光学名词解释概要
- 格式:ppt
- 大小:2.74 MB
- 文档页数:14
光学名词概念(最全)word资料光学名词概念光和光线:光一般指能引起视觉的电磁波,这部分的波长范围约在红光的0.77 微米到紫光的0.39 微米(亦即7700-3900 埃,1埃=10-10米) 之间。
波长在0.77 微米以上到1000 微米左右的电磁波称“红外线”,在0.39 微米以下到0.04 微米左右的称“紫外线”。
红外线和紫外线不能引起视觉,但可以用光学仪器或摄影来察见发射这种光线的物体,所以在光学上的光也包括红外线和紫外线。
光具有波粒二象性;它有时表现为波动,有时也表现为粒子(光子)。
光线是代表光传播途径的线。
例如在各向同性的均匀媒质中,从点光源发出的光,它的每条光线就是以光源为中心的球的径线;又如从较远光源发来的一道光中各点的传播方向很接近于一致,可用许多平行线代表这道光,并称它为平行光束。
由于光具有波动性,它在前进途径上遇到障碍物时要发生衍射(即绕射),所以光线实际只是光在传播过程中的一种近似描述;但在很多情况下,因衍射并不显著,光线便是一种很有用的概念。
(辞海 1855页)光谱:复色光经过色散系统(如棱镜、光栅) 分光后,按波长(或频率) 的大小依次排列的图案。
例如,太阳光经过三棱镜后形成按红、橙、黄、绿、蓝、靛、紫次序连续分布的色彩光谱。
红色到紫色,相应于波长由7700-3900 埃的区域,是为人眼所能感觉的可见部分红端之外为波长比可见光更长的红外线,紫端之外则为波长更短的紫外线,都不能为肉眼所察觉,但能用仪器记录。
因此,按波长区域不同,光谱可分为红外光谱、可见光谱和紫外光谱;按产生的本质不同,可分为原子光谱、分子光谱;按产生的方式不同,可分为发射光谱、吸收光谱和散射光谱;按光谱表观形态不同,可分为线光谱、带光谱和连续光谱。
光谱的研究已成为一门专门的学科,即光谱学。
(辞海1856页)光辐射:在物理学中指电磁辐射中波长在可见光范围内的辐射能。
(辞海 1857页)光流:又称“光通量”。
光学工程的名词解释有哪些光学工程是一门研究光的传播、生成和控制的学科,涉及到光学原理、光学系统的设计与制造,以及光学器件的应用等方面。
在光学工程中,有许多专业名词需要解释和理解。
本文将从几个方面探讨光学工程中的一些重要名词,以便更好地理解这一领域的知识。
1. 折射率(Refraction)折射率是介质对光传播速度的相对减速比。
当光从一个介质传播到另一个具有不同折射率的介质中时,光线的传播方向将发生偏折,这就是所谓的折射现象。
折射率的大小与介质的光密度相关,不同介质的折射率也不同,进一步影响着光的传播方向和强度。
2. 反射率(Reflectance)反射率是指光在交界面上的反射能力,是反射光强度与入射光强度之比。
反射率决定了光线在材料表面的反射程度。
表面光学工程中,通过调节材料、涂层等的反射率,可以优化光的入射、传播和输出效果,从而实现特定的光学目标。
3. 散射(Scattering)散射是光在与物质相互作用后的传播过程中改变传播方向的现象。
光的散射可以分为弹性散射和非弹性散射两种。
弹性散射不改变光子的能量,但改变光线的传播方向;非弹性散射会改变光子的能量,如荧光现象。
散射现象在光学工程中常常需要考虑,特别是在光学材料的设计与性能优化中。
4. 折射率色散(Refractive Index Dispersion)折射率色散是指介质的折射率随光的波长变化而变化的现象。
不同的材料对不同波长光的折射率不同,从而导致光的不同色散效应。
折射率色散的研究对于光的色散补偿、波长选择和光学器件设计都具有重要意义。
5. 光栅(Grating)光栅是一种具有周期的光学结构,通常由一系列平行的刻痕或条纹组成。
光通过光栅结构会发生衍射和构成干涉图样。
光栅在光学通信、光谱学、光栅瞄准系统等领域具有广泛应用。
6. 相位(Phase)相位是描述光波传播状态的一个重要物理量。
相位差决定了光的干涉和衍射现象。
在光学工程中,相位的精确控制对于光学器件的制造和功能实现至关重要,如激光器、衍射光栅、光学显微镜等。
光度学名词解释光通量定义:发光体每秒钟所发出的光量之总和,即光通量;表示:符号Φ,单位流明 Lm ;测量方法:用光通量测试仪测量时需配用积分球或者直接使用分布式光度计测量;应用:表现一个灯的所有方向上的发光能量。
