奥赛典型例题分析振动和波
- 格式:pptx
- 大小:1008.39 KB
- 文档页数:40
第五讲 振动与波一、竞赛中涉及的问题 (一)简谐运动1.任何机械运动都可用数学方法分解成一系列简谐运动,简谐运动是最基本的机械振动,简谐运动的动力学特点:物体所受回复力与位移反向,大小与位移成正比,即:F=-kx 。
运动学特点;位移可用时间的正弦函数或余弦函数表示。
例1.判断下列各物体的振动是否简谐运动其中,(3)是质量均匀的地球通道中的小球,(4)为浮于水面上的木块,(5)为两端开口U 型管中的液面A 。
2.运动规律和参考圆用初等数学方法,不能得出简谐运动物体的V 、a 变化规律,采用参考圆却能有效解决此问题,任何一个简谐振动,都可看作 某一个作匀速圆周运动的参考点在某一直径上的投影的运动,这 种想象中的参考点的运动轨迹—参考圆,参考圆半径为A ,即为 简谐运动物体的振幅,如图,O 为振体m 的平衡位置,t=0时,x =x 0,V x =V 0,相应物在A 点,参考圆位置的P 0点,t 时刻,在P t 点(B 点),由图得(1)位移x=Acos(ωt +φ0),(2)速度V x )sin(0ϕωω+-=t A (3)加速度)cos(02ϕωω+-=t A a x x a x 2ω-=,其中,0ϕ是初相角,回复力x m ma F x 2ω-==(4)振幅A —振体离开平衡位置的最大距离,由初始条件t =0时,00,v v x x ==代入x 、v x 表达式中,得0000sin ,cos ϕωϕA v A x -==,解之得A=)(,)(00102020ωϕωx v tg v x -=+-位相)(0ϕω+t ,决定振体运动的状态的变量,0ϕ 是t =0时的初相角N ·B !上述方程的 原点均取在振体的静平衡位置。
例2:试求下图所示系统的振幅A 及初位相0ϕ,(a )中C 与B 中吊绳静止时断开,(b )中将(1)(2)(4)(a)xo (b)(3)(5)物B 无初速地放在物C 上。
3.简谐运动的圆频率,频率与周期(1)圆频率 即x 、v x 、a x 表达式中的ω ,由F=-kx =m k x m =∴-ωω,2(2)周期T ,T=k m πωπ2/2=。
【例1】如图所示,在质量为M的无下底的木箱顶部用一轻弹簧悬挂质量均为m(M≥m)的D、B两物体.箱子放在水平地面上,平衡后剪断D、B间的连线,此后D将做简谐运动.当D运动到最高点时,木箱对地压力为()A、Mg; B.(M-m)g; C、(M+m)g ; D、(M+2m)g【解析】当剪断D、B间的连线后,物体D与弹簧一起可当作弹簧振子,它们将作简谐运动,其平衡位置就是当弹力与D的重力相平衡时的位置.初始运动时D的速度为零,故剪断D、B连线瞬间D相对以后的平衡位置的距离就是它的振幅,弹簧在没有剪断D、B连线时的伸长量为x1=2 mg/k,在振动过程中的平衡位置时的伸长量为x2=mg/k,故振子振动过程中的振幅为 A=x2-x1= mg /kD物在运动过程中,能上升到的最大高度是离其平衡位移为A的高度,由于D振动过程中的平衡位置在弹簧自由长度以下mg/k处,刚好弹簧的自由长度处就是物D运动的最高点,说明了当D运动到最高点时,D对弹簧无作用力,故木箱对地的压力为木箱的重力Mg.点评:一般说来,弹簧振子在振动过程中的振幅的求法均是先找出其平衡位置,然后找出当振子速度为零时的位置,这两个位置间的距离就是振幅.本题侧重在弹簧振子运动的对称性.解答本题还可以通过求D物运动过程中的最大加速度,它在最高点具有向下的最大加速度,说明了这个系统有部分失重,从而确定木箱对地面的压力【例2】在光滑的水平面上停放着一辆质量为M的小车,质量为m的物体与劲度系数为k的一轻弹簧固定相连.弹簧的另一端与小车左端固定连接,将弹簧压缩x0后用细绳将m 栓住,m静止在小车上的A点,如图所示,m与M 间的动摩擦因数为μ,O 点为弹簧原长位置,将细绳烧断后,m、M开始运动.求:①当m位于O点左侧还是右侧且跟O点多远时,小车的速度最大?并简要说明速度为最大的理由.②判断m与M的最终运动状态是静止、匀速运动还是相对往复的运动?【解析】①在细线烧断时,小球受水平向左的弹力F与水平向右的摩擦力f作用,开始时F必大于f.m相对小车右移过程中,弹簧弹力减小,而小车所受摩擦力却不变,故小车做加速度减小的加速运动.当F=f时车速达到最大值,此时m必在O点左侧。
