面面垂直性质定理
- 格式:doc
- 大小:60.66 KB
- 文档页数:6
空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。
推理模式:直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。
2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。
推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 就是圆O 的直径,C 就是圆周上一点,PA ⊥平面ABC.(1)求证:平面PAC ⊥平面PBC;(2)若D 也就是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 就是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 就是棱CC 1的中点 (Ⅰ)求异面直线A 1M 与C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 就是圆O的直径,C就是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F就是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 就是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明您的结论6、S 就是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB⊥平面SBC,求证AB ⊥BC 、7、在四棱锥中,底面ABCD 就是正方形,侧面VAD 就是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD 、求证:AB DE ⊥VDC B A SAB9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD,AB=AD,∠BAD=60°,E 、F 分别就是AP 、AD 的中点求证:(1)直线EF ‖平面PCD;(2)平面BEF ⊥平面PAD10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,、过A 作SB AF ⊥,垂足为F ,点G E ,分别就是棱SC SA ,的中点。
1 / 2线面、面面平行和垂直的八大定理一、线面平行。
1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。
符合表示: βββ////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
符号表示: b a b a a a ////⇒⎪⎪⎭⎪⎪⎬⎫=⊂⊄βαβαα二、面面平行。
1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
符号表示: βα//////⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫==N n m M b a a m b n 2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。
符号表示: d l d l ////⇒⎪⎭⎪⎬⎫==γβγαβα (更加实用的性质:一个平面内的任一直线平行另一平面)三、线面垂直。
1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
符号表示: α⊥⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=⊥⊥a M c b b a c a $:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
符号表示:PA a A oA a po oA a ⊥⇒⎪⎪⎭⎪⎪⎬⎫=⊥⊥⊂⊂ααα 2、性质定理:垂直同一平面的两条直线互相平行。
(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。
)四、面面垂直。
1、判定定理:经过一个平面的垂线的平面与该平面垂直。
βααβ⊥⇒⊂⊥a a , 2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。
βαβαβα⊥⇒⊥⊂=⋂⊥a b a a b ,,,温馨提示:最好仔细阅读后才下载使用,万分感谢!。
面面垂直的判定与性质定理一.面面垂直的判定定理:符号表示:1.(2013年高考陕西卷(文))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,1AB AA==1A(Ⅰ) 证明: A1BD // 平面CD1B1;(Ⅱ) 求三棱柱ABD-A1B1D1的体积.2.(2013年高考北京卷(文))如图,在四棱锥P ABCD-中,//AB CD,AB AD⊥,2CD AB=,平面PAD⊥底面ABCD,PA AD⊥,E和F分别是CD和PC的中点,求证:(1)PA⊥底面ABCD;(2)//BE平面PAD;(3)平面BEF⊥平面PCD3.(2013年高考山东卷(文))如图,四棱锥P ABCD -中,,AB AC AB PA ⊥⊥,,2AB CD AB CD =∥,,,,,E F G M N分别为,,,,PB AB BC PD PC 的中点(Ⅰ)求证:CE PAD ∥平面;(Ⅱ)求证:EFG EMN ⊥平面平面4.(2013年高考天津卷(文))如图, 三棱柱ABC -A 1B 1C 1中, 侧棱A 1A ⊥底面ABC ,且各棱长均相等. D , E , F 分别为棱AB , BC , A 1C 1的中点.(Ⅰ) 证明EF //平面A 1CD ; (Ⅱ) 证明平面A 1CD ⊥平面A 1ABB 1;ABCD 图2BACD 图1二. 面面垂直的性质定理:符号表示:5. 如图所示,正方形ABCD 与直角梯形ADEF 所在平面互相垂直,90ADE ∠=,DE AF //,22===AF DA DE .(Ⅰ)求证:AC ⊥平面BDE ; (Ⅱ)求证://AC 平面BEF ; (Ⅲ)求四面体BDEF 的体积.6.如图1,在直角梯形A B C D 中,90ADC ∠=︒,//CD AB ,4,2AB AD CD ===.将ADC ∆沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示.(Ⅰ) 求证:BC ⊥平面ACD ;(Ⅱ) 求几何体D ABC -的体积.CDFE。
