的导数(即加速度)。
*
§3.3 曲线的弯曲程度——曲率
一、曲率的概念
在上一节中,我们研究了曲线的凹凸性,即曲线的弯曲方向问题。
本节研究曲线的弯曲程度问题,这是在生产实践和工程技术中,常常会遇到的一类问题。
例如,设计铁路、高速公路的弯道时,就需要根据最高限速来确定弯道的弯曲程度。
为此,本节我们介绍描述曲线弯曲程度的概念——曲率及其计算公式。
直觉上,我们知道,直线不弯曲,半径小的圆比半径大的圆弯曲得厉害些,抛物线上在顶点附近比远离顶点的部分弯曲得厉害些。
那么如何用数量来描述曲线的弯曲程度呢?
如图3.6所示, 12M M 和
23M M 是两段等长的曲线弧, 23M M 比
12M M 弯曲得厉害些,当点2M 沿曲线弧移动到点3M 时,切线的转角2α∆比
从点1M 沿曲线弧移动到点2M 时,切线的转角1α∆要大些。
如图3.7所示, 12M M 和
12N N 是两段切线转角同为α∆的曲线弧, 12N N 比
12M M 弯曲得厉害些,显然, 12M M 的弧长比
12N N 的弧长大。
这说明,曲线的弯曲程度与曲线的切线转角成正比,与弧长成反比。
由此,我们引入曲率的概念。
如图3.8所示,设,M N 是曲线()y f x =上的两点,当点M 沿曲线移动到点N 时,
切线相应的转角为α∆, 曲线弧 MN 的长为s ∆。
我们用s
∆∆α来表示曲线弧 MN 的平均弯曲程
1M
图
3.6
图
3.7
图3.8
1
度,并称它为曲线弧
MN 的平均曲率,记为K ,即
K s
α
∆=
∆。
当0s ∆→(即N M →)时,若极限0lim
s d s ds
αα
∆→∆=∆存在,从而极限
l i m
s d s d s αα∆→∆=∆存在,则称0lim s d s ds
αα
∆→∆=
∆为曲线()y f x =在M 点处的曲率,记为K ,即
d K ds
α
=。
(3.1) 注意到,
d ds
α
是曲线切线的倾斜角相对于弧长的变化率。
二、曲率的计算公式
设函数)(x f 的二阶导数存在,下面导出曲率的计算公式.
先求d α,因为α是曲线切线的倾斜角,所以αtan ='y ,从而y '=arctan α,两边微分,得
())(11arctan 2y d y y d d ''+=
'=αdx y y '''
+=2
11
(3.2) 其次求ds ,如图 3.9,在曲线上任取一点
0M ,并以此为起点度量弧长。
若点()y x M ,在()000,y x M 的右侧()0x x >,规定弧长为正;若点()y x M ,在()000,y x M 的左侧()0x x <,规定弧长为负;依照此规定,弧长s 是点的横坐标x 的增函数,记为()x s s =。
当点M 沿曲线移动到N ,相应地,横坐标由x 变到x x +∆时,有
=
∆2
)(s ()
()()2
2
2
y x MN
∆+∆=≈,
即 22)(1)(
x
y
x s ∆∆+≈∆∆,
图3.9
2
取极限后可得等式
2020)(lim 1)(
lim x
y
x s x x ∆∆+=∆∆→∆→∆,
即 22)(1)(dx dy
dx ds +=21y '+=,
又因为,s 是x 的增函数,故0ds
dx ≥,从而
21y dx
ds
'+=, 即 dx y ds 21'+=。
(3.3) 把(3.2)、(3.3)式代入(3.1)式,得
23/2
(1)y K y ''
=
'+ (3.4) 这就是曲线()y f x =在点(,)x y 处曲率的计算公式.
例1 求下列曲线上任意一点处的曲率: (1)b kx y +=;(2)222R y x =+。
解 (1)因为k y =',0=''y ,代入公式(3.4),得0K =。
所以,直线上任意一点的曲率都等于零,这与我们的直觉“直线不弯曲”是一致的。
(2)因为022='+y y x ,y x y -=';322y
R y y x y y -='--='',代入公式(3.4)
,得
()
3
2
2
1y K y ''
=
'+()
2
32)(132
x y R -+-
=
()
R
y
x
R 12
3
2
2
2
=
+=。
所以,圆上任意一点处的曲率都相等,即圆上任意一点处的弯曲程度相同,且曲率等于圆的半径的倒数。
三、曲率圆
如图3.10,设曲线()y f x =在点(,)M x y 处的曲率为(0)K K ≠。
在点M 处的曲线的法线上,在凹的一侧取一点D ,使1
||DM K
ρ=
=。
以D 为圆
图3.10
3
心,ρ为半径所作的圆称为曲线在点M 处的曲率圆;曲率圆的圆心D 称为曲线在点M 处的曲率中心;曲率圆的半径ρ称为曲线在点M 处的曲率半径。
根据上述规定,曲率圆与曲线在点M 处有相同的切线和曲率,且在点M 邻近处凹凸性相同。
因此,在工程上常常用曲率圆在点M 邻近处的一段圆弧来近似代替该点邻近处的小曲线弧。
例2 设工件内表面的截线为抛物线20.4y x =,现在要用砂轮磨削其内表面,问用直径多大的砂轮才比较合适?
解 为了在磨削时不使砂轮与工件接触处附近的那部分工件磨去太多,砂轮的半径应不大于抛物线上各点处曲率半径中的最小值。
因为
0.8,0.8y x y '''==,
所以,抛物线上任一点的曲率半径为
23/223/2
1(1)[1(0.8)]0.8
y x K y ρ'++===
'', 当0x =时,即在顶点处,曲率半径最小,为 1.25ρ=。
所以,选用砂轮的半径不得超过1.25单位长,即直径不得超过2.50单位长.。