一只40W的日光灯输出的光通量大约是2100Lm。
光强定义:发光体在特定方向单位立体角内所发射的光通量;表示:符号 I,单位坎德拉 cd ;测量方法:用照度计直接测量;应用:表现一个灯特定方向上的发光能力。
照度定义:发光体照射在被照物体单位面积上的光通量;表示:符号 E,单位勒克斯 Lm/m2;测量方法:用照度计直接测量;应用:如果每平方米被照面上接收到的光通量为1Lm,则照度为1Lx。
夏季阳光强烈的中午地面照度约5000 Lx,冬天晴天时地面照度约2000Lx,晴朗的月夜地面照度约0.2 Lx。
正常阅读需要300左右的Lx。
亮度定义:发光体在特定方向单位立体角单位面积内的光通量;表示:符号 L,单位尼脱 cd/m2;测量方法:用亮度计直接测量;应用:电视机显示器等面发光体用亮度来考评。
亮度介于150cd/m2到350cd/m2之间视觉效果较好。
辉度:等同于亮度。
光效定义:电光源将电能转化为光的能力,以发出的光通量除以耗电量来表示。
单位:每瓦流明 Lm/w ;测量方法:使用光通量测试仪测出光通量再除以电功量,可得光效值;应用:发光效率值越高,表明照明器材将电能转化为光能的能力越强,即在提供同等亮度的情况下,该照明器材的节能性越强;在同等功率下,该照明器材的照明性越强,即亮度越大。
辐照度定义:在某一指定表面上单位面积上所接受的辐射能量;表示:符号 E,单位瓦特每平方米 W/m2;测量方法:用光谱仪直接测量。
色温定义:当某一光源所发出的光的光谱分布与黑体在某一温度时辐射出的光谱分布相同时,我们就把绝对黑体的温度称之为这一光源的色温;将不同温度的黑体在色品图上色坐标联成一条曲线。
当光源的色品坐标位于这条曲线的某条相交的垂直线上时,可以用这条垂线与曲线的交点温度表示色温,又叫相关色温。
光学基本名词解释
光通量(Luminous Flux):光源在单位时间内所发出的光量。
符号为Φ,单位不流明(lm)
发光强度(Luminous Intensity):光源在给定方向上的单位文体角中发射的光通量,符号为I,单位为坎德拉(cd),1cd=1lm/lsr 亮度(Luminance):光源在某一方向上单位面投影立体角中发射的光通量。
符号为L,单位为坎德拉每平方米(cd/)
照度(Luminosity):物体单位面积上受到的光通量。
符号为E,单位为勒克斯(lx),1lx=1lm/m2
光效(Efficacy):光源光效是指一个光源所发出的光通量和该光源所消耗的电功率P之比。
η=Φ/P
相关色温(Correlated Color Temperature):当光源所发出的光的颜色与黑体在某一温度下辐射的光颜色最接近时,则黑体的绝对温度就称为该光源的相关色温。
单位为开尔文(K)。
黑体的温度越高,光谱中蓝色的成分则越多,而红色的成分则越少。
例如:白炽灯的光色是暖白色,其色温表示为2700K,而日光色荧光灯的色温表示方法则6000K。
1.首先原件介紹2.光路敘述3.組裝4.加工5.測試6.點焦固定7.出光機完成A V-600光機系統:是由1.照明系統2.分光系統3.液晶顯示器(LCD)旋光系統4.合光系統(X-CUBE)5.投影鏡頭系統光機動作原理1.首先是由燈泡提供高亮度的光源經過,鍍上UV-IR的Lens array1先濾掉紫外線紅外線在將光分佈均勻入射LCD,此外其小格數越多均勻化越好。
2.白光繼續穿透鍍有AR抗反射之Lens Array2作用增加穿透率消除反射率且再將光均勻化,而PBS(偏光分稜鏡)是將光分為S極態垂直及P極態水平而其中之S經過1/2波長板(retarder又稱為相位延遲器)又被轉為P極態繼續被利用。
3.光再經聚光透鏡condenser lens 會聚。
4.光到達分光系統進行分光dichroic mirror1是將藍色反射黃色穿透。
而dichroic mirror2將穿透之黃色光中的綠色光反射紅色光穿透。
另外為配合(X-CUBE)合光¸所以藍色光路須擺設可調之45度之平面反射鏡將光做90度的轉折入射LCD;而紅色光路也同樣須要反射鏡第一片為固定式,第二片為可調式將光作180度的轉折入射LCD。
