初中数学 江苏省镇江市新区七年级数学第二次月考考试题及答案
- 格式:docx
- 大小:53.55 KB
- 文档页数:9
七年级数学第二次月考一.选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A. 2x <yB. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
2.如果a 、b 表示两个负数,且a <b ,则( ).A.1 ba B.ba<1 C.ba 11 D. ab <13.若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). A. a <0 B. a >-1 C. a <-1 D. a <14.设a, b, c 都是有理数,且满足:用a 去乘不等式的两边,不等号方向不变;用b 去乘不等式的两边,不等号方向改变;用c 去乘不等式的两边,不等号变为等号,则a, b, c 的大小关系是( ) A. a >b >c B. a >c >b C .b >c >a D .c >a >b5.某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ). A.11 B.8C.7D.56.不等式组 1,159m x x x 的解集是x >2,则m 的取值范围是( ). A. m ≤2B. m ≥2C. m ≤1D. m ≥17.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm8.以长为8cm 、6cm 、10cm 、4cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个B.2个C.3个D.4个 9.已知a, b, c 是△ABC 的三条边,化简c b a -c a b 的结果是( )A. 2aB. -2bC. 2a+2bD. 2b -2c10.用三块正多边形地板铺地,拼在一起相交于同一点的各边相互吻 合,其中两块木板的边数是8,则第3块木板的边数应是( ) A.4 B.5 C.6 D.8二.填空题(每题2分,共20分)11. 关于x 的不等式组 的非负整数解为 _______12.已知关于x 的不等式(a+1)x >3a+3可化为x <3, 则a 的取值范围是___________13.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是_____________14.若不等式组k x x ,21有解,则k 的取值范围是___________15.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木5x+>3(x+1) 21x ≤51-2x条这样做的道理是___________________.16.已知等腰三角形的一边长为6cm ,另一边长为4cm,则它的周长为__________________17.一次环保知识竞赛共有25道题,规定答对一题得4分,答错或不答一题倒扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上)。
江苏省七年级下学期第二次月考数学试卷一.选择题:(每小题3分,共24分)1.为了考察某市初中3500名毕业生的数学成绩,从中抽取20本试卷,每本30份,在这个问题中,样本容量是()A.3500 B.20 C.30 D.6002.若一个凸多边形的内角和是它的外角和的2倍,则它是()A.四边形B.五边形C.六边形D.八边形3.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.某市股票在七个月之内增长率的变化状况如图所示.从图上看出,下列结论不正确的是()A.2~6月份股票月增长率逐渐减少B.7月份股票的月增长率开始回升C.这七个月中,每月的股票不断上涨D.这七个月中,股票有涨有跌5.如图,在△ABC中,点D在BC上,且AD=BD=CD,AE是BC边上的高,若沿AE所在直线折叠,点C恰好落在点D处,则∠B等于()A.25°B.30°C.45°D.60°6.如下图所示,D为BC上一点,且AB=AC=BD,则图中∠1与∠2的关系是()A.∠1=2∠2 B.∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°7.已知关于x 的不等式组无解,则a的取值范围是()A.a≤﹣1 B.﹣1<a<2 C.a≥0 D.a≤28.下面说法正确的个数有()①如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这个三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=∠C,那么△ABC是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.A.3个B.4个C.5个D.6个二.填空题:(每小题3分,共30分)9.为了了解某产品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他的做法是(填“全面调查”或“抽样调查”).10.不等式2x+9≥3(x+2)的正整数解是.11.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有.12.用10元钱买一包牛奶钱不足,打九折后钱又有剩余,如果牛奶的标价是整数元,那么标价是元.13.一个等腰三角形的一腰上的高与另一腰的夹角为40°,则它的顶角为:°.14.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=度.15.如图:将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A=度.16.已知a,b,c是三角形的三边长,化简:|a﹣b+c|﹣|a﹣b﹣c|=.17.一个多边形除∠A外其余内角的和是1000°,则∠A=.18.已知关于x 的不等式组的整数解共有6个,则a的取值范围是.三.解答题:19.解不等式(组)(1)≤(2).20.已知方程组的解中,x为非正数,y为负数.(1)求a的取值范围;(2)化简|a﹣3|+|a+2|.21.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?22.某202X届九年级制学校围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?(3)若该校202X届九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?23.如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=150°,∠BGC=120°,求∠A的度数.24.已知,如图所示:P为等边三角形ABC内的一点,它到三边AB、AC、BC的距离分别为h1、h2、h3,△ABC 的高AM=h.则h与h1、h2、h3有何数量关系?写出你的猜想并加以证明.25.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE∥DF吗?为什么?26.五一期间,某电器商城推出了两种促销方式,且每次购买电器时只能使用其中一种方式:第一种是打折优惠,凡是在该商城购买家用电器的客户均可享受八折优惠;第二种方式是:赠送优惠券,凡在商城三天内购买家用电器的金额满400元且少于600元的,赠优惠券100元;不少于600元的,所赠优惠劵是购买电器金额的,另再送50元现金.(1)以上两种促销方式中第二种方式,可用如下形式表达:设购买电器的金额为x(x≥400)元,优惠券金额为y 元,则:①当x=500时,y=;②当x≥600时,y=;(2)如果小张想一次性购买原价为x(400≤x<600)元的电器,可以使用优惠劵,在上面的两种促销方式中,试通过计算帮他确定一种比较合算的方式?(3)如果小张在促销期间内在此商城先后两次购买电器时都得到了优惠券(两次购买均未使用优惠券),第一次购买金额在600元以内,第二次购买金额超过600元,所得优惠券金额累计达800元,设他购买电器的金额为W 元,W至少应为多少?(W=支付金额﹣所送现金金额)七年级下学期第二次月考数学试卷一.选择题:(每小题3分,共24分)1.为了考察某市初中3500名毕业生的数学成绩,从中抽取20本试卷,每本30份,在这个问题中,样本容量是()A.3500 B.20 C.30 D.600考点:总体、个体、样本、样本容量.分析:根据样本容量则是指样本中个体的数目,可得答案.解答:解:为了考察某市初中3500名毕业生的数学成绩,从中抽取20本试卷,每本30份,在这个问题中,样本容量是30×20=600,故选:D.点评:本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2.若一个凸多边形的内角和是它的外角和的2倍,则它是()A.四边形B.五边形C.六边形D.八边形考点:多边形内角与外角.专题:方程思想.分析:多边形的外角和是360度,多边形的内角和是它的外角和的2倍,则多边形的内角和是720度,根据多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.解答:解:设多边形边数为n.则360°×2=(n﹣2)•180°,解得n=6.故选C.点评:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.3.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:解不等式组得到解集为﹣2<x≤3,将﹣2<x≤3表示成数轴形式即可.解答:解:解不等式得:x≤3.解不等式x﹣3<3x+1得:x>﹣2所以不等式组的解集为﹣2<x≤3.故选:D.点评:考查了在数轴上表示不等式的解集,不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.某市股票在七个月之内增长率的变化状况如图所示.从图上看出,下列结论不正确的是()A.2~6月份股票月增长率逐渐减少B.7月份股票的月增长率开始回升C.这七个月中,每月的股票不断上涨D.这七个月中,股票有涨有跌考点:折线统计图.分析:解决本题需要从统计图获取信息,由此关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.解答:解:由折线统计图可知2~6月份股票月增长率逐渐减少,7月份股票的月增长率开始回升,这七个月中,股票的增长率始终是正数,则每月的股票不断上涨,所以A、B、C都正确,错误的只有D.故选D.点评:本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,注意在图形中纵轴表示的是增长率,只有增长率是负数,才表示股票下跌.5.如图,在△ABC中,点D在BC上,且AD=BD=CD,AE是BC边上的高,若沿AE所在直线折叠,点C恰好落在点D处,则∠B等于()A.25°B.30°C.45°D.60°考点:翻折变换(折叠问题).分析:根据等边对等角可得∠B=∠BAD,∠C=∠CAD,然后求出∠B+∠C=90°,根据翻折的性质可得∠C=∠ADC,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD=2∠B,再求解即可.解答:解:∵AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∵∠B+∠BAD+∠CAD+∠C=180°,∴∠B+∠C=90°,由翻折的性质得,∠C=∠ADC,由三角形的外角性质得,∠ADC=∠B+∠BAD=2∠B,∴∠B+2∠B=90°,解得∠B=30°.