量子力学自旋与全同粒子
- 格式:ppt
- 大小:3.67 MB
- 文档页数:5
第七章 自旋和全同粒子 §7 - 1 电子自旋一 电子自旋的概念在非相对论量子力学中,电子自旋的概念是在原子光谱的研究中提出来的。
实验研究表明,电子不是点电荷,它除了轨道运动外还有自旋运动。
描述电子自旋运动的两个物理量: 1 、 自旋角动量(内禀角动量)S它在空间任一方向上的投影s z 只能取两个值21±=z s ;(7. 1)2、 自旋磁矩(内禀磁矩)μs它与自旋角动量S 间的关系是:S es m e-=μ,(7. 2)B e s 2μμ±=±=m e z,(7. 3)式中(- e ):电子的电荷,m e :电子的质量,B μ:玻尔磁子。
3、电子自旋的磁旋比(电子的自旋磁矩/自旋角动量)es e s 2m e g m e s zz=-=μ,(7. 4)g s = –2是相应于电子自旋的g因数,是对于轨道运动的g因数的两倍。
强调两点:●相对论量子力学中,按照电子的相对论性波动方程 狄拉克方程,运动的粒子必有量子数为1/2的自旋,电子自旋本质上是一种相对论效应。
●自旋的存在标志着电子有了一个新的自由度。
实际上,除了静质量和电荷外,自旋和内禀磁矩已经成为标志各种粒子的重要的物理量。
特别是,自旋是半奇数还是整数(包括零),决定了粒子是遵从费米统计还是玻色统计。
二 电子自旋态的描述ψ ( r , s z ):包含连续变量r 和自旋投影这两个变量, s z 只能取 ±2/ 这两个离散值。
电子波函数(两个分量排成一个二行一列的矩阵)⎪⎭⎫⎝⎛-=)2/,()2/,(),( r r r ψψψz s , (7. 5) 讨论:● 若已知电子处于/2z s = ,波函数写为(,/2)(,) 0z s ψψ⎛⎫= ⎪⎝⎭r r ● 若已知电子处于/2z s =- ,波函数写为0(,)(,/2)z s ψψ⎛⎫= ⎪-⎝⎭r r ● 概率密度2)2/,( r ψ:电子自旋向上()2/ =z s 且位置在r 处的概率密度;2)2/,( -r ψ:电子自旋向下()2/ -=z s 且位置在r 处的概率密度。
第五章全同粒子本章主要内容概要1. 全同粒子:质量、电荷、自旋等固有性质完全相同的微观粒子称为全同粒子。
在一个量子体系中全同粒子是不可区分的,两全同粒子相互交换不会引起物理性质的改变(全同性原理)。
所有的微观粒子可以分为两类:波色子和费米子。
所有自旋为 整数倍的粒子称为波色子,而所有自旋为/2 奇数倍的粒子称为费米子。
由费米子组成的量子体系,不能有两个或两个以上的费米子处于同一个状态(泡利不相容原理),体系的波函数在交换任意两个费米子时是反对称的。
对由波色子组成的量子体系,则不受泡利不相容原理的限制,两个或两个以上的波色子可以处于同一个状态,体系的波函数在交换任意两个波色子时是对称的。
如果体系的波函数可以由归一化的单粒子波函数()i q αφ的积表示,其中i 表示不同的单粒子态,q α表示第α个粒子的量子数(包括空间与自旋),则由N 个费米子组成体系的反对称波函数可以用N 阶行列式表示为12121212()()()()()()(,,...,,...,)()()()i i i N j j j N A N k k k N q q q q q q q q q q q q q αφφφφφφΦ=交换任何两个粒子就是交换行列式中的两列,这使行列式改变符号,即波函数A Φ在交换两粒子时是反对称的。
当任两粒子处于相同状态,即行列式中两行相同,行列式为零,表示不能有两个或两个以上的费米子处于同一个状态。
对由N 个波色子组成的体系,体系的对称波函数可以表示为 1212(,,...,,...,)()()...()A N i j k N Pq q q q C P q q q αφφφΦ=∑其中P 表示N 个粒子在波函数中的某一种排列,P∑表示对所有可能排列求和,由于波色子可以处于相同的状态,,,...,i j k 可以相等,C 是归一化常数为求和的项数,,,...,i j k 完全相等时为1,全不相等时为1/2.交换力:以两粒子体系为例,若体系的波函数可以表示为空间部分和自旋部分之积,对称和反对称的空间波函数为121212(,)()()()()]a b b a x x x x x x ψψψψψ±=±这种波函数对称化的要求会使两粒子间出现一种力的作用,称为交换力。
1量子力学的基础量集合=【时间、距离、速度、动量、能量、宇称、波长、振幅、自旋、磁矩】2 最难理解的术语1)角动量2)自旋3)薛定谔方程4)狄拉克公式5)以太6)3量子力学的一些基本概念1全同粒子定义1)固有性质(如静止质量、电荷、自旋、磁矩、寿命等不因运动情况而改变的性质)完全相同的粒子,彼此无法区分。