5.光經分光後分為R.G.B三顏色入射LCD,又因為入射LCD光須是偏極光所以在LCD前有一片Polarizer及波片來配合LCD中之液態晶體動作產生透光與不透光之現象。
另外,為了有效的利用而不讓光量損失所以分別在R.G.B Polarizer前設有一片視場透鏡(field lens)將發散之光收斂回來;以及因紅色光路設計為最長所以光量必定有所損失;為了不讓光量損失太多所以在紅色光路中裝有兩片光繼透鏡(relay lens)將光量抓回來。
6.三顏色光進入合光稜鏡將R.G.B三顏色合成為白色。
7.合成完透過投影鏡頭將成像投射於螢幕。
燈泡(Lamp) 1.燈泡是個拋物面鏡發亮的燈芯就是它的焦點,透過安定器將低壓轉換為高壓點亮燈芯發亮光經由拋物面鏡反射出去成平行光。
光学的名词解释光学作为一门自然科学,主要研究光的性质、传播规律、相互作用以及光与物质之间的相互关系。
它涉及到许多名词,本文将为读者详细解释一些光学领域中常见的术语,以期加深对光学的理解。
1、光线(Light ray)光线是光在空间中传播的直线路径。
它是由无数个光子组成的,光子是光在微观上的基本粒子。
光线在光学的研究中被用来描述光的传播路径,但实际上光的传播是波动性质。
光线的传播遵循直线传播的原理,可以通过反射、折射等现象来解释光的传播和偏折。
2、折射率(Refractive index)折射率是光线在不同介质中传播速度的比值。
当光从一种介质进入另一种介质时,由于两者的物理性质不同,光线的传播速度会发生改变,从而引起光线的偏折现象。
折射率是描述光在不同介质中传播速度变化的参数,其计算公式为折射率=光在真空中的速度/光在介质中的速度。
不同介质的折射率不同,这也是光在介质中发生折射现象的原因。
3、反射(Reflection)反射是光线遇到边界时发生的现象,光线从一个介质(通常是光密介质)射入另一个介质(通常是光疏介质)时,一部分光线会被边界反射回来,这种现象称为反射。
反射的规律由斯涅尔定律(也称为折射定律)描述,该定律指出入射角和折射角之间的关系。
反射常见于镜面反射和漫反射两种形式,其中镜面反射是指光线在光滑的表面上发生反射,反射角等于入射角;漫反射则是指光线在粗糙的表面上发生反射,其反射角度随机分布。
4、散射(Scattering)散射是光线与物质微粒进行相互作用后改变传播方向的现象。
当光线经过粗糙表面或遇到较小的颗粒时,部分光线被物质微粒散射,使光线在空间中产生扩散和分散。
散射现象是大气底色的成因之一,也是晴朗天空为何呈现蓝色的原因之一,因为大气中的氧气和氮气微粒对光的蓝色光的散射最强,使我们感知到蓝色。
5、色散(Dispersion)色散是光通过介质时不同波长的光线发生不同程度的偏折现象。
当光线经过透明介质时,光的波长会因介质的折射率而产生差异性。
光的独立传播定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播费马原理:光从一点传播到另一点,其间无论经过多少次折射与反射,其光程为极值,即光是沿着光程为极值的路径传播的光的折射定律:a.入射光线,折射光线,法线位于同一面;b.入射角的正弦值与折射角的正弦值之比与入射角的大小无关,只于两种介质的折射率有关.光的反射定律: a.反射光线位于由入射光线和法线所决定的平面内;b.反射光线和入射光线位于法线的两侧,且反射角与入射角的绝对值相等,符号相反.景深:在景象平面上所获得的成清晰像的物空间深度称为成像空间的景深,简称景深.不晕成像:若轴上点理想成像,则近轴物点也理想成像,即光学系统既无球差也无正弦差,这就是所谓的不晕成像.等晕成像:轴上点和近轴点有相同的成像缺陷,称为等晕成像. 理想光学系统:能够对任意空间中的任意宽光束都能完善成像. 主平面: 垂直放大倍率为一的一对共轭面.节点:角放大倍率为正一的一对共轭点.齐明点: 校正的球差且满足正弦条件的一对共轭点子午面:过物点及光轴的平面. 孔径角:入射光线及出射光线与光轴的夹角入瞳:决定了物方孔径角的大小,是所有参与成像的入射光的入口.出瞳:决定了像方孔径角的大小,是所有参与成像的出射光的出口.孔径光阑:限制进入光学系统成像光束口径的光阑. 视场光阑:起限制成像范围作用的光阑.渐晕:轴外物点发出的充满入瞳的光线,被透镜的通光孔径所拦截的现象.