故选B.点评:本题考查了翻折变换的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.6.如下图所示,D为BC上一点,且AB=AC=BD,则图中∠1与∠2的关系是()A.∠1=2∠2 B.∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.分析:由已知AB=AC=BD,结合图形,根据等腰三角形的性质、内角与外角的关系及三角形内角和定理解答.解答:解:∵AB=AC=BD ,∴∠1=∠BAD,∠C=∠B,∠1是△ADC的外角,∴∠1=∠2+∠C,∵∠B=180°﹣2∠1,∴∠1=∠2+180°﹣2∠1即3∠1﹣∠2=180°.故选:D.点评:主要考查了等腰三角形的性质及三角形的外角、内角和等知识;(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.7.已知关于x 的不等式组无解,则a的取值范围是()A.a≤﹣1 B.﹣1<a<2 C.a≥0 D.a≤2考点:不等式的解集.分析:根据“大大小小找不着”可直接得到a的取值范围.解答:解:∵不等式组无解,∴a≤﹣1.故选:A.点评:此题主要考查了不等式组的解集,关键是正确理解“大大小小找不着”.8.下面说法正确的个数有()①如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这个三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=∠C,那么△ABC是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.A.3个B.4个C.5个D.6个考点:三角形内角和定理.分析:利用三角形的内角和判定即可得出答案.解答:解:①如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形;本选项正确,②如果三角形的一个外角等于与它相邻的一个内角,则这个三角形是直角三角形;本选项正确,③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;本选项正确,④如果∠A=∠B=∠C,那么△ABC是直角三角形;此三角形是等腰三角形且底角大于顶角,故本选项错误,⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;本选项正确,⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.本选项正确,故正确的有①②③⑤⑥,共5个.故选:C.点评:本题主要考查了三解形的内角和,解题的关键是正确利用三角形的内角和.二.填空题:(每小题3分,共30分)9.为了了解某产品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他的做法是抽样调查(填“全面调查”或“抽样调查”).考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:为了了解某产品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他的做法是抽样调查,故答案为:抽样调查.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.不等式2x+9≥3(x+2)的正整数解是1,2,3.考点:一元一次不等式的整数解.专题:计算题.分析:先解不等式,求出其解集,再根据解集判断其正整数解.解答:解:2x+9≥3(x+2),去括号得,2x+9≥3x+6,移项得,2x﹣3x≥6﹣9,合并同类项得,﹣x≥﹣3,系数化为1得,x≤3,故其正整数解为1,2,3.故答案为:1,2,3.点评:本题考查了一元一次不等式的整数解,会解不等式是解题的关键.11.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有9条.考点:多边形内角与外角;多边形的对角线.分析:多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有n﹣3条,即可求得对角线的条数.解答:解:∵多边形的每一个内角都等于150°,∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12﹣3=9条.故答案为:9条.点评:本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.多边形从一个顶点出发的对角线共有n﹣3条.12.用10元钱买一包牛奶钱不足,打九折后钱又有剩余,如果牛奶的标价是整数元,那么标价是11元.考点:一元一次不等式的应用.分析:读懂题意,找到关键描述语,进而找到所求的量的等量关系.解答:解:设牛奶的标价是x元,0.9x<10,且x>10,x<且x>10,10<x<11.1,x是整数,所以x=11.牛奶的标价是11元.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.13.一个等腰三角形的一腰上的高与另一腰的夹角为40°,则它的顶角为:50或130°.考点:等腰三角形的性质;直角三角形的性质.专题:分类讨论.分析:等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况,所以舍去不计,另外两种情况可以根据垂直的性质及外角的性质求出顶角的度数.解答:解:①当为锐角三角形时,如图,高与右边腰成40°夹角,由三角形内角和为180°可得,顶角为50°;②当为钝角三角形时,如图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为50°,所以三角形的顶角为130°.故答案为50°或130°.点评:本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,进行分类讨论是正确解答本题的关键,难度适中.14.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=360度.考点:多边形内角与外角;三角形的外角性质.专题:计算题.分析:根据四边形的内角和等于360°,及三角形一个外角等于和它不相邻的两个内角的和得出.解答:解:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.故答案为:360.点评:本题考查了多边形的内角和公式与及三角形内角与外角的关系.15.如图:将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A=50度.考点:翻折变换(折叠问题).分析:根据折叠的性质可知∠ADE=∠EDF,∠AED=∠DEF,利用平角是180°,求出∠ADE与∠AED的和,然后利用三角形内角和定理求出∠A的度数.解答:解:∵将纸片△ABC沿DE折叠,点A落在点F处,∴∠ADE=∠EDF,∠AED=∠DEF,∴∠1+2∠ADE+∠2+2∠AED=180°+180°,∴∠1+∠2+2(∠ADE+∠AED)=360°,又∵∠1+∠2=100°,∴∠ADE+∠AED=130°,∴∠A=180°﹣(∠ADE+∠AED)=50°.故答案是:50点评:本题考查了翻折变换(折叠问题).解题时注意挖掘出隐含于题中的已知条件:三角形内角和是180°、平角的度数也是180°.16.已知a,b,c是三角形的三边长,化简:|a﹣b+c|﹣|a﹣b﹣c|=2a﹣2b.考点:三角形三边关系;绝对值;整式的加减.分析:先根据三角形的三边关系定理得出a+c>b,b+c>a,再去掉绝对值符号合并即可.解答:解:∵a,b,c是三角形的三边长,∴a+c>b,b+c>a,∴a﹣b+c>0,a﹣b﹣c<1,∴|a﹣b+c|﹣|a﹣b﹣c|=(a﹣b+c)﹣(b+c﹣a)=a﹣b+c﹣b﹣c+a=2a﹣2b,故答案为:2a﹣2b.点评:本题考查了三角形三边关系定理,绝对值,整式的加减的应用,解此题的关键是能正确去掉绝对值符号.17.一个多边形除∠A外其余内角的和是1000°,则∠A=80°.考点:多边形内角与外角.分析:根据多边形的内角和公式(n﹣2)•180°可知多边形的内角和是180°的倍数,然后用1000°÷180°所得商的整数部分加1就是多边形的边数,即可求多边形的内角和,即可解答.解答:解:设多边形的边数是n,则(n﹣2)•180°=1000°,解得n=7…100°,∵除去了一个内角,∴边数是7+1=8,这个多边形的边数为8,多边形的内角和为;(8﹣2)×180°=1080°,则∠A=1080°﹣1000°=80°,故答案为:80°.点评:本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.同时要注意每一个内角都应当大于0°而小于180度.18.已知关于x的不等式组的整数解共有6个,则a的取值范围是﹣5≤a<﹣4.考点:一元一次不等式组的整数解.分析:先解出不等式组的解,然后确定x的取值范围,根据整数解的个数可知a的取值.解答:解:由不等式组可得:a<x<1.5.因为有6个整数解,可以知道x可取﹣4,﹣3,﹣2,﹣1,0,1,因此﹣5≤a<﹣4.故答案为:﹣5≤a<﹣4.点评:本题考查不等式组中不等式的未知字母的取值,利用数轴能直观的得到,易于理解.三.解答题:19.解不等式(组)(1)≤(2).考点:解一元一次不等式组;解一元一次不等式.分析:(1)去分母、去括号、移项、合并同类项、系数化1即可确定不等式的解集;(2)分别求得两个不等式,然后求两个不等式的交集即可;解答:解:(1)去分母得:2(2x﹣1)≤3x﹣4,去括号得:4x﹣2≤3x﹣4,移项得:4x﹣3x≤﹣4+2,合并同类项得:x≤﹣2;(2)解①得:x<﹣6,解②得到x≥2,故此不等式无解.点评:本题考查了一元一次不等式及一元一次不等式组的解法,在解不等式系数化1时注意符号是否变化,难度不大.20.已知方程组的解中,x为非正数,y 为负数.(1)求a的取值范围;(2)化简|a﹣3|+|a+2|.考点:二元一次方程组的解;解一元一次不等式组.专题:计算题.分析:(1)将a看做已知数求出方程组的解表示出x与y,根据x为非正数,y为负数列出不等式组,求出不等式组的解集即可确定出a的范围;(2)由a的范围判断出绝对值里边式子的正负,利用绝对值的代数意义化简,即可得到结果.解答:解:(1)方程组解得:,∵x为非正数,y为负数;∴,解得:﹣2<a≤3;(2)∵﹣2<a≤3,即a﹣3≤0,a+2>0,∴原式=3﹣a+a+2=5.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.21.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?考点:三角形的角平分线、中线和高;三角形的面积;三角形内角和定理.分析:(1)利用三角形的外角等于与它不相邻的两个内角之和即可求∠BED的度数;(2)△BED是钝角三角形,所以BD 边上的高在BD的延长线上;(3)先根据三角形的中线把三角形分成面积相等的两个小三角形,结合题意可求得△BED的面积,再直接求点E 到BC边的距离即可.解答:解:(1)∵∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+35°=50°.(2)如图所示,EF即是△BED中BD边上的高.(3)∵AD为△ABC的中线,BE为三角形ABD中线,∴S△BED =S△ABC =×60=15;∵BD=5,∴EF=2S△BED÷BD=2×15÷5=6,即点E到BC边的距离为6.点评:本题主要考查了三角形的高、中线、角平分线,三角形的面积和三角形的内角和等知识,注意全面考虑问题,熟记三角形的中线把三角形分成的两个小三角形面积一定相等.22.