7第七章自旋与全同粒子
- 格式:ppt
- 大小:1.06 MB
- 文档页数:54
)(Et r p i p Ae-⋅=ρϖηϖψ《量子力学》复习 提纲一、基本假设 1、(1)微观粒子状态的描述 (2)波函数具有什么样的特性 (3)波函数的统计解释2、态叠加原理(说明了经典和量子的区别)3、波函数随时间变化所满足的方程 薛定谔方程4、量子力学中力学量与算符之间的关系5、自旋的基本假设 二、三个实验1、康普顿散射(证明了光子具有粒子性) 第一章2、戴维逊-革末实验(证明了电子具有波动性) 第三章3、史特恩-盖拉赫实验(证明了电子自旋) 第七章 三、证明1、粒子处于定态时几率、几率流密度为什么不随时间变化;2、厄密算符的本征值为实数;3、力学量算符的本征函数在非简并情况下正交;4、力学量算符的本征函数组成完全系;5、量子力学测不准关系的证明;6、常见力学量算符之间对易的证明;7、泡利算符的形成。
四、表象算符在其自身的表象中的矩阵是对角矩阵。
五、计算1、力学量、平均值、几率;2、会解简单的薛定谔方程。
第一章 绪论1、德布洛意假设: 德布洛意关系:戴维孙-革末电子衍射实验的结果: 2、德布洛意平面波:3、光的波动性和粒子性的实验证据:4、光电效应:5、康普顿散射: 附:(1)康普顿散射证明了光具有粒子性(2)戴维逊-革末实验证明了电子具有波动性∑=nnn c ψψ1d 2=⎰τψ(全)()ψψψψμ∇-∇2=**ηϖi j ⎩⎨⎧≥≤∞<<=ax x a x x V 或0,0,0)(0=⋅∇+∂∂j tϖρ⎥⎦⎤⎢⎣⎡+∇-=),(222t r V H ϖημ)(,)(),(r er t r n tE i n n n ϖϖϖηψψψ-=n n n E H ψψ=(3)史特恩-盖拉赫实验证明了电子自旋第二章 波函数和薛定谔方程1.量子力学中用波函数描写微观体系的状态。
2.波函数统计解释:若粒子的状态用()t r ,ρψ描写,τψτψψd d 2*=表示在t 时刻,空间r ρ处体积元τd 内找到粒子的几率(设ψ是归一化的)。
第七章 自旋和全同粒子 §7 - 1 电子自旋一 电子自旋的概念在非相对论量子力学中,电子自旋的概念是在原子光谱的研究中提出来的。
实验研究表明,电子不是点电荷,它除了轨道运动外还有自旋运动。
描述电子自旋运动的两个物理量: 1 、 自旋角动量(内禀角动量)S它在空间任一方向上的投影s z 只能取两个值21±=z s ;(7. 1)2、 自旋磁矩(内禀磁矩)μs它与自旋角动量S 间的关系是:S es m e-=μ,(7. 2)B e s 2μμ±=±=m e z,(7. 3)式中(- e ):电子的电荷,m e :电子的质量,B μ:玻尔磁子。
3、电子自旋的磁旋比(电子的自旋磁矩/自旋角动量)es e s 2m e g m e s zz=-=μ,(7. 4)g s = –2是相应于电子自旋的g因数,是对于轨道运动的g因数的两倍。
强调两点:●相对论量子力学中,按照电子的相对论性波动方程 狄拉克方程,运动的粒子必有量子数为1/2的自旋,电子自旋本质上是一种相对论效应。
●自旋的存在标志着电子有了一个新的自由度。
实际上,除了静质量和电荷外,自旋和内禀磁矩已经成为标志各种粒子的重要的物理量。
特别是,自旋是半奇数还是整数(包括零),决定了粒子是遵从费米统计还是玻色统计。
二 电子自旋态的描述ψ ( r , s z ):包含连续变量r 和自旋投影这两个变量, s z 只能取 ±2/ 这两个离散值。
电子波函数(两个分量排成一个二行一列的矩阵)⎪⎭⎫⎝⎛-=)2/,()2/,(),( r r r ψψψz s , (7. 5) 讨论:● 若已知电子处于/2z s = ,波函数写为(,/2)(,) 0z s ψψ⎛⎫= ⎪⎝⎭r r ● 若已知电子处于/2z s =- ,波函数写为0(,)(,/2)z s ψψ⎛⎫= ⎪-⎝⎭r r ● 概率密度2)2/,( r ψ:电子自旋向上()2/ =z s 且位置在r 处的概率密度;2)2/,( -r ψ:电子自旋向下()2/ -=z s 且位置在r 处的概率密度。