物方远心光路:光学系统的物方光线平行于光轴,主光线的汇聚中心位于物方无限远处.像方远心光路: 光学系统的像方光线平行于光轴主光线的汇聚中心位于像方无限远处.正弦条件: 垂轴平面内两个临近点成完善像的条件.倍率色差:同一介质对不同的色光有不同的折射率,故对轴外物点,不同色光的垂轴放大倍率也不相等,这种差异称为倍率色差或垂轴色差.子午面过物点及光轴的平面.孔径角光线于光轴的夹角.波像差:当实际波面与理想波面在出瞳处相切时,两波面间的光程差就是波像差.轴向放大倍率: 表示光轴上一对共轭点延轴向的移动量之间的关系.垂轴放大倍率:像的大小与物的大小之比.不晕成像:若轴上点理想成像,则近轴物点也理想成像,即光学系统既无球差也无正弦差,这就是所谓的不晕成像.等晕成像:轴上点和近轴点有相同的成像缺陷,称为等晕成像.理想光学系统能够对任意空间中的任意宽光束都能完善成像.主平面:垂直放大倍率为一的一对共轭面.节点:角放大倍率为正一的一对共轭点.齐明点:校正的球差且满足正弦条件的一对共轭点.出窗:视场光阑经前面光学系统所成的像.入窗:视场光阑经后面光学系统所成的像.完善成像:物于像之间有大小的变化而无形状的变化,即物与像完全相似这样的成像弧矢面:垂直于子午面且过点光线的[平面.光亮度:为了描述具有有限尺寸的发光体发出的可见光在空间分布的情况.光谱光视效率: 指人眼对不同波长的电磁辐射的反映程度,表征的是人眼的光谱灵敏度.薄透镜:当透镜的厚度(d)与透镜的焦距或曲率半径相比很小时即d可以忽略不计这样的透镜叫做薄透镜。
焦点1. , 它反映了一个光学系统对物体聚焦的能力.一个光学系统成像亮度指标, 一般简称F 数(如传统相机上所标识), 在同样的光强度照射下, 其数值越小, 则像面越亮, 其数值越大, 则像面越暗. 对于一般的成像光学系统来说, F2.8-3.2就比较合适, 如果要求F 数越小, 则设计越难, 结构越复杂, 制造成本就越高.一个光学系统所能成像的角度范围. 角度越大, 则这个光学系统所能成像的范围越宽, 反之则越窄. 在实际产品当中, 又有光学FOV 和机械FOV 之分, 光学FOV 是指SENSOR 或胶片所能真正成像的有效FOV 范围, 机械FOV 一般大于光学FOV , 这是有其他考虑和用途, 比如说需要用机械FOV 来参考设计Module 或者手机盖的通光孔直径大小.学总长是指从系统第一个镜片表面到像面的距离; 而镜头总长是指最前端表面(一般指Barrel 表面)到像面(例如Sensor 表面)的距离.一般来说, 镜头太长或太短其设计都会变得困难, 制造时对工艺要求较高.(示意图如下页, UNION 的镜头规格书中图面所标注的E 即为机械总长)机械后焦是指从镜头机械后端面到像面的距离, 而光学后焦是指从镜头最后一个镜片的最后一面到像面的距离. 它们两者的差别随不同光学系统的不同而不同. 同时在光学行业内对光学后焦也有两种表达, 联合光电目前采用光学后焦1的描述..而最佳对焦距离是指一个光学系统景深最佳时的调焦距离, 这里讲的最佳在实际应用时其实是相对而言光学后焦(1)光学后焦(2)IRF Image Plane BE (机械后焦)的. 对焦距离取决于使用者(客户或消费者)希望光学系统所能拍摄的距离范围.像相对于物体本身而言的失真程度.光学畸变是指光学理论上计算所得到的变形度, TV 畸变则是指实际拍摄图像时的变形程度, DC 相机的标准是测量芯片(Sensor)短边处的变形.一般来说光学畸变不等于TV 畸变, 特别是对具有校正能力的芯片来说. 畸变通常分两种: 桶形畸变和枕形畸变,比较形象的反映畸变的是哈哈镜,使人变得又高又瘦的是枕型畸变,使人变得矮胖的是桶型畸变.亮度相对于中心区域亮度的比值, 无单位. 在实际测量的结果中, 它不仅同光学系统本身有关, 也同所使用的感光片(SENSOR)有关. 同样的镜头用于不同的芯片可能会有不同的测量结果.它是指光学系统(镜头)所能拍摄范围内的光(主光线)在通过光学系统(镜头)后到达像面(如SENSOR)时同像面所成的最大夹角. 出射角越小设计越困难, 镜头的总长也会相对变长.它主要用于调整整个系统的色彩还原性. 它往往随着芯片的不同而使用不同的波长范围, 因为芯片对不同波长范围的光线其感应灵敏度不一样.