2)它们可以是基本粒子,也可以是由基本粒子构成的复合粒子(如α粒子)。
3)以电子为例,不管其来源如何,根据实验测定,每个电子的静止质量均为9.109534(±47)×10-31kg,电荷为1.6021892(±46)×10-19C。
1)由同类粒子组成的多粒子体系中,对于任何物理量,任意两个粒子交换后体系保持不变,称为交换对称性。
设P 为置换算符,作用在双粒子体系波函数ψ(q1, q2)上,即:),(),(ˆ122112q q c q q P ψψ= 再作用一次,),(),(ˆ21221212q q c q q P ψψ= 作用两次后,体系保持不变,c2=1,则c =±1,即:),(),(ˆ122112q q q q P ψψ±= 所以,置换算符作用在双粒子波函数上,波函数可能不变或改变一个符号。
),(),(ˆ122112q q q q P ψψ=对称波函数 ),(),(ˆ122112q q q q P ψψ-=反对称波函数 该结论可以推广到N 个全粒子系统,即变换任意两个粒子波函数保持不变或改变一个符号,则称波函数是对称或反对称的。
不是对称或反对称性的波函数不能作为全同粒子的波函数。
2)实验表明:全同粒子体系状态的交换2)对称性,取决于粒子的自旋。
凡是自旋等于ħ整数倍(s=0, 1, 2, …)的全同粒子,波函数对两个粒子交换总是对称的,并服从玻色-爱因斯坦统计法则,称为玻色子(Bosons )。
如光子、π介子、α粒子。
凡是自旋等于ħ /2的半整数倍(s=1/2, 3/2, 5/2, …)的全同粒子,波函数对两个粒子交换总是反对称的,并服从费米-狄拉克统计,称为费米子(Fermions )。
什么是全同性原理
全同性原理是量子力学中的一个基本原理,也被称为泡利不可区分原理。
根据全同性原理,具有相同量子状态(包括相同自旋、动量、位置等)的粒子是无法区分的,它们在物理性质上完全相同。
换句话说,如果两个粒子的量子态完全相同,那么无论从实验上还是理论上都无法分辨它们是哪个粒子。
例如,在考虑两个具有相同自旋的电子的情况下,无法确定某一个电子是A,另一个是B,因为它们在物理性质上完全相同。
全同性原理的重要性体现在一些基本的量子效应中,如波色-爱因斯坦凝聚现象和费米子的泡利不相容原理等。
其中,波色子具有全同性,可以聚集在相同的量子态上形成波色-爱因斯坦凝聚;而费米子则根据泡利不相容原理,不同自旋的费米子无法占据完全相同的量子态。
全同性原理在量子力学的研究和应用中起到重要的指导作用。
它导致了诸如玻色-爱因斯坦凝聚、准粒子等重要现象,也为量子计算、量子通信等领域的发展奠定了基础。
什么是全同性原理全同性原理,是指在量子力学中,具有相同自旋的全同粒子不可区分的基本原理。
这个原理的提出,对于我们理解微观世界中粒子的行为和性质具有重要的意义。
在本文中,我们将深入探讨全同性原理的概念、原理和其在物理学中的应用。
首先,全同性原理是指具有相同自旋的全同粒子,例如电子、质子、中子等,它们之间是不可区分的。
这意味着无法通过任何实验手段来区分它们的身份,即使在理论上也是如此。
这一原理是由泡利提出的,并且被广泛应用于量子力学的研究中。
其次,全同性原理的核心概念是交换对称性。
对于两个全同粒子,当它们发生交换时,系统的波函数必顨保持不变。
这意味着如果我们将两个全同粒子的位置互换,系统的状态不会发生改变。
这是由于全同性粒子的波函数必须是对称的,这就是所谓的波函数对称性原理。
在物理学中,全同性原理对于描述多粒子系统的行为具有重要的意义。
例如,在原子物理中,由于电子是全同性粒子,因此在描述原子的波函数时必须考虑全同性原理。
这导致了原子的电子排布必须遵循泡利不相容原理,从而形成了原子的电子壳层结构。
此外,在凝聚态物理中,由于晶格中的电子也是全同性粒子,因此在描述电子在晶格中的行为时,必须考虑全同性原理对波函数的影响。
除此之外,全同性原理还在量子统计中扮演着重要的角色。
根据全同性原理,费米子必须遵循泡利不相容原理,而玻色子则不受此限制。
这导致了费米子和玻色子在统计行为上的差异,例如费米子遵循费米-狄拉克统计,而玻色子遵循玻色-爱因斯坦统计。
总之,全同性原理是量子力学中一个重要的基本原理,它对于我们理解微观世界中粒子的行为和性质具有重要的意义。
通过对全同性原理的深入研究,我们可以更好地理解原子、分子和凝聚态物质的性质,从而推动物理学领域的发展。
同时,全同性原理也为我们提供了一种全新的视角来理解微观世界中粒子的统计行为,为量子统计的研究提供了重要的理论基础。
因此,全同性原理的研究具有重要的理论和实际意义,值得我们进一步深入探讨和研究。