某202X届九年级制学校围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?(3)若该校202X届九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据条形图的意义,将各组人数依次相加可得答案;(2)根据表中的数据计算可得答案;(3)用样本估计总体,按比例计算可得.解答:解:(1)由图1知:4+8+10+18+10=50名,答:该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人×100%=36%∴最喜欢篮球活动的人数占被调查人数的36%.(3)1﹣(30%+26%+24%)=20%,200÷20%=1000人,×100%×1000=160人.答:估计全校学生中最喜欢跳绳活动的人数约为160人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.23.如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=150°,∠BGC=120°,求∠A的度数.考点:三角形内角和定理.分析:根据三角形的内角和定理,及角平分线上的性质先计算∠ABC+∠ACB的度数,从而得出∠A的度数解答:解:如图,连接BC.∵BE是∠ABD的平分线,CF是∠ACD的平分线,∴∠ABE=∠DBE=∠ABD,∠ACF=∠DCF=∠ACD,又∠BDC=150°,∠BGC=120°,∴∠DBC+∠DCB=30°,∠GBC+∠GCB=60°,∴∠EBD+∠FCD=60°﹣30°=30°,∴∠ABE+∠ACF=30°,∴∠ABE+∠ACF+∠GBC+∠GCB=60°+30°=90°,即∠ABC+∠ACB=90°,∴∠A=90°.点评:本题考查角平分线的性质及三角形的内角和定理,根据题意作出辅助线,构造出三角形是解答此题的关键24.已知,如图所示:P为等边三角形ABC内的一点,它到三边AB、AC、BC的距离分别为h1、h2、h3,△ABC 的高AM=h.则h与h1、h2、h3有何数量关系?写出你的猜想并加以证明.考点:等边三角形的性质.分析:连接PA,PB,PC,由S△ABC=S△PAC+S△PBC+S△PAB,可得BC•h=AB•h1+AC•h2+BC•h3,又由△ABC是等边三角形,即可得h=h1+h2+h3.解答:解:h=h1+h2+h3,理由如下:连接PA,PB,PC,则S△ABC=S△PAC+S△PBC+S△PAB,∴BC•h=AB•h1+AC•h2+BC•h3,∵△ABC是等边三角形,∴AB=BC=AC,∴h=h1+h2+h3.点评:此题考查了等边三角形的性质与三角形面积的求解方法.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.25.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE∥DF吗?为什么?考点:平行线的判定;多边形内角与外角.专题:探究型.分析:要证BE∥DF,需证∠FDC=∠BEC,由于已知里给出了两条角平分线,四边形ABCD内角和为360°,∠A=∠C=90°,可得:∠FDC+∠EBC=90°,在△BCE中,∠BEC+∠EBC=90°,等角的余角相等,就可得到∠FDC=∠BEC,即可证.解答:解:平行.∵∠A=∠C=90°,四边形ABCD的内角和为360°,∴∠ADC+∠ABC=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠FDC+∠EBC=90°.又∵∠C=90°,∴∠BEC+∠EBC=90°,∴∠FDC=∠BEC,∴BE∥DF.点评:本题利用了角平分线性质和判定,四边形的内角和为360°,同角的余角相等.26.五一期间,某电器商城推出了两种促销方式,且每次购买电器时只能使用其中一种方式:第一种是打折优惠,凡是在该商城购买家用电器的客户均可享受八折优惠;第二种方式是:赠送优惠券,凡在商城三天内购买家用电器的金额满400元且少于600元的,赠优惠券100元;不少于600元的,所赠优惠劵是购买电器金额的,另再送50元现金.(1)以上两种促销方式中第二种方式,可用如下形式表达:设购买电器的金额为x(x≥400)元,优惠券金额为y 元,则:①当x=500时,y=100;②当x≥600时,y=x;(2)如果小张想一次性购买原价为x(400≤x<600)元的电器,可以使用优惠劵,在上面的两种促销方式中,试通过计算帮他确定一种比较合算的方式?(3)如果小张在促销期间内在此商城先后两次购买电器时都得到了优惠券(两次购买均未使用优惠券),第一次购买金额在600元以内,第二次购买金额超过600元,所得优惠券金额累计达800元,设他购买电器的金额为W 元,W至少应为多少?(W=支付金额﹣所送现金金额)考点:一次函数的应用.分析:(1)根据题意即可得出y=100和y=x;(2)根据题意求出y1=0.8x,y2=x﹣100,求出方程0.8x=x﹣100的解是x=500,即此时y1=y 2,即可得出y1>y2和y1<y 2时x的值;(3)设第一次购买花了m元,第二次花了n元,得出方程100+n=800,求出n的值,代入W=支付金额﹣所送现金金额得出W=m+2750,根据400≤m<600即可求出W的取值范围,即可得出答案.解答:解:(1)y=100,y=x;故答案为:100,x;(2)设y1=0.8x,y2=x﹣100,∵由0.8x=x﹣100得x=500,此时y1=y2;当400≤x<500时y1>y2;当500<x<600时y1<y2;∴当x=500时,两种方式一样合算;当400≤x<500时,选第二种方式合算;当500<x<600时,选第一种方式合算;(3)设第一次购买花了m元,第二次花了n元,当400≤m<600,n≥600时,100+n=800,得n=2800,W=m+n﹣50=m+2750,∵400≤m<600,∴3150≤W<3350,∴W至少为3150元.点评:本题考查了一次函数的有关应用,解此题的关键是能把实际问题转化成数学问题,主要考查学生的分析问题和解决问题的能力,运用了转化思想,题目比较好,但是有一定的难度.。
七年级第二学期第二次月考数学试卷含解析一、选择题1.有一个数阵排列如下:1 2 4 7 11 16 22 3 5 8 12 17 23 6 9 13 18 2410 14 19 2515 20 2621 2728则第20行从左至右第10个数为( ) A .425B .426C .427D .4282) A .0 B .﹣4 C .2 D .0或﹣4 3.16的算术平方根是( )A .2B .2±C .4D .4±4.0=,则x y +的值为( )A .10B .-10C .-6D .不能确定5.下列各数中,属于无理数的是( ) A .227B .3.1415926C .2.010010001D .π3-6.估计65的立方根大小在( ) A .8与9之间 B .3与4之间C .4与5之间D .5与6之间7.在实数227-π中,无理数的个数是( ) A .1个B .2个C .3个D .4个8.在实数:3.14159,1.010010001....,4.21••,π,227中,无理数有( ) A .1个B .2个C .3个D .4个9.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根.其中正确的有( ) A .0个B .1个C .2个D .3个10.在实数13-,0.734,π)个. A .1B .2C .3D .4二、填空题11.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.12.一个数的平方为16,这个数是 .13.如果一个有理数a 的平方等于9,那么a 的立方等于_____. 14.51-与0.551-_____0.5.(填“>”、“=”、“<”) 15.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 16.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.17.如果一个数的平方根和它的立方根相等,则这个数是______. 18.51-__________0.5.(填“>”“<”或“=”) 19.为了求2310012222+++++的值,令2310012222S =+++++,则234101222222S =+++++,因此101221S S -=-,所以10121S =-,即231001*********+++++=-,仿照以下推理计算23202013333+++++的值是____________. 20.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________.三、解答题21.探究与应用: 观察下列各式: 1+3= 2 1+3+5= 2 1+3+5+7= 2 1+3+5+7+9= 2 ……问题:(1)在横线上填上适当的数; (2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)22.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把n aa a a a ÷÷÷⋯÷个 (a≠0)记作a ⓝ,读作“a 的圈 n 次方”.(初步探究)(1)直接写出计算结果:2③=___,(12)⑤=___; (2)关于除方,下列说法错误的是___ A .任何非零数的圈2次方都等于1; B .对于任何正整数n ,1ⓝ=1; C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数. (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式. (-3)④=___; 5⑥=___;(-12)⑩=___. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于___; (3)算一算:212÷(−13)④×(−2)⑤−(−13)⑥÷3323.(1的一系列不足近似值和过剩近似值来估计它的大小的过程如下:因为2211,24==,所以12,<<因为21.4 1.96=,21.5 2.25=,所以1.4 1.5,<<因为221.41 1.9881,1.422.0164==,所以1.41 1.42<<因为221.414 1.999396,1.4152.002225==,所以1.414 1.415,<<1.41≈(精确到百分位),(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣①按此规定2⎤⎦= ;a ,b 求a b -的值. 24.计算:(1)()2320181122⎛⎫-+- ⎪⎝⎭(2325.z 是64的方根,求x y z -+的平方根 26.阅读理解.23.∴11<21的整数部分为1,12.解决问题:已知a ﹣3的整数部分,b ﹣3的小数部分. (1)求a ,b 的值;(2)求(﹣a )3+(b +4)22=17.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题解析:寻找每行数之间的关系,抓住每行之间的公差成等差数列, 便知第20行第一个数为210,而每行的公差为等差数列, 则第20行第10个数为426, 故选B.2.D解析:D 【分析】【详解】=4,4的平方根是±2,的平方根为±2,2,﹣2+(﹣2)=﹣4,2+(﹣2)=0.0或﹣4.故选:D.【点睛】本题考查的是实数的运算,熟知平方根的定义及立方根的定义是解答此题的关键.3.C解析:C【分析】本题是求16的算术平方根,应看哪个正数的平方等于16,由此即可解决问题.