对于目前应用较广的CMOS 和CCD 感光片它非常重要, 早期的CCD 系统中,采用简单的IRF 往往还不能达到较好的色彩还原性效果.它从一定程度上反映了一个光学系统对物体成像的分辨能力.一般来说, MTF 桶形畸变枕形畸变TV DIST=(B+C)/2-A (B+C)/2X100(%)越高,其分辨力越强, MTF越低, 其分辨力越低.由于MTF也只是从一个角度来评价镜头的分辨率,也存在一些不足, 故在目前的生产中, 大多数还是以逆投影检查分辨率为主.(1)塑胶镜头:塑胶镜片成形时间一般为6-8个小时, 镀膜5-6个小时, 组立4-8个小时, 检测及数据准备4-5个小时, 所以在没有库存而模具又能够及时切换的情况下, 从接到P/O 或联络到样品完成需要2-3天的时间;(2)玻璃镜头:周期比塑胶镜头周期长很多,最简单的定焦镜头,发出图纸时,如果供应商已备好材料,马上日夜加班加工零件,我司接到零件后加班组装、检测,在一切顺利,没有出现任何差错的情况下,7天左右可提供样品。
应用光学名词解释总结应用光学名词解释总结B薄透镜:如果透镜的厚度很小可以忽略,这光学间隔:前一个光组的像方焦点与后一个类透镜即为薄透镜。
光组的物方焦点之间的距离。
波像差:实际波面与理想波面的光程差。
光焦度:折合焦距的倒数。
倍率色差:轴外物点发出的两种色光的主光光楔:折射角很小的棱镜称为光楔。
线在清单色光像差的高斯像面上交点高度之光瞳衔接原则:前一个光学系统的出瞳应该差。
与后一个光学系统的入瞳相重合,否则就会不晕成像:当光学系统满足正弦条件时,若出现光束拦截现象。
轴上点理想成像,则近轴物点也理想成像,光照度:单位受照面积接受的光通量,定义即光学系统既无球差也无正弦差。
为光照面的光照度。
C垂轴放大率:像的大小与物的大小之比。
光通量:标度可见光对人眼的视觉刺激程度出瞳:孔径光阑经过后面的光组在像空间所的量。
成的像。
光出射度:光源单位发光面积发出的光通量。
出射窗:视场光阑经过后面的光组在物空间光谱光视效率:人眼对不同波长视觉刺激程所成的像。
度的量。
D独立传播定律:不同光源发出的光在空间光亮度:体现的是光源投影到某方向的单位某点相遇时,彼此互不影响各光束独立传播。
面积、单位立体角内光通量的大小。
等晕成像:轴上点与轴外点有相同的成像缺H慧差:表示轴外物点宽光束经光学系统成陷,我们将这样的成像称为等晕成像。
像后失对称的情况对准误差:对准后偏离置中或重合的线距离弧失面:垂直于子午面并且经过主光线的平或角距离。
面。
E二级光谱:若F光在0.707带相交,即校正J角放大率:在近轴区内,角放大率为一对共了位置色差,但二色光的交点与D光的球差轭光线的像方孔径角与物方孔径角之比。
曲线并不重合,则称该交点到D光球差曲线节点:角放大倍率为一的一对共轭点。
的轴向距离为二级光谱。
(图形上线段表示)焦距:主点与焦点之间的距离。
F费马原理:光从一点传播到另一点,期间无渐晕:轴外点发出的充满入瞳的光被透镜的论经过多少次折射或反射,其光程为极值。
(孔径阑)-限制进入光学系统之光束大小所使用的光阑。
(像散)-一个离轴点光源所发出之光线过透镜系统后,子午焦点与弧矢焦点不在同一个位置上。
(边缘光束)-由轴上物点发出且通过入射瞳孔边缘的光线。
(主光束)-由离轴物点斜向入射至系统且通过孔径阑中心的光线。
(色像差)-不同波长的光在相同介质中有不的折射率,所以轴上焦点位置不同,因而造成色像差。
(慧差)-当一离轴光束斜向入射至透镜系统,经过孔径边缘所成之像高与经过孔径中心所成之像高不同而形成的像差。
(畸变)-像在离轴及轴上的放大率不同而造成,分为筒状畸变及枕状畸变两种形式。
(入射瞳孔)-由轴上物点发出的光线。
经过孔径阑前的组件而形成的孔径阑之像,亦即由轴上物点的位置去看孔径阑所成的像。
(出射瞳孔)-由轴上像点发出的光线,经过孔径阑后面的组件而形成的孔径阑之像,亦即由像平面轴上的位置看孔径阑所成的的像。
field of view(视场、视角)-物空间中,在某一距离光学系统所能接受的最大物体尺寸,此量值以角度为单位。
f-number(焦数)-有效焦距除以入射瞳孔直径的比值,其定义式如下:有时候f-number也称为透镜的速度,4 f 的速度是2 f 速度的两倍。