第七章 自旋与全同粒子§1.1 学习指导本章的目的是将量子力学基本理论向两个方面扩展,一是将电子自旋纳入量子力学理论体系,并讨论与其相关的问题;二是由单粒子量子力学扩展到多粒子体系,建立起完整的非相对论量子力学的理论体系。
根据光谱的精细结构和Stern —Gerlach 等实验,人们发现电子还具有的一种无经典对应的新的运动自由度。
通过对实验事实的分析,人们提出了电子自旋的假设,引入了自旋角动量,并进一步扩展成包括空间运动和自旋运动在内的完整的状态描述和力学量的算符表示,并将薛定谔方程扩展到包含自旋的情况,建立非相对论的含自旋的运动方程。
真实的物理系统是多个微观粒子共存的,与经典力学不同,量子化的全同粒子具有不可分辨性,全同粒子体系的微观状态只能是对称的(对应于玻色子)或者反对称的(对应于费米子)。
因此,还需要将单粒子非相对论量子力学扩展到全同粒子系统。
本章的主要知识点有 1.电子自旋 1)泡利算符泡利算符是描写电子自旋运动力学量的矢量厄密算符,定义为ˆˆˆˆx y z i i k σσσσ=++rr r r(7-1) 其分量z y x σσσˆ,ˆ,ˆ满足下列对易关系和反对易关系 [,]2,{,}2i j ijk k i j ij i σσεσσσδ== (7-2)由此可以推出i j ijk k ij i σσεσδ=+ (7-3)由于2ˆ1z σ=,因此ˆz σ的本征值为1±,对应的本征态记为()z χσ±。
取χ±为基矢,建立z σ表象,可以得到泡利算符的矩阵表示,即泡利矩阵01010ˆˆˆ,,10001x y z i i σσσ-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭(7-4)2)电子自旋角动量借助泡利算符,电子自旋角动量S v可以表示为12ˆˆˆˆˆx y z S S i S j S k σ=++=v v v v v h (7-5)自旋角动量S v满足对易关系ˆˆˆS S i S ⨯=r r r h ,自旋角动量平方为3224ˆS =h ,自旋角量子数为12s =;自旋在z 轴方向的投影为ˆz S ,本征值为s m h ,其中12s m =±称为自旋磁量子数,对应的本征函数为12()()z z s χχσ±±=。
量子力学基础教程答案【篇一:量子力学课后答案】class=txt>????? 第一章绪论第二章波函数和薛定谔方程第三章力学量的算符表示第四章态和力学量的表象第五章微扰理论第六章弹性散射第七章自旋和全同粒子?301.1.由黑体辐射公式导出维恩位移定律:?mt?b,b?2.9?10m?c。
证明:由普朗克黑体辐射公式:8?h?31 ??d??d?, h3c ekt?1c c及??、d???2d?得?? 8?hc1?? ?5,hc?e?kt?1 d?hc令x?,再由??0,得?.所满足的超越方程为 ?d? ktxex 5?x e?1 hc x?4.97,即得用图解法求得?4.97,将数据代入求得?mt?b,b?2.9?10?3m?0c ?mkt1.2.在0k附近,钠的价电子能量约为3ev,求de broglie波长.0hh?10解:? ???7.09?10m?7.09a p2me # 3e?kt,求t?1k时氦原子的de broglie波长。
1.3. 氦原子的动能为 2h0hh?10??12.63?10m?12.63a 解:? ??p2me3mkt ?23?1其中m?4.003?1.66?10?27kg,k?1.38?10j?k # 1.4利用玻尔—索末菲量子化条件,求:(1)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