【详解】∵(±4)2=16,∴16的算术平方根是4.故选:C.【点睛】此题主要考查了算术平方根的运算.一个数的算术平方根应该是非负数.4.C解析:C【分析】根据算术平方根的非负性求出x,y,然后再求x+y即可;【详解】解:由题意得:x-2=0,y+8=0∴x=2,y=-8∴x+y=2+(-8)=-6故答案为C.【点睛】本题考查了算术平方根的非负性,掌握若干个非负数之和为0,则每个非负数都为0是解答本题的关键.5.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意; C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.C解析:C 【分析】先确定65介于64、125这两个立方数之间,从而可以得到45<<,即可求得答案.【详解】解:∵3464=,35125= ∴6465125<<∴45<.故选:C 【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与65临界的两个立方数是解决问题的关键.7.B解析:B 【解析】分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.详解:无理数有π共2个. 故选B .点睛:本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有特定规律的数.8.B解析:B 【分析】有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可. 【详解】解:因为3.14159,227是有限小数,4.21是无限循环小数,所以它们都是有理数;=4,4是有理数;因为1.010010001…,π=3.14159265…,所以1.010010001…,π,都是无理数.综上,可得无理数有2个:1.010010001…,π.故选:B.【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.9.B解析:B【详解】解:①实数和数轴上点一一对应,本小题错误;②π不带根号,但π是无理数,故本小题错误;③负数有立方根,故本小题错误;④17的平方根,本小题正确,正确的只有④一个,故选B.10.B解析:B【分析】根据无理数的定义判断即可.【详解】13-,0.716π是无理数,故选:B.【点睛】本题主要考查无理数的定义,熟练掌握定义是关键.二、填空题11.、、、.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.解:∵y =3x +2,如果直接输出结果,则3x +2=161,解得:x =53; 如果两次才输出结果:则x =(53-2)÷3=17; 如果三次才输出结果:则x =(17-2)÷3=5; 如果四次才输出结果:则x =(5-2)÷3=1; 则满足条件的整数值是:53、17、5、1. 故答案为:53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.12.【详解】 解:这个数是 解析:【详解】 解:2(4)16,±=∴这个数是4±13.±27 【分析】根据a 的平方等于9,先求出a ,再计算a3即可. 【详解】 ∵(±3)2=9,∴平方等于9的数为±3, 又∵33=27,(-3)3=-27. 故答案为±27. 【点睛】 本题考查了解析:±27 【分析】根据a 的平方等于9,先求出a ,再计算a 3即可. 【详解】 ∵(±3)2=9,∴平方等于9的数为±3, 又∵33=27,(-3)3=-27. 故答案为±27. 【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则.14.> 【解析】∵ . , ∴ , ∴ ,故答案为>.解析:>∵10.52-=-=20-> , ∴0> , ∴0.5> ,故答案为>.15.①③ 【解析】 【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断. 【详解】(−3)※4=−3×4+4=−8,所以①正确; a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式解析:①③ 【解析】 【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断. 【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式相等,若 a≠b ,则两式不相等,所以②错误; 方程(x−4) )※3=6化为3(x −4)+3=6,解得x=5,所以③正确; 左边=(a ※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c 右边=a ※(b ※c )=a ※(b×c+c)=a (b×c+c) +(b×c+c)=abc+ac+bc+c 2 两式不相等,所以④错误. 综上所述,正确的说法有①③. 故答案为①③. 【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.16.403 【解析】当k=6时,x6=T (1)+1=1+1=2, 当k=2011时,=T()+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403 【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011x =T(20105)+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk的表达式并写出用T表示出的表达式是解题的关键.17.0【解析】试题解析:平方根和它的立方根相等的数是0.解析:0【解析】试题解析:平方根和它的立方根相等的数是0.18.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,>0.故12>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.19.【分析】令,然后两边同时乘以3,接下来根据题目中的方法计算即可.令则∴∴故答案为:.【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解 解析:2021312- 【分析】令23202013333S =+++++,然后两边同时乘以3,接下来根据题目中的方法计算即可.【详解】令23202013333S =+++++ 则23202133333S =++++∴2021331S S -=- ∴2021312S -= 故答案为:2021312-. 【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解题的关键.20.9【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: ,解得:,则这个正数是.故答案为:9.【解析:9根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: 1270a a ++-=,解得:2a =,则这个正数是2(21)9+=.故答案为:9.【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解本题的关键. 三、解答题21.(1)2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=n 2;(3)﹣1.008016×106.【分析】(1) 根据从1开始连续n 各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+ (2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.22.初步探究:(1)12,8;(2)C ;深入思考:(1)213,415,82;(2)21n a-;(3)-5.【分析】初步探究:(1)根据除方运算的定义即可得出答案;(2)根据除方运算的定义逐一判断即可得出答案;深入思考:(1)根据除方运算的定义即可得出答案;(2)根据(1)即可总结出(2)中的规律;(3)先按照除方的定义将每个数的圈n 次方算出来,再根据有理数的混合运算法则即可得出答案.【详解】解:初步探究:(1)2③=2÷2÷2=12 (12)⑤=11111822222÷÷÷÷= (2)A :任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A 错误; B :因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1,故选项B 错误; C :3④=3÷3÷3÷3=19,4③=4÷4÷4=14,3④≠4③,故选项C 正确; D :负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D 错误;故答案选择:C.深入思考:(1)(-3)④=(-3)÷(-3)÷(-3) ÷(-3)=213 5⑥=5÷5÷5÷5÷5÷5=415 (-12)⑩=8111111111122222222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-÷-÷-÷-÷-÷-÷-÷-÷-÷-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)a ⓝ=a÷a÷a…÷a=21n a -(3)原式=()4252621111442711233---÷⨯-÷-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ =1144981278⎛⎫÷⨯--÷ ⎪⎝⎭=23--=-5【点睛】本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键.23.(1)2.24;(2)①5,②3-【分析】(1近似值的方法解答即可;(22的范围,再根据规定解答即可;的整数部分a b 的值,再代入所求式子化简计算即可.【详解】解:(1)因为2224,39==,所以23,<<因为222.2 4.84,2.3 5.29==,所以2.2 2.3<<,因为222.23 4.9729,2.24 5.0176==,所以2.23 2.24,<<因为222.236 4.999696,2.237 5.004169==,所以2.236 2.237<<,2.24≈.(2)①因为3.12=9.61,3.22=10.24,所以3.1 3.2<<,所以5.12 5.2<<,所以2⎤⎦=5;故答案为:5;②因为12,23<<<,所以1,2a b ==,所以原式12=)12123=-== 【点睛】本题考查了利用夹逼法求算术平方根的近似值、对算术平方根的整数和小数部分的认识以及实数的简单计算,属于常考题型,正确理解题意、熟练掌握算术平方根的相关知识是解题关键.24.(1)-34;(2)3【分析】(1)利用乘方、立方、二次根式、开立方等概念分别化简每项,再整理计算即可; (2)利用绝对值的意义化简每一项,再整理计算即可.【详解】解:(1)()2320181122⎛⎫-+- ⎪⎝⎭ ()()118444=-+-⨯+-⨯()1321=--+-=-34;(233=-+-+-3=【点睛】此题考查了有理数的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.25.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x 、y 的值,然后求出z 的值,再根据平方根的定义解答.【详解】,∴x+1=0,2-y=0,解得x=-1,y=2,∵z 是64的方根,∴z=8所以,x y z -+=-1-2+8=5,所以,x y z -+的平方根是【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.26.(1)a =1,b ﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a ,b 的值,(2)根据开平方运算,可得平方根.【详解】解:(1<,∴4<<5,∴1﹣3<2,∴a=1,b4;(2)(﹣a)3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.。