meridional plane(子午平面)-在一个轴对称系统中,包含主光线与光轴的平面。
numerical aperture(数值孔径)-折射率乘以孔径边缘至物面(像面)中心的半夹角之正弦值,其值为两倍的焦数之倒数。
数ˋ值孔径有物面数值孔径与像面数值孔径两种。
spherical aberration(球面像差)-近轴光束与离轴光束在轴上的焦点位置不同而产生。
vignetting(渐晕、光晕)-离轴越远(越接近最大视场)的光线经过光学系统的有效孔径阑越小,所以越离轴的光线在离轴的像面上的光强度就越弱,而形成影像由中心轴向离轴晕开。
孔径光阑:限制进入光学系统的光束大小所使用的光阑。
※球差:近轴光束与离轴光束在轴上的焦点位置不同而产生的像差。
光学名词详解大全!光学系统的名词解释,希望对各位有用!Aperture stop (孔径阑):限制进入光学系统之光束大小所使用的光阑。
Astigmatism (像散):一个离轴点光源所发出之光线过透镜系统后,子午焦点与弧矢焦点不在同一个位置上。
Marginal ray (边缘光束):由轴上物点发出且通过入射瞳孔边缘的光线。
Chief ray (主光束):由离轴物点斜向入射至系统且通过孔径阑中心的光线。
Chromatic aberration (色像差):不同波长的光在相同介质中有不的折射率,所以轴上焦点位置不同,因而造成色像差。
Coma (慧差):当一离轴光束斜向入射至透镜系统,经过孔径边缘所成之像高与经过孔径中心所成之像高不同而形成的像差。
Distortion (畸变):像在离轴及轴上的放大率不同而造成,分为筒状畸变及枕状畸变两种形式。
Entrance pupil (入射瞳孔):由轴上物点发出的光线。
经过孔径阑前的组件而形成的孔径阑之像,亦即由轴上物点的位置去看孔径阑所成的像。
Exit pupil (出射瞳孔):由轴上像点发出的光线,经过孔径阑后面的组件而形成的孔径阑之像,亦即由像平面轴上的位置看孔径阑所成的的像。
Field curvature (场曲):所有在物平面上的点经过光学系统后会在像空间形成像点,这些像点所形成的像面若为曲面,则此系统有场曲。
Field of view (视场、视角):物空间中,在某一距离光学系统所能接受的最大物体尺寸,此量值以角度为单位。
F-number (焦数):有效焦距除以入射瞳孔直径的比值,其定义式如下:有时候f -number也称为透镜的速度,4 f 的速度是2 f 速度的两倍。
Meridional plane (子午平面):在一个轴对称系统中,包含主光线与光轴的平面。
Numerical aperture (数值孔径):折射率乘以孔径边缘至物面( 像面)中心的半夹角之正弦值,其值为两倍的焦数之倒数。
关于光学的名词解释光学的意思是什么呢?怎么用光学来造句?下面是店铺为你整理光学的意思,欣赏和精选造句,供大家阅览!光学的意思光学(optics),是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。
光学的起源在西方很早就有光学知识的记载。
传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。
光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起,这两个定律奠定了几何光学的基础。
光学的起源在西方很早就有光学知识的记载,欧几里得(Euclid,公元前约330~260)的<反射光学>(Catoptrica)研究了光的反射;阿拉伯学者阿勒·哈增(AI-Hazen,965~1038)写过一部<光学全书>,讨论了许多光学的现象。
光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起,这两个定律奠定了几何光学的基础。
17世纪,望远镜和显微镜的应用大大促进了几何光学的发展。
光的本性(物理光学)也是光学研究的重要课题。
微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。
19世纪以前,微粒说比较盛行。
但是,随着光学研究的深入,人们发现了许多不能用直进性解释的现象,例如干涉、衍射等,用光的波动性就很容易解释。
