为E, ∵平面PAB⊥平面PBC,
P
平面PAB∩平面PBC=PB,
∴AE⊥平面PBC
∵BC 平面PBC
A
C
∴AE⊥BC
∵PA⊥平面ABC,BC 平面ABC
∴PA⊥BC
B
∵PA∩AE=A,
∴BC⊥平面PAB
例3:如图,AB是⊙O的直径,C是圆周上不同 于A,B的任意一点,平面PAC⊥平面ABC,
(1)判断BC与平面PAC的位置关系,并证明。
(1)平面α内的任意一条直线必垂直于平面β( ×)
(2)垂直于交线l的直线必垂直于平面β( ×)
(3)过平面α内任意一点作交线的垂线,则此垂线
√ 必垂直于平面β( )
理论迁移
例1 如图,已知α⊥β,l⊥β,l ,试
判断直线l与平面α的位置关系,并说明理由.
解:直l与 线平面 平行,证明如下:
在平面 内作一条a直 垂线 直于 与的交m 线 , α a
ab
α
√ 2 、 a , b // a b
b
a
l
α
3、 l,/ / l√
l
b α
β
a
4、 l ,l / /√
l α
β
P7、 1 已知a,直 b和线 平, 面且 ab,a, 则b与的位置关系是什么?
b
a
b
α
平面与平面垂直的性质定理
Ⅰ. 观察实验 观两察个两平垂面直垂平直面中,则,一一个个平平
(2)判断平面PBC与平面PAC的位置关系。
(1)证明:∵ AB是⊙O的直径, P
C是圆周上不同于A,B的任
意一点
∴∠ACB=90°∴BC⊥AC 又∵平面PAC⊥平面ABC,