江苏省镇江市2024-2025学年苏科版数学七年级上册第二次月考模拟卷(满分100分,时间90分钟)一、选择题(本题共8小题,每题3分,共24分)1.-2的绝对值是( )A. 2B.C.D. 2.下列方程中,是一元一次方程的是( )A. B. C. D. 3. 下列计算正确的是( )A. B. C. D. 4. 已知,下列等式中成立的是( )A. B. C. D. 5.下列立体图形中,有五个面的是( )A. 四棱锥B. 五棱锥C. 四棱柱D. 五棱柱6. 《九章算术》记载了这样一道题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?假设井深为x 尺,则符合题意的方程应为( )A. B. C. D.7.一件商品,按标价八折销售盈利20元,按标价六折销售亏损10元,求标价多少元?小明同学在解此题的时候,设标价为x 元,列出如下方程:.小明同学列此方程的依据是( )1212-2-21x y +=243x x -=0x =11x x-=32a b ab -=532y y -=22232x y yx x y -=277a a a +=ax ay =x y =11ax ay +=+ax ay =-33ax ay+=-114134x x -=-3441x x +=+114134x x +=+3441x x +=+()()0.8200.610x x -=+A. 商品的利润不变B. 商品的售价不变C. 商品的成本不变D. 商品的销售量不变8.根据如图所示的计算程序,若输出的值,则输入的值为( )A. 或1B. 或C. 1或D. 或1或二、填空题(本题共8小题,每题3分,共24分)9.单项式的系数是______.10.“x 的2倍与5的差等于0”,用方程表示为______.11.如果是方程的解,那么的值是_____.12.已知的值是 5,则 的值为________.13.如图,是一个正方体的表面展开图,若该正方体三组相对面上的数的和都相等,则_____.14.实数在数轴上的位置如图所示,则化简的结果为________.15.若是关于x 的一元一次方程的解,则的值为______.16.将图1中周长为24的长方形纸片剪成1号、2号、3号、4号四个正方形和5号长方形,并将它们按图2的方式放入周长为36的长方形中,则没有覆盖的阴影部分的周长为_________.=2y -x 4-4-1-1-4-1-234xy -x 2=1x a 12+=-a 222x y -+22x y -x y +=a b 、a b -2x =320220ax bx +-=39a b +三、解答题(本题共8小题,共52分)17.(本题6分)计算或化简:(1) (2)3(2x 2-xy )-(x 2+xy -6)18.(本题6分)解方程:(1);(2).19.(本题6分)老师在黑板上写了一个正确的演算过程,再用手捂住多项式,形式如下:(1)求所捂住的多项式;(2)当,时,求所捂住的多项式的值.13(48)(1)64-⨯-+2383x x +=-21132x x --=()22222445a ab b a b --+=-3a =1b =-20.(本题6分)我们规定:若关于x 的一元一次方程的解为,则称该方程为“和方程”.例如:的解为且,则该方程为和方程.(1)判断方程是否是和方程?(2)若关于x 的一元一次方程是和方程,求m 的值.21.(本题6分)如图,为一个无盖长方体盒子的展开图(重叠部分不计),设高为,根据图中数据.(1)该长方体盒子的宽为____________cm ,长为____________cm ;(用含的代数式表示)(2)若长比宽多2cm ,求盒子的容积.22.(本题6分)如图是由7个同样大小的小正方体搭成的几何体.(1)请分别画出它的主视图、左视图和俯视图.(2)这个组合几何体的表面积为______个平方单位(包括底面积).ax b =a b +24x =-2x =-()224-=+-3 4.5x =-41x m =-cm x x23.(本题8分)某社区超市第一次用6000元购进一批甲乙两种商品,其中甲商品的件数比乙商品件数的2倍少30件,已知甲商品的进价为22元/件,售价为29元/件,乙商品的进价为30元/件,售价为40元/件.(1)求超市购买的这批货中甲、乙两种商品各有多少件?(2)该超市将第一次购进的甲,乙两种商品全部售出后一共可获得多少利润?(3)该超市第二次分别以第一次同样的进价购进第二批甲乙两种商品.其中乙商品的件数是第一批乙商品件数的3倍,甲商品件数不变,甲商品按原售价销售,乙商品在原价的基础上打折销售,第二批商品全部售出后获得的总利润比第一批获得的总利润多720元,求第二批乙商品在原价基础上打几折销售?24.(本题8分)两个完全相同的长方形、,如图所示放置在数轴上.(1)长方形的面积是______.(2)若点在线段上,且,求点在数轴上表示的数.(3)若长方形、分别以每秒1个单位长度、3个单位长度沿数轴正方向移动.设两个长方形重叠部分的面积为,移动时间为.①整个运动过程中,的最大值是______,持续时间是______.②当是长方形面积一半时,求的值.ABCD EFGH ABCD P AF 10PE PF +=P ABCD EFGH S t S S ABCD t简要答案一、选择题(本题共8小题,每题3分,共24分)1.【答案】A2.【答案】C3.【答案】C4. 【答案】B5.【答案】A6. 【答案】D7.【答案】C8.【答案】A三、填空题(本题共8小题,每题3分,共24分)9.【答案】10.【答案】11.【答案】-212.【答案】313.【答案】14.【答案】15.【答案】303316. 【答案】30三、解答题(本题共8小题,共52分)17.(本题6分)【答案】(1) ;(2)5x 2-4xy+618.(本题6分)【答案】(1)(2)19.(本题6分)【答案】(1);(2)3820.(本题6分)【答案】(1)是 (2)34-250x -=32b a-76-1x =2x =2234a ab b --133m =-21.(本题6分)【答案】(1),(2)该无盖长方体盒子的容积为22.(本题6分)【答案】(1)根据三视图的意义画图如下:.(2)2823.(本题8分)【答案】(1)超市购进的这批货中甲种商品150件,乙种商品90件 (2)1950元 (3)9折24.(本题8分)【答案】(1)48;(2)点在数轴上表示的数是;(3)①,1秒;②或8()6x -()4x +348cm P 2-365t =。
江苏省镇江市镇江新区2024—2025学年七年级上学期10月月考数学试卷一、单选题1.有理数2024的相反数是( )A .2024B .2024-C .12024D .12024- 2.下列各式正确的是( )A .55--=B .()55--=-C .55-=-D .()55--= 3.在12,4-,0,5-这四个数中,最小的是( ) A .12 B .4- C .0 D .5-4.【正、负数】一种袋装食品标准净重为200g ,质监工作人员为了解该种食品每袋的净重与标准的误差,把食品净重205g 记为5g +,那么食品净重196g 就记为( )g . A .196+ B .196- C .4+ D .4-5.下列各组数中,互为相反数的是( )A .()7-+与()7+-B .(0.5)-+与0.5-+C .114-与45⎛⎫-- ⎪⎝⎭D .()0.01+-与1100⎛⎫-- ⎪⎝⎭6.如图,将刻度尺放在数轴上(数轴的单位长度是l cm ),刻度尺上“0cm ”和“3cm ”分别对应数轴上的3和0,那么刻度尺上“5.4cm ”对应数轴上的数为( )A . 1.4-B . 2.6-C . 2.4-D . 1.6- 7.我们学过+、-、⨯、÷这四种运算,现在规定“※”是一种新的运算,A B ※表示:5A B -,如:4354317=⨯-=※,那么()765=※※( )A .5B .10C .15D .208.已知有理数a 、b 、c ,其中a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于本身的数,则a +b +c 的值是( )A .0B .﹣2C .﹣2或0D .﹣1或19.已知a 、b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .0ab >C .0a b +>D .0a b -<10.将九个数分别填在3×3 (3行3列)的方格中,如果满足每个横行,每个竖列和每条对角线上的三个数之和都等于m ,则将这样的图称为“和m 幻方”.如图①为“和15幻方”,图②为“和0幻方”,图③为“和39幻方”,若图④为“和m 幻方”,则m 的值等于( )A .6B .3C .﹣6D .﹣9二、填空题11.32-的倒数是. 12.计算:83-⨯=.13.比较大小:2-32-(填“<”或“>”或“=”). 14.已知小明的身份证号是:321121************,那么他出生的月份是月.15.如图,数轴上的点M ,P ,N ,Q 分别表示四个有理数,若点M ,N 表示的有理数互为相反数,则图中表示正数的点的个数是个.16.如图,正六边形ABCDEF (每条边都相等)在数轴上的位置如图所示,点A 、F 对应的数分别为2-和1-,现将正六边形ABCDEF 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点E 所对应的数为0,连续翻转后数轴上2024这个数所对应的点是.三、解答题17.把有理数 2.8,14-,0,4+,5-,2,3.41,227-,163-,9分别填入下列数集内: (1)正整数集合{…… }(2)正数集合 {…… }(3)正分数集合{…… }(4)负分数集合{…… }18.把下列各数表示的点画在数轴上(请标注原数),并用“<”把这些数连接起来. ()3.5--,0,4--,()1--19.计算:(1)()()()714912+----+ (2)1141334734⎛⎫⎛⎫⎛⎫+-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)()2499⎛⎫÷-⨯- ⎪⎝⎭(4)()431567814⎛⎫-⨯-+ ⎪⎝⎭20.定义☆运算,观察下列运算:()()31518++=+☆,()()14721--=+☆,()()21416-+=-☆,()()15823+-=-☆,()01515-=+☆,()13013+=+☆.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号,异号.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,.(2)计算:()()11012+-⎡⎤⎣⎦☆☆.21.“滴滴”司机沈师傅从上午800915:~:在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)8636848433+-+-++--++,,,,,,,,,.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若汽车每千米耗油0.4升,则800915:~:汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价11元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午800915:~:一共收入多少元?22.观察下列各式:①111122-⨯=-+②11112323-⨯=-+③11113434-⨯=-+(1)按照上述规律,第4个等式是:__________;(2)写出第n个等式:__________;(3)根据上述规律,计算:111111112233420232024⎛⎫⎛⎫⎛⎫⎛⎫-⨯+-⨯+-⨯++-⨯⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L23.红红有6张写着以下数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是;(3)从中取出除0以外的其他4张卡片,将这4个数字进行加、减、乘、除等混合运算,使运算结果为24(注:每个数字只能用一次),请写出两种符合要求的运算式子:,.24.如图,点P、Q在数轴上表示的数分别是-8、4,点P以每秒2个单位的速度运动,点Q 以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为_______,点P、Q之间的距离是______个单位;(2)经过__________秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.。
苏科版七年级苏科初一下册第二学期月考数学试卷(含答案)一、选择题1.计算(﹣2a 2)•3a 的结果是( ) A .﹣6a 2B .﹣6a 3C .12a 3D .6a 32.已知多项式x a -与22x x -的乘积中不含2x 项,则常数a 的值是( ) A .2-B .0C .1D .23.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12nπ⎛⎫ ⎪⎝⎭B .14nπ⎛⎫ ⎪⎝⎭C .2112n π+⎛⎫ ⎪⎝⎭D .2112n π-⎛⎫ ⎪⎝⎭4.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( ) A .a=2,b=3 B .a=-2,b=-3 C .a=-2,b=3 D .a=2,b=-3 5.若(x-2y)2 =(x+2y)2+M,则M= ( ) A .4xy B .- 4xy C .8xy D .-8xy6.如图,下列结论中不正确的是( )A .若∠1=∠2,则AD ∥BCB .若AE ∥CD ,则∠1+∠3=180°C .若∠2=∠C ,则AE ∥CDD .若AD ∥BC ,则∠1=∠B 7.计算a 2•a 3,结果正确的是( ) A .a 5B .a 6C .a 8D .a 98.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .9.计算a 10÷a 2(a≠0)的结果是( ) A .5a B .5a - C .8a D .8a - 10.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( ) A .2a +2b -2cB .2a +2bC .2cD .011.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .12.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩无解,则m 的取值范围是( )A .23m ≤B .23m <C .23m ≥D .23m >二、填空题13.若24x mx ++是完全平方式,则m =______.14.多项式2412xy xyz +的公因式是______.15.已知方程组,则x+y=_____.16.如果62x y =⎧⎨=-⎩是关于x 、y 的二元一次方程mx -10=3y 的一个解,则m 的值为_____.17.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________. 18.已知:()521x x ++=,则x =______________.19.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.20.不等式1x 2x 123>+-的非负整数解是______. 21.已知23x y +=,用含x 的代数式表示y =________.22.如图,两块三角板形状、大小完全相同,边//AB CD 的依据是_______________.23.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________. 24.已知a+b=5,ab=3,求: (1)a 2b+ab 2; (2)a 2+b 2.三、解答题25.如图,已知ABC 中,,AD AE 分别是ABC 的高和角平分线.若44B ∠=︒,12DAE ∠=︒,求C ∠的度数.26.计算:(1)22(2).(3)xy xy (2)23(21)ab a b ab -+-(3)(32)(32)x y x y +- (4)()()a b c a b c ++-+27.如图,在方格纸内将ABC ∆水平向右平移4个单位得到'''A B C ∆. (1)补全'''A B C ∆,利用网格点和直尺画图; (2)图中AC 与''A C 的位置关系是: ; (3)画出ABC ∆中AB 边上的中线CE ;(4)平移过程中,线段AC 扫过的面积是: .28.已知a +b =5,ab =-2.求下列代数式的值: (1)22a b +;(2)22232a ab b -+.29.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b )2=a 2+2ab+b 2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式: .(2)利用(1)中得到的结论,解决下面的问题:若a+b+c =10,ab+ac+bc =35,则a 2+b 2+c 2= .(3)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a 、b 的长方形纸片拼出一个面积为(2a+b )(a+2b )长方形,则x+y+z = . (知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x 的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式: .30.先化简,再求值:()()()()2212112,x x x x x --+---其中2230x x --=. 31.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y q x y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.32.(知识回顾):如图①,在△ABC 中,根据三角形内角和定理,我们知道∠A +∠B +∠C =180°. 如图②,在△ABC 中,点D 为BC 延长线上一点,则∠ACD 为△ABC 的一个外角.请写出∠ACD 与∠A 、∠B 的关系,直接填空:∠ACD = .(初步运用):如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点. (1)若∠A =70°,∠DBC =150°,则∠ACB = °.(直接写出答案) (2)若∠A =70°,则∠DBC +∠ECB = °.(直接写出答案)(拓展延伸):如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =70°,∠P =150°,则∠DBP +∠ECP = °.(请说明理由)(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =40°,求出∠A 和∠P 之间的数量关系,并说明理由.(3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN . 33.先化简,再求值:2(1)(3)(2)(2)x x x x x ---++-,其中x =﹣2.34.如图,有一块长为(3)a b +米,宽为(2)a b +米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a 米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.35.利用多项式乘法法则计算: (1)()()22+-+a b a ab b= ;()()22a b a ab b -++ = .在多项式的乘法公式中,除了平方差公式,完全平方公式之外,如果把上面计算结果作为结论逆运用,则成为因式分解中的立方和与立方差公式.已知2,1a b ab -==,利用自己所学的数学知识,以及立方和与立方差公式,解决下列问题:(2)22a b += ;(直接写出答案)(3)33a b -= ;(直接写出答案) (4)66a b += ;(写出解题过程)36.装饰公司为小明家设计电视背景墙时需要A 、B 型板材若干块,A 型板材规格是a ⨯b ,B 型板材规格是b ⨯b .现只能购得规格是150⨯b 的标准板材.(单位:cm )(1)若设a =60cm ,b =30cm .一张标准板材尽可能多的裁出A 型、B 型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.裁法一 裁法二 裁法三 A 型板材块数 1 2 0 B 型板材块数3mn则上表中, m =___________, n =__________;(2)为了装修的需要,小明家又购买了若干C 型板材,其规格是a ⨯a ,并做成如下图的背景墙.请写出下图中所表示的等式:__________;(3)若给定一个二次三项式2a 2+5ab +3b 2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B用单项式乘单项式的法则进行计算. 【详解】解:(-2a 2)·3a=(-2×3)×(a 2·a)=-6a 3 故选:B . 【点睛】本题考查单项式乘单项式,掌握运算法则正确计算是解题关键.2.A解析:A 【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可. 【详解】解:()232()2(2)2x a x x x a x ax --+-=+, ∵不含2x 项, ∴(2)0a -+=, 解得2a =-. 故选:A . 【点睛】本题主要考查单项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键.3.C解析:C 【分析】首先分析题意,找到规律,并进行推导得出答案. 【详解】 根据题意得,n ≥2, S 1=12π×12=12π, S 2=12π﹣12π×(12)2, … S n =12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n ﹣1]2, S n +1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n ﹣1]2﹣12π×[(12)n ]2, ∴S n ﹣S n +1=12π×(12)2n =(12)2n +1π. 故选C .考查学生通过观察、归纳、抽象出数列的规律的能力.4.B解析:B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.5.D解析:D【分析】根据完全平方公式的运算法则即可求解.【详解】∵(x-2y)2 =(x+2y)2+M∴M=(x-2y)2 -(x+2y)2=x2-4xy+4y2-x2-4xy-4y2=-8xy故选D.