於是光学的波动说又占了上风。
两种学说的争论构成了光学发展史上的一根红线。
狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。
而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到X射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。
光学是物理学的一个重要组成部分,也是与其他应用技术紧密相关的学科。
光学造句欣赏1 只有在光学显微镜和神通更广大的电子显微镜相继问世以后,人们才当之无愧地能够"明察秋毫之末"。
(共158个)1.干涉1.等厚干涉:各相干光均以同样的角度入射于薄膜,入射角θ不变,改变膜厚o度,这时每个干涉条纹对应的是同一个厚度的光干涉的结果。
2. 临界角:光从光密媒质到光媒介质,当入射角大于一特定角度时,没有折射光而被被全n??2?表示,且部反射回光密媒质,这一特定角度称为临界角,用cc n13.光波的独立传播定律:两列光比或多列光波在空间相遇时,在交叠区里各自保持自己的振动状态独立传播,互不影响。
4.光源许可宽度:光源临界宽度的四分之一,此时干涉条纹的可见度为0.9。
5.光波叠加原理:光波在相遇点产生的合振动是各个波单独在该点产生的振动的矢量和。
6.驻波:两个频率相同,振动方向相同而传播方向相反的单色光波的叠加将形成驻波。
7.简谐波:波源是简谐振动,波所到之处介质都作同频率同振幅的简谐振动。
8.相干叠加:满足干涉条件波相遇,总振幅是各个波振幅的和。
9.光波的相干条件; 频率相同;存在相互平行的振动分量;出相位差稳定。
10.发光强度:表征辐射体在空间某个方向上的发光状态,体现某一方向上单位立体角内的辐射光通量的大小单位:次德拉。
11.分波面干涉;将点光源发出的光波波面分成若干个子波面,形成若干个点光源发出的多束相干光波。
12. 分振幅干涉:将一束光波的振幅(能量)分成若干部分,形成若干束相干光波。
13.14.空间相干性:在给定宽度的单色线光源(或面光源)照明的空间中,随着两个横向分布的次波源间距的变化,其相干程度也随之变化,这种现象称为两个横向分布次波源的空间相干性。
15.时间相干性:在非单色点光源照射的光波场中,随着两个纵向分布的次波之间距离或光程差的变化,其相干程度也随之变化,这种现象称为两个纵向分布次波源的时间相干性。
16.牛顿环:曲率半径很大的平凸透镜与玻璃平板之间的薄空气层形成的同心环形等厚条纹。
2几何光学1.1球面镜成像1.费马原理:光沿光程取平稳值的路径传播。
平稳值是常数值、极大值或极小值。
光学术语(光学名词解释)光学是研究光的性质和现象的学科,是物理学的一个分支。
在光学中,有很多专业术语和名词。
本文将详细解释一些常用的光学术语,以帮助读者更好地理解光学学科。
1. 光线光线是指在介质中传播的光线路径。
光线的传播方向与光的传播方向一致。
2. 光束多条光线汇聚在一起形成的光束,可分为平行光束和发散光束。
3. 焦点焦点是光线聚焦后交汇的点,通常用F表示。
在透镜中,该点叫做透镜焦点;在曲面镜中,该点叫做曲面焦点。
4. 焦距光线汇聚于焦点的距离叫做焦距,通常用f表示。
焦距是影响透镜成像性质的重要因素之一。
5. 折射率不同介质对光的传播速度影响不同,介质中光速与真空中光速的比值叫做折射率。
折射率通常用n表示。
6. 透镜透镜是一种可以将光线折射使其聚焦的光学器件。
根据透镜的形状和特性,可分为凸透镜和凹透镜。
7. 曲面镜曲面镜是一种可以反射光线的光学器件,常见的有平面镜、凸面镜和凹面镜。
可以将平行光线聚集到焦点上。
8. 球面镜球面镜是由一段球面切出来的反射或折射光线的光学器件。
可以将光线聚焦或分散。
9. 光程差光线在不同介质中传播时,光线走过的路程不同,这种差别叫做光程差。
光程差是描述光程变化的重要量。
10. 双折射双折射是指在某些晶体中,光线在传播过程中发生的折射率不同而产生的现象。
这种现象可以利用偏光片制造出颜色的变化和差异。
11. 像距像距是指物距和像距之间的距离关系,用s’表示。
像距是描述成像的距离关系的重要量。