绪论第一章b?10t,玻尔磁子?b?0.923?10?23j?t?1,求动能的量子化间隔?e,并与t?4k及已知外磁场t?100k 的热运动能量相比较。
p21解:(1)方法1:谐振子的能量e????2q2 2?2p2q2可以化为??1 22 ?2e?2e? ????2???2e 的平面运动,轨道为椭圆,两半轴分别为a?2?e,b?,相空间面积为 2 ??2?eepdq??ab???nh,n?0,1,2,? ?? e?nh?,n?0,1,2,? 所以,能量方法2:一维谐振子的运动方程为q????2q?0,其解为q?asin??t??? 速度为 q??a?cos??t???,动量为p??q??a??cos??t???,则相积分为 2222tta??a??t222pdq? a??cos??t???dt?(1?cos??t???)dt??nh,n?0,1,2,? 002222a??nh e???nh?,n?0,1,2,? 2t 2?v?v evb?(2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。
第七章 全同粒子本章介绍:本章首先介绍全同粒子的特性,然后介绍了全同粒子体系的波函数及泡利不相容原理。
§7.1 全同粒子的特性§7.2 全同粒子体系的波函数◆全同粒子的定义:我们称质量、电荷、自旋、同位旋即其他所有内禀固有属性完全相同的粒子为全同粒子。
例如:所有电子是全同粒子。
◆全同粒子的重要特点:在同样的物理条件下,它们的行为完全相同,因此用一个全同粒子代替另一粒子,不引起物理状态的变化。
◆在经典力学中,即使是全同粒子,也总是可以区分的。
因为我们总可以从粒子运动的不同轨道来区分不同的粒子。
而在量子力学中由于波粒二象性,和每个粒子相联系的总有一个波。
随着时间的变化,波在传播过程中总会出现重叠,在两个波重叠在一起的区域,无法区分哪一个是第一个粒子的波,哪一个是第二个粒子的波。
因此全同粒子在量子力学中是不可区分的。
我们不能说哪个是第一个粒子,哪个是第二个粒子。
全同粒子的不可区分性,在量子力学中称为全同性原理。
从全同性原理出发,可以推知,由全同粒子组成的体系具有以下性质:全同粒子体系的哈密顿算符具有交换对称性。
讨论一个由N 个全同粒子组成的体系,第i 个粒子的全部变量用i q 表示,体系的哈密顿算符是1ˆ(,,,,)i j N H q q q q t ,由于全同粒子的不可区分性,将粒子i 和j 互换,体系的哈密顿算符不变交换算符ˆij P 引入交换算符ˆijP ,表示将第i 个粒子和第j 个粒子相互交换的运算: ψ是任意波函数,由ˆH 的交换不变性有:即ˆˆ[,]0ijP H =另外,将交换算符作用到薛定谔方程上,得表明:若ψ是薛定谔方程的解,则ˆij P ψ也是薛定谔方程的解。
于是有ˆijP ψλψ=利用22ˆijP ψλψψ==得21,1λλ==± 即ˆˆ,ij ijP P ψψψψ==-由上两式可见,全同粒子组成的体系的状态只能用交换对称或交换反对称的波函数描述。
全同粒子体系波函数的对称性不随时间变化。
第七章:粒子在电磁场中的运动[1]证明在磁场B中,带电粒子的速度算符的各分量,满足下述的对易关系:[]zy x cq i v v B ˆ,2μ= (1) []xz y cq i v v B ˆ,2μ= (2) []y xz cq i v v B ˆ,2μ= (3) [证明]根据正则方程组:x x p H x v ∂∂== ˆ ,Φ+⎪⎭⎫ ⎝⎛-=q A c qp H 221ˆ μ ⎪⎭⎫ ⎝⎛-=x x x A c q p vˆˆ1ˆμ 同理 ⎪⎭⎫ ⎝⎛-=y y y A c q p v ˆˆ1ˆμ ()z y x p p p pˆ,ˆ,ˆˆ 是正则动量,不等于机械动量,将所得结果代入(1)的等号左方: []⎥⎦⎤⎢⎣⎡--=y y x xyxA c q p A c q p v v ˆˆ,ˆˆ1,2μ =[][][][]y x y x y x y x A A cq p A c q A p c qp pˆ,ˆˆ,ˆˆ,ˆˆ,ˆ122222μμμμ+-- (4) 正则动量与梯度算符相对应,即∇=ipˆ ,因此 []0ˆ,ˆ=y x p p又A ˆ仅与点的座标有关[]0ˆ,ˆ=yxA A[]z x y x y yxB c iq y A x A i c q x i A c q A x i c q v v 2222,,,μμμμ=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⋅=⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫⎝⎛∂∂-= (因A B ⨯∇=ˆˆ)其余二式依轮换对称写出。
[2]利用上述对易式,求出均匀磁场中,带电粒子能量的本征值(取磁场方向为Z 轴方向) (解)设磁场沿Z 轴方向,B B B B z y x ===00矢势A ˆ 的一种可能情形是022=-=-=z y x A x B A y BA在本题的情形,哈密顿算符是:(前题){})2(2)1(2221ˆ222222z y x z y x v v v p x c qB p y c qB p H ++=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=μμ速度算符间的对易式是:()()())5(0,)4(0,)3(,2===x z zyyxv v v v B ci q v v μ 根据(54⨯),z v 分别和x v ,y v 对易,因此z v 与22yx v v +对易,而: ()2212ˆyx v v H +=μ 与22ˆ2ˆx v H μ=有共同的本征函数,H ˆ的本征值是21ˆ,ˆH H 本征值之和。
填空 第一章 绪论6、玻尔的量子化条件为 n L =9德布罗意关系为 k p E==,ω 。
1、 用来解释光电效应的爱因斯坦公式为 221mv A h +=ν 。
2、 戴微孙-革末 实验验证了德布罗意波的存在,德布罗意关系为 k p E==,ω 。
第二章 波函数和薛定谔方程1、波函数的标准条件为 单值,连续,有限 。
4、2),,,(t z y x ψ的物理意义: 发现粒子的几率密度与之成正比 。
5、dr r r 22),,(⎰ϕθψ表示 在r —r+dr 单位立体角的球壳内发现粒子的几率 。
第三章 量子力学中的力学量2如两力学量算符有共同本征函数完全系,则0 。
3、设体系的状态波函数为,如在该状态下测量力学量有确定的值,则力学量算符与态矢量的关系为__ψλψ=Fˆ_______。
5、在量子力学中,微观体系的状态被一个 波函数 完全描述;力学量用 厄密算符 表示。
10坐标和动量的测不准关系是_2≥∆∆x p x ___________________________。
自由粒子体系,_动量_________守恒;中心力场中运动的粒子___角动量________守恒3、 设为归一化的动量表象下的波函数,则的物理意义为___在p —p+dp 范围内发现粒子的几率____________________________________________。
3、厄密算符的本征函数具有 正交,完备性 。
10、=]ˆ,[x p x i ; =]ˆ,ˆ[zy L L x L i ;第四章 态和力学量的表象量子力学中的态是希尔伯特空间的__矢量__________;算符是希尔伯特空间的__算符__________。
力学量算符在自身表象中的矩阵是 对角的第五章 微扰理论第七章 自旋与全同粒子7.为泡利算符,则=2ˆσ 3 ,=]ˆ,ˆ[y xσσz i σˆ28、费米子所组成的全同粒子体系的波函数具有_交换反对称性__ _______, 玻色子所组成的全同粒子体系的波函数具有____交换对称性____ 。