自旋全同粒子自旋是描述粒子的一种性质,它是量子力学中旋转不变性的内禀表示。
在自旋理论中,粒子根据自旋量子数的不同可以分为整数自旋粒子(如光子、重整数自旋粒子(如电子)、半整数自旋粒子(如中子)等。
自旋全同粒子是指具有相同自旋量子数的粒子,它们在物理理论和实验研究中具有很重要的地位。
根据量子力学的统计原理,自旋全同粒子的波函数必须满足对称或反对称的交换关系。
对于玻色子(具有整数自旋)的自旋全同粒子,它们的波函数必须是对称的;而对于费米子(具有半整数自旋)的自旋全同粒子,它们的波函数必须是反对称的。
自旋全同粒子的理论研究在原子、分子、凝聚态物理以及量子信息等领域有很广泛的应用。
以下是一些相关的参考内容:1. 书籍:- 《Quantum Mechanics: Concepts and Applications》(Nouredine Zettili)- 《Quantum Mechanics: Concepts and Applications》(Nouredine Zettili)- 《Quantum Mechanics and Path Integrals》(Richard P. Feynman, Albert R. Hibbs)- 《Group Theory in Physics: An Introduction》(J. F. Cornwell)- 《Modern Quantum Mechanics》(J. J. Sakurai, Jim Napolitano)这些书籍涵盖了自旋理论及其应用的基本概念、数学形式和物理解释等方面的内容。
2. 研究论文:- "Non-Abelian anyons and topological quantum computation"(A. Y. Kitaev)- "Spin and Statistics of Quantum Particles in Two Dimensions"(F. Wilczek)- "Topological Quantum Computation and Anyonic Interferometry"(Chetan Nayak et al)- "Quantum Coherence and Pauli Spin Matrices"(S. A. Gurvitz)这些研究论文介绍了自旋全同粒子在拓扑量子计算、任意子干涉等领域的理论研究和可能的应用。
全同的概念全同是一个数理概念,主要用于描述具有完全相同性质和特征的对象或系统。
在不同的领域中,全同的概念有所不同,下面我将从物理学、化学和数学三个方面来详细介绍全同的概念。
在物理学中,全同的概念主要应用于描述物质的微观粒子,如原子、分子和粒子等。
根据量子力学理论,全同粒子是指具有相同质量、电荷和自旋等性质的粒子。
此外,全同粒子还需要满足波函数对称或反对称的性质。
对于玻色子(如光子、声子等)来说,它们具有对称的波函数,因此可以在同一时刻处于相同量子状态;而费米子(如电子、质子等)具有反对称的波函数,因此不能在同一时刻处于相同量子状态。
这一特性导致了玻色子可以同时处于同一量子态,形成玻色凝聚和激光等现象;而费米子则遵循泡利不相容原理,不同电子要占据不同的量子态。
全同粒子的特性在量子信息和量子计算中有重要的应用。
在化学中,全同的概念用于描述等电子体系,如电子对、自旋三重态等。
根据量子力学的电子交换对称性原理,对于完全满足洪克尔规则的电子体系,如氦原子,在电子交换后的波函数中,总的电子交换性质不会改变。
这意味着,交换两个全同的电子粒子,不会改变整个体系的能量和波函数的形式。
如果交换两个不同的电子粒子,整个体系的能量和波函数就会发生改变。
这一性质解释了物质中化学键的形成和反应的进行。
同时,全同电子对的性质也对化学键的强度和性质有重要影响。
在数学中,全同的概念主要应用于集合论和代数结构。
在集合论中,全同指的是具有相同成员的集合。
即使成员的排列顺序不同,只要集合的成员相同,就可以看作是全同的。
例如,{1, 2, 3}和{3, 2, 1}是全同的集合。
在代数结构中,全同的概念是对称性的重要性质之一。
例如,全同变换是指保持代数结构的不变性的变换。
在群论中,全同变换是将群的元素映射回自身的变换,满足封闭性、结合律和单位元等性质。
全同变换是群的重要概念,对于研究群的结构和性质有很大的意义。
综上所述,全同是一个数理概念,它在物理学、化学和数学等领域中有着重要的应用。
量子力学知识总结认真、努力、坚持、反思、总结…物理111 杨涛量子力学知识点小结一、绪论1.光的粒子性是由黑体辐射、光电效应和康普顿效应(散射)三个实验最终确定的。