线面、面面平行和垂直的八大定理
一、线面平行。
1、判定定理:平面外一条直线和平面内一条直线平行,那么这条直线和这个平面平行。
符合表示:
2、性质定理:如果一条直线和平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
符号表示:
二、面面平行。
1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
符号表示:
2、性质定理:如果两个平面平行同时和第三个平面相交,那它们的交线平行。
符号表示:(更加实用的性质:一个平面内的任一直线平行另一平面)
三、线面垂直。
1、判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
符号表示:
$:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
符号表示:
PA a A oA a po oA a ⊥⇒⎪⎪
⎭⎪⎪⎬⎫=⊥⊥⊂⊂ααα
2、性质定理:垂直同一平面的两条直线互相平行。
(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。
)
四、面面垂直。
1、判定定理:经过一个平面的垂线的平面和该平面垂直。
βααβ⊥⇒⊂⊥a a ,
2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。
βαβαβα⊥⇒⊥⊂=⋂⊥a b a a b ,,,。
面面垂直的性质定理
性质定理∶如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内等。
一、面面垂直
(一)定义
若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直。
(二)性质定理
1.如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
2.如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。
3.如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
4.如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。
(判定定理推论1的逆定理)
二、线面垂直
(一)定义
如果一条直线与一个平面内的任意一条直线都垂直,就说这条直线与此平面互相垂直。
是将“三维”问题转化为“二
维”解决是一种重要的立体几何数学思想方法。
在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的重要垂直关系,从而架起已知与未知的"桥梁"。
(二)判定定理
直线与平面垂直的判定定理(线面垂直定理)∶一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
推论1∶如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。
推论2∶如果两条直线垂直于同一个平面,那么这两条直线平行。
§2.3.4平面与平面垂直的性质
教学目标:
1.进一步巩固和掌握面面垂直的定义、判定
2.使学生理解和掌握面面垂直的性质定理
3.让学生在观察物体模型的基础上进行操作确认,获得对性质定理的认识
教学重、难点:
重点:理解和掌握面面垂直的性质定理和推导
难点:运用性质定理解决实际问题
教学过程:
师:好,在上课之前我们来回顾一下前面的面面垂直的定义和判定。
我们了解到两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。
这是面面垂直的定义,假设我们把定义中的条件和结论交换,也就是说两个平面垂直,那么它们所成的二面角是直二面角这个命题是成立的。
而判定定理是:一个平面过另一平面的垂线,则这两个平面垂直。
这是通过线面垂直得到的面面垂直,那么能否通过面面垂直得到线面垂直呢?而这一问题就是这就可要研究的:
(§2.3.4平面与平面垂直的性质)
那我们来探究这样一个问题:黑板所在的平面与地面所在的平面垂直,能否在黑板所在的平面内作一条直线与地面垂直?
现在把这个问题数学符号化:
已知:α⊥βα∩β=CD
求证:β内一直线与α垂直
在右边把这两个平面的形象图作出来:
分析:要证明一条直线与一个平面垂直,这就需要证明这条直线与平面内的两条相交直线垂直,这是前面学的直线与平面垂直的判定定理,那么就需要在这个平面内找两条相交直线都与这条直线垂直,那不妨在β内作BE⊥CD于点B,在α内过点B作AB⊥CD
证明:
在β内作BE⊥CD于点B,在α内过点B 作
AB⊥CD
BE⊥CD
ABE为直二面角α⊥βα∩β=CD
AB⊥BE
CD⊥BE BE⊥α
AB∩CD=B
这样上面的问题就得以解决证明
像这样的,两个平面垂直,其中一个平面内一条直线垂直于两个平面的交线,那么这条直线垂直与另一个平面,我们把满足这样的性质叫做面面垂直的性质定理
定理:两个平面垂直,则一个平面内垂直于交线的直线与另一平面垂直。
我们的性质定理是通过面面垂直得到线面垂直,前面所学的面面垂直判定是由线面垂直得到面面垂直,这些转化关系在以后解题中有很大的作用,所以啊在解题的时候同学们需要抓住解题的关键之处。
接下来看到书上第二个思考题
思考一:设α⊥β,点P在平面α内,过点P作β的垂线a,那么直线a与α有什么位
置关系?
分析:点P可以在α与β的交线上,也可以不在交线上,那么作两个图:
解:设α∩β=c ,过点P作b⊥c,由性质定理得b⊥β过一点有且只有一条直线与另一个平面垂直,故a与b重合,则a在平面α内
推论:两个平面垂直,那么经过平面内
一点垂直于另一平面的直线在这个平面内。
这个推论用来证明一条直线在一个平面内。
这种方法就叫做“同一法”。
例:如图,平面α⊥β,直线a满足a⊥β,a不在平面α内,试判断a与平面α有什么位置关系?
分析:从图上观察可知a//α,要证明这个结论,则需在α内找一直线和a平行,根据前面所学直线和平面垂直的性质定理有同时垂直于同一平面的两直线平行。
下面写一写证明过程:
证明:
在α内作b⊥c
b⊥β
α∩β=c α⊥β a//b a⊥βa不在平面α内
b在平面α内
a//α
课堂小结
对于面面垂直的性质定理要注意的是两个垂直的平面是前提,我们可以通过面面垂直得到线线垂直再进一步得到线面垂直。
这些转化规律在问题的应用中起到了决定性的作用,是解题的突破口。
再一个就是证明过平面内一点的直线在这个平面内用到“同一法”也就是说证明另。