12. 物距物距是被摄体或物品与透镜(或光学仪器)之间的距离,用s表示。
物距是描述成像的距离关系的重要量。
以上是常用的光学术语和名词解释。
它们是光学研究中非常重要的概念,了解这些名词的含义和用法,有助于更好地理解光学学科和进行光学实验。
关于光学的名词解释光学是物理学的一个重要分支,研究光的性质和行为。
在光学领域中,有许多黎明时期的名词被用来描述光的特性和光的相互作用。
本文将对几个光学领域内的名词进行解释,帮助读者更好地理解光学的基本原理和概念。
虽然本文重点放在了术语解释上,但在解释的同时,我将提供与实际应用相关的实例,以帮助读者更好地理解这些名词。
折射是光学中重要的概念之一。
当光从一种介质进入另一种具有不同折射率的介质时,它的传播方向发生偏转。
这种现象称为折射。
常见的实例是当我们看向水中的物体时,物体的位置看起来比实际高。
这是由于光在从空气到水中传播时发生了折射。
光的折射现象在透镜的设计和光纤通信系统中也起着重要作用。
还有一个与光传播相关的概念叫做光的散射。
光的散射是指光线与物质微粒或表面碰撞时改变方向的过程。
当我们看到蓝天时,实际上是因为大气中的分子将太阳光中的蓝光散射到我们的视线上。
这也解释了为什么太阳在日落时呈现出红色,因为在日落时,光传播的路径更长,会使得蓝光被更多地散射掉,只剩下红光到达我们的眼睛。
除了折射和散射,光学中还有另一个重要的概念,那就是光的干涉。
干涉是指两束或多束光在相遇时产生的干涉图案。
干涉现象的最著名实例之一是薄膜干涉。
当光通过一层厚度非常薄的透明薄膜时,会发生反射和折射。
通过测量反射光的干涉图案,我们可以得到有关薄膜的厚度和折射率的信息。
这对于光学镀膜和太阳能电池等应用来说非常重要。
在讨论光学中的名词时,不得不提的一个概念就是衍射。
衍射是光通过障碍物或孔洞时出现的波动现象。
当光通过一个狭缝时,光的波峰和波谷会发生干涉,产生衍射图案。
衍射现象是理解显微镜和天文望远镜工作原理的基础。
通过利用衍射现象,科学家们能够观察到微观领域的细微结构,也能够观测到远距离的天体。
最后,我们来讨论一下折射率。
折射率是描述光在不同介质中传播速度变化的物理量。
它代表着光在真空中的速度与光在介质中的速度之比。
常见的介质,如空气、水和玻璃,它们的折射率是不同的。
光学名词解释表上一篇下一篇技术文章查看( 65 ) / 评论( 0 ) / 评分( 0 / 0 )A凹透镜:中间薄、两边厚的透镜叫凹透镜,对光线有发散作用。
B波动说:认为光是某种振动,以波的形式向周围传播。
泊松亮斑:不透明圆板产生的衍射现象,影子中心有一个亮斑。
薄膜干涉:在白光照射下,从前后膜面反射出两列振动情况完全相同的光波产生彩色干涉条纹。
CD电磁波谱:由无线电波、红外线、可见光、紫外线、伦琴射线、γ射线合起来,构成了范围非常广阔的电磁波谱。
电磁说:光是一种电磁波。
EF发射光谱:物体发光直接产生的光谱叫做发射光谱。
说明:(1)稀薄气体发光是由不连续的亮线组成,这种发射光谱又叫做明线光谱:原子产生的明线光谱也叫做原子光谱曲。
(2)固体或液体及高压气体的发射光谱,是由连续分布的波长的光组成的,这种光谱做连续光谱。
反射定律:反射光线、入射光线和法线在同一平面上,反射光线、入射光线分居法线两侧,反射角等于入射角。
G光的波粒二象性:光波在空间上任一点的波的强度正比于该点上光子出现的几率,所以光波是大量光子运动规律的一种几率波,这就是光的波粒二象性。
光的反射:当光从一种介质射入另一种介质,在两种介质的界面上,光将改变传播方向,一部分光被反射回原来的介质中,这种现象称为光的反射。
光的干涉:两列频率相等的光波,在空间相遇叠加,使空间有的地方光加强,有的地方光减弱,产生明暗相间的条纹(单色光)或者产生彩色条纹(复色光)的现象。
光的色散:把复色光分解为单色光的过程叫光的色散。
光的衍射:光在传播过程中,离开直线传播方向绕过障碍物的现象。
由于光波的相互叠加,在屏上出现明暗相间的条纹的现象。
光的折射:当光从一种介质射入另一种介质,传播方向发生改变的现象,称为光的折射。
光的直线传播:光在同一均匀介质中沿直线传播。
光电管:利用光电效应可以把光信号变为电信号。
光电效应:在光(包括不可见光)的照射下从物体发射出电子的现象叫光电效应。