2.德布罗意假设是任何物质都具有波粒二象性,其德布罗意关系为E h ν=和h p n κλ==3.波尔的三个基本假设是定态条件假设、n mE E h ν-=频率条件假设、化条件)(索末菲等推广的量子21或量子化条件假设⎰⎰+==h n pdq nh pdq )(4.自由粒子的波函数()ip r Et Aeψ⋅-=5.戴维孙革末的电子在晶体上衍射实验证明了电子具有波动性。
二、波函数及薛定谔方程(一)波函数的统计解释(物理意义)A.波函数(,)r t ψ的统计解释2(,)r t d t r ψτ表示时刻在点位置处单位体积内找2sin d r drd d τθϕθ=到粒子的几率(注:)。
B. 波函数(,,,)x y z t ψ的统计解释2(,,,),,x y z t dxdydz t x y z ψ表示时刻在点()位置处单位体积没找到粒子的几率。
例:已知体系处于波函数(,,)x y z ψ所描写的状态,则在区间[,]x x dx +内找到粒子的概率是2(,,)x y z dydz dx ψ+∞+∞-∞-∞⎡⎤⎢⎥⎣⎦⎰⎰. 已知体系处于波函数(,,)r ψθϕ所描写的状态,则在球壳r r dr →+内找到粒子的概率是22200(,,)sin r d d r dr ππψθϕθϕθ⎡⎤⎢⎥⎣⎦⎰⎰,在立体角d Ω内找到粒子的概率是220(,,)r r dr d ψθϕ∞⎡⎤Ω⎢⎥⎣⎦⎰.(注:sin d d d θϕθΩ=) (二)态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψψψ=+(12c c 、为复数)也是这个体系可能的状态。
含义:当体系处于1ψ和2ψ的线性叠加态1122c c ψψψ=+(12c c 、为复数) 时,体系既处于1ψ态又处于态2ψ,对应的概率为21c 和22c .(三)概率密度(分布)函数2()()x x x ψωψ=若波函数为,则其概率密度函数为()(四)薛定谔方程:22()2i U r t m∂ψ=-∇ψ+ψ∂ 22222222222222222()21cos 1 ()sin sin x y zr r r r r θθθθθϕ∂∂∂∇=+∂∂∂⎛⎫∂∂∂∂∂∇=+++ ⎪∂∂∂∂∂⎝⎭拉普拉斯算符直角坐标球坐标问题:1.描写粒子(如电子)运动状态的波函数对粒子(如电子)的描述是统计性的.2. 薛定谔方程是量子力学的一个基本假设,不是通过严格的数学推导而来的(五)连续性方程:()**0( )2J tiJ mω∂+∇⋅=∂≡ψ∇ψ-ψ∇ψ注:问题:波函数的标准条件单值、连续、有界。
填空 第一章 绪论6、玻尔的量子化条件为 n L =9德布罗意关系为 k p E==,ω 。
1、 用来解释光电效应的爱因斯坦公式为 221mv A h +=ν 。
2、 戴微孙-革末 实验验证了德布罗意波的存在,德布罗意关系为 k p E==,ω 。
第二章 波函数和薛定谔方程1、波函数的标准条件为 单值,连续,有限 。
4、2),,,(t z y x ψ的物理意义: 发现粒子的几率密度与之成正比 。
5、dr r r 22),,(⎰ϕθψ表示 在r —r+dr 单位立体角的球壳内发现粒子的几率 。
第三章 量子力学中的力学量2如两力学量算符有共同本征函数完全系,则0 。
3、设体系的状态波函数为,如在该状态下测量力学量有确定的值,则力学量算符与态矢量的关系为__ψλψ=Fˆ_______。
5、在量子力学中,微观体系的状态被一个 波函数 完全描述;力学量用 厄密算符 表示。
10坐标和动量的测不准关系是_2≥∆∆x p x ___________________________。
自由粒子体系,_动量_________守恒;中心力场中运动的粒子___角动量________守恒3、 设为归一化的动量表象下的波函数,则的物理意义为___在p —p+dp 范围内发现粒子的几率____________________________________________。
3、厄密算符的本征函数具有 正交,完备性 。
10、=]ˆ,[x p x i ; =]ˆ,ˆ[zy L L x L i ;第四章 态和力学量的表象量子力学中的态是希尔伯特空间的__矢量__________;算符是希尔伯特空间的__算符__________。
力学量算符在自身表象中的矩阵是 对角的第五章 微扰理论第七章 自旋与全同粒子7.为泡利算符,则=2ˆσ 3 ,=]ˆ,ˆ[y xσσz i σˆ28、费米子所组成的全同粒子体系的波函数具有_交换反对称性__ _______, 玻色子所组成的全同粒子体系的波函数具有____交换对称性____ 。