【点睛】此题主要考查完全平方公式的运算,解题的关键是熟知完全平方公式的运算法则.6.D解析:D【分析】由平行线的性质和判定解答即可.【详解】解:A、∵∠1=∠2,∴AD∥BC,原结论正确,故此选项不符合题意;B、∵AE∥CD,∴∠1+∠3=180°,原结论正确,故此选项不符合题意;C、∵∠2=∠C,∴AE∥CD,原结论正确,故此选项不符合题意;D、∵AD∥BC,∴∠1=∠2,原结论不正确,故此选项符合题意;故选:D.【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解决问题的关键,注意它们之间的区别.7.A解析:A 【分析】此题目考查的知识点是同底数幂相乘.把握同底数幂相乘,底数不变,指数相加的规律就可以解答..【详解】同底数幂相乘,底数不变,指数相加.m n m n a a a +⋅=所以23235.a a a a +⋅== 故选A. 【点睛】此题重点考察学生对于同底数幂相乘的计算,熟悉计算法则是解本题的关键.8.A解析:A 【解析】 【分析】利用平移的性质,结合轴对称、旋转变换和位似图形的定义判断得出即可. 【详解】A 、可以通过平移得到,故此选项正确;B 、可以通过旋转得到,故此选项错误;C 、是位似图形,故此选项错误;D 、可以通过轴对称得到,故此选项错误; 故选A . 【点睛】本题考查了平移的性质以及轴对称、旋转变换和位似图形,正确把握定义是解题的关键.9.C解析:C 【解析】 【分析】根据同底数幂的除法法则即可得. 【详解】1021028(0)a a a a a -÷==≠故选:C. 【点睛】本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.10.D解析:D【解析】试题解析:∵a、b、c为△ABC的三条边长,∴a+b-c>0,c-a-b<0,∴原式=a+b-c+(c-a-b)=0.故选D.考点:三角形三边关系.11.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D可以通过图案①平移得到.故答案选:D.【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象. 12.A解析:A【分析】分别求出各不等式的解集,再根据不等式组无解即可得出m的取值范围.【详解】解:202x mx m-<⎧⎨+>⎩①②解不等式①,得x<2m.解不等式②,得x>2-m.因为不等式组无解,∴2-m≥2m.解得23 m≤.故选A.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.二、填空题13.【分析】这里首末两项是x 和2这两个数的平方,那么中间一项为加上或减去x 和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去和2积的2倍,故,故答案为:.【点睛】本题是完全平方公解析:4±【分析】这里首末两项是x 和2这两个数的平方,那么中间一项为加上或减去x 和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去x 和2积的2倍,故4m =±,故答案为:4±.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.14.【分析】根据公因式的定义即可求解.【详解】∵=(y+3z ),∴多项式的公因式是,故答案为:.【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.解析:4xy【分析】根据公因式的定义即可求解.【详解】∵2412xy xyz +=4xy (y+3z ),∴多项式2412xy xyz +的公因式是4xy , 故答案为:4xy .【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.15.2【解析】由题意得,两个方程左右相加可得,4x+4y=8⇒x+y=2,故答案为2. 解析:2【解析】由题意得,两个方程左右相加可得,,故答案为2. 16.【分析】把x、y的值代入方程计算即可求出m的值.【详解】解:把代入方程得:6m-10=﹣6,解得:m=故答案为:【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右解析:2 3【分析】把x、y的值代入方程计算即可求出m的值.【详解】解:把62xy=⎧⎨=-⎩代入方程得:6m-10=﹣6,解得:m=2 3故答案为:2 3【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右两边相等.17.m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.解析:m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.18.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.19.2【分析】根据点F是CE的中点,推出S△BEF=S△BEC,同理得S△EBC=S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC解析:2【分析】根据点F是CE的中点,推出S△BEF=12S△BEC,同理得S△EBC=12S△ABC,由此可得出答案.∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,高相等;∴S△BEF=12S△BEC,同理得S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=8,∴S△BEF=2,故答案为:2.【点睛】本题考查了三角形的性质,充分运用三角形的面积公式以及三角形的中线的性质是解本题的关键.20.0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x)>2(2x-1)去括号得3+3x>4x解析:0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x)>2(2x-1)去括号得3+3x>4x-2移项合并同类项得x<5非负整数解是0,1,2,3,4.本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.21.y=3-2x【解析】移项得:y=3-2x.故答案是:y=3-2x.解析:y=3-2x【解析】+=x y23移项得:y=3-2x.故答案是:y=3-2x.22.内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】解:由题意:,(内错角相等,两直线平行)故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的解析:内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】∠=∠,解:由题意:ABD CDB∴(内错角相等,两直线平行)//AB CD故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.23.【分析】首先求得方程的解,然后将代入到方程中,即可求得.【详解】移项,得,合并同类项,得,系数化为1,得,∵两方程同解,那么将代入方程,得,移项,得,系数化为1,得.故 解析:12【分析】首先求得方程23x x =-的解x ,然后将x 代入到方程4232x m x -=+中,即可求得m .【详解】解:23x x =-,移项,得23x x -=-,合并同类项,得3x -=-,系数化为1,得=3x ,∵两方程同解,那么将=3x 代入方程4232x m x -=+,得12211m -=,移项,得21m -=-,系数化为1,得12m =. 故12m =. 【点睛】 本题考查含有参数的一元一次方程同解问题,难度不大,真正理解方程的解的含义是顺利解题的关键.24.(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b +ab2=a解析:(1)15;(2)19.【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a 2b +ab 2=ab (a +b )=3×5=15(2)a 2+b 2=(a +b )2-2ab =52-2×3=19【点睛】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.三、解答题25.68︒【分析】根据已知首先求得∠BAD 的度数,进而可以求得∠BAE ,而∠CAE=∠BAE ,在△ACD 中利用内角和为180°,即可求得∠C .【详解】解:∵AD 是△ABC 的高,∠B=44︒,∴∠ADB=∠ADC =90︒,在△ABD 中,∠BAD=180︒-90︒-44︒=46︒,又∵ AE 平分∠BAC ,∠DAE=12︒,∴∠CAE=∠BAE=46︒-12︒=34︒,而∠CAD=∠CAE-∠DAE=34︒-12︒=22︒,在△ACD 中,∠C=180︒-90︒-22︒=68︒.故答案为68︒.【点睛】本题考查三角形中角度的计算,难度一般,熟记三角形内角和为180°是解题的关键.26.(1) 3512x y ;(2)3222-6-33a b a b ab +;(3) 229-4x y ;(4)2222-a ac c b ++ 【分析】(1)直接利用积的乘方和单项式乘单项式法则计算即可;(2)直接利用单项式乘多项式法则计算即可;(3)直接利用平方差公式计算即可;(4)先利用平方差公式展开,再利用完全平方公式计算即可.【详解】解:(1)原式2443x y xy =⋅3512x y =;(2)原式23233ab a b ab ab ab =-⋅-⋅+2232633a b a b ab =--+;(3)原式2294x y =-;(4)原式22()a c b =+-2222a ac c b =++-.【点睛】本题考查了整式乘法和乘法公式的运用,熟练掌握整式的乘法法则及乘法公式是解决本题的关键.27.(1)图见详解;(2)平行且相等;(3)图见详解;(4)28.【分析】(1)根据图形平移的性质画出△A B C '''即可;(2)根据平移的性质可得出AC 与A C ''的关系;(3)先取AB 的中点E ,再连接CE 即可;(4)线段AC 扫过的面积为平行四边形AA C C ''的面积,根据平行四边形的底为4,高为7,可得线段AC 扫过的面积.【详解】解:(1)如图所示,△A B C '''即为所求;(2)由平移的性质可得,AC 与A C ''的关系是平行且相等;故答案为:平行且相等;(3)如图所示,线段CE 即为所求;(4)如图所示,连接AA ',CC ',则线段AC 扫过的面积为平行四边形AA C C ''的面积,由图可得,线段AC 扫过的面积4728=⨯=.故答案为:28.【点睛】本题主要考查了利用平移变换进行作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.28.(1)29;(2)64.【分析】(1)根据完全平方公式得到()2222a b a b ab +=+-,然后整体代入计算即可; (2)根据完全平方公式得到()22223227a ab b a b ab -+=+-,然后整体代入计算即可.【详解】解:(1)()()2222252229a b a b b a =+-=-⨯-=+;(2)()()222222232242727257264a ab b a ab b ab a b ab -+=++-=+-=⨯-⨯-=.【点睛】本题考查了代数式求值,完全平方公式和整体代入的思想,熟练掌握完全平方公式是解题的关键.29.