专题八 振动和波【扩展知识】1.参考圆可以证明,做匀速圆周运动的质点在其直径上的投影的运动,是以圆心为平衡位置的简谐运动。
通常称这样的圆为参考圆。
2. 简谐运动的运动方程及速度、加速度的瞬时表达式振动方程:x =A cos(ωt +φ).速度表达式: v =-ωA sin(ωt +φ).加速度表达式:a =-ω2A cos(ωt +φ).3. 简谐运动的周期和能量振动的周期:T =2πkm . 振动的能量:E =21mv 2+21kx 2=21kA 2. 4.多普勒效应 设v 为声速,v s 为振源的速度,v 0是观察者速度,f 0为声音实际频率,f 为相对于观察者的频率.(1)声源向观察者:s v v v f f -=0;(2)声源背观察者:sv v v f f +=0; (3)观察者向声源:v v v f f 00+=;(4)观察者背声源:vv v f f 00-=; (5)两者相向:s v v v v f f -+=00; (6)两者相背:sv v v v f f +-=00. 5.平面简谐波的振动方程设波沿 x 轴正方向传播,波源在原点O 处,其振动方程为y = A cos(ωt +φ).x 轴上任何一点P (平衡位置坐标为x )的振动比O 点滞后vx t =',因此P 点的振动方程为 y = A cos 〔ω(t –t ˊ) +φ〕= A cos 〔ω(t –vx ) +φ〕. 6.乐音与噪音乐音的三要素:音调、响度和音品。
音调:乐音由一些不同频率的简谐波组成,频率最低的简谐波称为基音。
音调由基音频率的高低决定,基音频率高的乐音音调高。
响度:响度是声音强弱的主观描述,跟人的感觉和声强(单位时间内通过垂直于声波传播方向上的单位面积的能量)有关。
音品:音品反映出不同声源、发出的声音具有不同的特色,音品由声音的强弱和频率决定。
【典型例题】例题1.简谐运动的判断并计算周期假设沿地球直径开凿一“隧道”,且地球视作一密度ρ=5.5×103kg/m3的均匀球体。
第六部分 振动和波第一讲 基本知识介绍《振动和波》的竞赛考纲和高考要求有很大的不同,必须做一些相对详细的补充。
一、简谐运动1、简谐运动定义:∑F = -k x①凡是所受合力和位移满足①式的质点,均可称之为谐振子,如弹簧振子、小角度单摆等。
谐振子的加速度:a= -mk x2、简谐运动的方程回避高等数学工具,我们可以将简谐运动看成匀速圆周运动在某一条直线上的投影运动(以下均看在x 方向的投影),圆周运动的半径即为简谐运动的振幅A 。
依据:∑F x = -m ω2Acos θ= -m ω2x对于一个给定的匀速圆周运动,m 、ω是恒定不变的,可以令:m ω2 = k这样,以上两式就符合了简谐运动的定义式①。
所以,x方向的位移、速度、加速度就是简谐运动的相关规律。
从图1不难得出——位移方程:x= Acos(ωt + φ) ②速度方程:v= -ωAsin(ωt +φ) ③加速度方程:a= -ω2A cos(ωt +φ) ④ 相关名词:(ωt +φ)称相位,φ称初相。
运动学参量的相互关系:a = -ω2xA =2020)v (x ω+ tg φ= -x v ω 3、简谐运动的合成a 、同方向、同频率振动合成。
两个振动x 1 = A 1cos(ωt +φ1)和x 2 = A 2cos(ωt +φ2) 合成,可令合振动x = Acos(ωt +φ) ,由于x = x 1 + x 2 ,解得A =)cos(A A 2A A 12212221φ-φ++ ,φ= arctg 22112211cos A cos A sin A sin A φ+φφ+φ显然,当φ2-φ1 = 2k π时(k = 0,±1,±2,…),合振幅A 最大,当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),合振幅最小。
b 、方向垂直、同频率振动合成。
当质点同时参与两个垂直的振动x = A 1cos(ωt + φ1)和y = A 2cos(ωt + φ2)时,这两个振动方程事实上已经构成了质点在二维空间运动的轨迹参数方程,消去参数t 后,得一般形式的轨迹方程为212A x +222A y -221A A xy cos(φ2-φ1) = sin 2(φ2-φ1) 显然,当φ2-φ1 = 2k π时(k = 0,±1,±2,…),有y = 12A A x ,轨迹为直线,合运动仍为简谐运动;当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),有212A x +222A y = 1 ,轨迹为椭圆,合运动不再是简谐运动;当φ2-φ1取其它值,轨迹将更为复杂,称“李萨如图形”,不是简谐运动。
振动和波例题1. 如下图所示为一单摆及其振动图象,由图回答:(1)单摆的振幅为________,频率为________,摆长为________;一周期内位移x(F回、a、E p)最大的时刻为________.解析:由纵坐标的最大位移可直接读取振幅为3 cm.从横坐标可直接读取完成一个全振动即一个完整的正弦曲线所占据的时间轴长度就是周期T=2 s,进而算出频率,算出摆长。
从图中看出纵坐标有最大值的时刻为0.5 s末和1.5 s末.(2)若摆球从E指向G为正方向,α为最大摆角,则图象中O,A,B,C点分别对应单摆中的_______点,一周期内加速度为正且减小,并与速度同方向的时间范围是________,势能增加且速度为正的时间范围是_____________.解析:图象中O点位移为零,O到A的过程位移为正,且增大,A处最大,历时四分之一周期,显然摆球是从平衡位置E起振并向G方向运动的,所以O对应E,A对应G. A到B的过程分析方法相同,因而O,A,B,C对应E,G,E,F点.摆动中E、F间加速度为正,且靠近平衡位置过程中加速度逐渐减小,所以是从F向E的运动过程,在图象中为C到D的过程,时间范围是1.5~2.0s间.摆球远离平衡位置势能增加,即从E向两侧摆动,而速度为正,显然是从E向G的过程,在图象中为从O到A的过程,时间范围是0~0.5s间.(3)单摆摆球多次通过同一位置时,下列物理量变化的是()A.位移B.速度C.加速度D.动量E.动能F.摆线张力解析:过同一位置,位移、回复力和加速度不变;由机械能守恒知,动能不变,速率也不变,摆线张力也不变;相邻两次过同一点,速度方向改变,从而动量方向也改变,故选BD.如果有兴趣的话,可以分析一下,当回复力由小变大时,上述哪些物理量的数值是变小的?(4)在悬点正下方O'处有一光滑水平细钉可挡住摆线,且,则单摆周期为________s. 比较钉挡绳前后瞬间摆线的张力.解析:放钉后改变了摆长,因此单摆周期应分成钉左侧的半个周期,前已求出摆长为1 m,所以;钉右侧的半个周期,,所以T=t左+t右=1.5 s.由受力分析得,张力,因为钉挡绳前后瞬间摆球速度不变,球的重力不变,挡后摆线长为挡前的1/4,所以挡后绳的张力变大.(5)若单摆摆球在最大位移处摆线断了,此后摆球做什么运动?若在摆球过平衡位置时摆线断了,摆球又做什么运动?解析:问题的关键要分析在线断的瞬间,摆球所处的运动状态和受力情况.在最大位移处线断,此时球的速度为零,只受重力作用,所以做自由落体运动.在平衡位置处线断,此时球有最大水平速度,又只受重力,所以球做平抛运动.。