(1)(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ;(2)30;(3)9;(4)x 3﹣x =(x+1)(x ﹣1)x【分析】(1)依据正方形的面积=(a+b+c )2;正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc ,可得等式;(2)依据a 2+b 2+c 2=(a+b+c )2﹣2ab ﹣2ac ﹣2bc ,进行计算即可;(3)依据所拼图形的面积为:xa 2+yb 2+zab ,而(2a+b )(a+2b )=2a 2+4ab+ab+2b 2=2a 2+5b 2+2ab ,即可得到x ,y ,z 的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c )2;正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc , ∴(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ,故答案为:(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ;(2)∵(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ,∵a+b+c =10,ab+ac+bc =35,∴102=a 2+b 2+c 2+2×35,∴a 2+b 2+c 2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b )(a+2b )=xa 2+yb 2+zab ,∴2a 2+5ab+2b 2=xa 2+yb 2+zab , ∴225x y z =⎧⎪=⎨⎪=⎩,∴x+y+z =9,故答案为:9;(4)∵原几何体的体积=x 3﹣1×1•x =x 3﹣x ,新几何体的体积=(x+1)(x ﹣1)x ,∴x 3﹣x =(x+1)(x ﹣1)x .故答案为:x 3﹣x =(x+1)(x ﹣1)x .【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.30.6【解析】试题分析:先根据乘法公式和单项式乘以多项式的法则计算化简,根据化简的结果,将2230x x --=变形后整体代入计算即可.试题解析:原式=()()222441212x x x x x -+---- 222441222x x x x x =-+-+-+223x x =-+∵2230x x --=,∴223x x -=,∴原式=3+3=6.31.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3, 解得:m =6,n =4,则2m =12,8+n =12,所以2m =8+n ,所以A (5,3)是“爱心点”;当B (4,8)时,m ﹣1=4,22n +=8, 解得:m =5,n =14,显然2m ≠8+n ,所以B 点不是“爱心点”;(2)A、B两点的中点C在第四象限,理由如下:∵点A(a,﹣4)是“爱心点”,∴m﹣1=a,22n+=﹣4,解得:m=a+1,n=﹣10.代入2m=8+n,得2(a+1)=8﹣10,解得:a=﹣2,所以A点坐标为(﹣2,﹣4);∵点B(4,b)是“爱心点”,同理可得m=5,n=2b﹣2,代入2m=8+n,得:10=8+2b﹣2,解得:b=2.所以点B坐标为(4,2).∴A、B两点的中点C坐标为(2442,22-+-+),即(1,﹣1),在第四象限.(3)解关于x,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩,得:2x qy q⎧=-⎪⎨=⎪⎩.∵点B(x,y)是“爱心点”,∴m﹣1﹣q,22n+=2q,解得:m﹣q+1,n=4q﹣2.代入2m=8+n,得:﹣2q+2=8+4q﹣2,整理得﹣6q=4.∵p,q为有理数,若使p﹣6q结果为有理数4,则P=0,所以﹣6q=4,解得:q=﹣23.所以P=0,q=﹣23.【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.32.知识回顾:∠A+∠B;初步运用:(1)80;(2)250;拓展延伸:(1)220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由见解析;(3)见解析.【分析】知识回顾:根据三角形内角和即可求解.初步运用:(1)根据知识与回顾可求出∠DBC度数,进而求得∠ACB度数;(2)已知∠A度数,即可求得∠ABC+∠ACB度数,进而求得∠DBC+∠ECB度数.拓展延伸:(1)连接AP,根据三角形外角性质,∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,得到∠DBP+∠ECP=∠BAC+∠BPC,已知∠BAC=70°,∠BPC=150°,即可求得∠DBP+∠ECP度数;(2)如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,即可求出∠A和∠P之间的数量关系;(3)如图,延长BP交CN于点Q,根据角平分线定义,∠DBP=2∠MBP,∠ECP=2∠NCP,且∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,得到∠BPC=∠MBP+∠NCP,因为∠BPC=∠PQC+∠NCP,证得∠MBP=∠PQC,进而得到BM∥CN.【详解】知识回顾:∵∠ACD+∠ACB=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠A+∠B;故答案为:∠A+∠B;初步运用:(1)∵∠DBC=∠A+∠ACB,∠A=70°,∠DBC=150°,∴∠ACB=∠DBC﹣∠A=150°﹣70°=80°;故答案为:80;(2)∵∠A=70°,∴∠ABC+∠ACB=110°,∴∠DBC+∠ECB=360°﹣110°=250°,故答案为:250;拓展延伸:(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=70°,∠BPC=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=70°+150°=220°,故答案为:220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=40°,∴∠P=∠A+80°;(3)证明:如图,延长BP 交CN 于点Q ,∵BM 平分∠DBP ,CN 平分∠ECP ,∴∠DBP =2∠MBP ,∠ECP =2∠NCP ,∵∠DBP+∠ECP =∠A+∠BPC ,∠A =∠BPC ,∴2∠MBP+2∠NCP =∠A+∠BPC =2∠BPC ,∴∠BPC =∠MBP+∠NCP ,∵∠BPC =∠PQC+∠NCP ,∴∠MBP =∠PQC ,∴BM ∥CN .【点睛】本题考查了三角形内角和定理,三角形内角和为360°;三角形外角性质定理,三角形的任一外角等于不相邻的两个内角和;角平分线定义,根据角平分线定义证明;以及平行线的判定,内错角相等两直线平行.33.23x x +-;1-【分析】先通过整式的乘法及乘法公式对原式进行去括号,然后通过合并同类项进行计算即可化简原式,再将2x =-代入即可得解.【详解】解:原式222221343x x x x x x x =-+-++-=+-将2x =-代入,原式2(2)(2)34231=-+--=--=-.【点睛】本题主要考查了整式的混合运算,熟练掌握整式的乘法公式及合并同类项的运算方法是解决本题的关键.34.()2223a ab b ++平方米;40平方米. 【分析】(1)根据平移的原理,四块绿化面积可拼成一个长方形,其边长为原边长减去再减去道路宽为a 米,由此即可求绿化的面积的代数式;然后利用多项式乘多项式法则计算,去括号合并得到最简结果,将a 与b 的值代入计算即可求出值.【详解】解:根据题意得:22(3)(2)(2)()23a b a a b a a b a b a ab b +-+-=++=++(平方米).则绿化的面积是()2223a ab b ++平方米; 当3a =,2b =时,原式2223233240=⨯+⨯⨯+=(平方米).故当a =3,b =2时,绿化面积为40平方米.答:绿化的面积是()2223a ab b ++平方米;当a =3,b =2时,绿化面积为40平方米. 【点睛】此题考查整式的混合运算与代数式求值,掌握长方形的面积计算方法是解决问题的关键.35.(1)33+a b ,33a b -;(2)6;(3)14;(4)198【分析】(1)根据整式的混合运算法则展开计算即可;(2)利用完全平方公式变形,再代入求值;(3)利用立方差公式和完全平方公式变形,再代入求值;(4)利用立方差公式和完全平方公式变形,再代入求值;【详解】解:(1)()()22+-+a b a ab b=322223a a b ab a b ab b -++-+=33+a b()()22a b a ab b -++=322223a a b ab a b ab b ++---=33a b -,故答案为:33+a b ,33a b -;(2)22a b +=()22a b ab -+=2221+⨯=6;(3)33a b -=()()22a b a ab b -++=()()23a b a b ab ⎡⎤--+⎣⎦ =()22231⨯+⨯=14;(4)66a b +=()()224224a b aa b b +-+ =()()22222223a b ab a b a b ⎡⎤⎡⎤-++-⎢⎥⎣⎦⎣⎦=()()2222163+⨯- =198【点睛】本题考查了因式分解-运用公式法,正确的理解已知条件中的公式是解题的关键.36.(1)m =1,n =5;(2)(a +2b )2=a 2+4ab +4b 2;(3)2a 2+5ab +3b 2=(a +b )(2a +3b ),详见解析【分析】(1)结合图形和条件分析可以得出按裁法二裁剪时,可以裁出B 型板1块,按裁法三裁剪时,可以裁出5块B 型板;(2)看图即可得出所求的式子;(3)通过画图能更好的理解题意,从而得出结果.由于构成的是长方形,它的面积等于所给图片的面积之和,从而因式分解.【详解】(1)按裁法二裁剪时,2块A 型板材块的长为120cm ,150-120=30,所以可裁出B 型板1块,按裁法三裁剪时,全部裁出B 型板,150÷30=5,所以可裁出5块B 型板; ∴m=1,n=5.故答案为:1,5;(2)如下图:发现的等式为:(a +2b )2=a 2+4ab +4b 2;故答案为:(a +2b )2=a 2+4ab +4b 2.(3)按题意画图如下:∵构成的长方形面积等于所给图片的面积之和,∴2a 2+5ab +3b 2=(a +b )(2a +3b ).【点睛】本题考查了完全平方公式和几何图形的应用及一元一次方程的应用,关键是根据学生的画图能力,计算能力来解答.。
2020-2021学年江苏省镇江外国语学校七年级(上)第二次月考数学试卷一、填空题(共12小题).1.﹣8的绝对值是.2.地球与太阳之间的距离约为149 600 000千米,科学记数法表示为千米.3.如果﹣3x2a﹣1+6=0是关于x的一元一次方程,那么a=.4.若代数式2a﹣1与﹣1+a相等,则a=.5.若x=2是方程ax﹣8=0的解,则a=.6.已知4x+2=0,则2x=.7.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n=.8.如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为9,则x+y=.9.若a2﹣3b=4,则6b﹣2a2+2020=.10.按照如图所示的操作步骤,若输出y的值为4,则输入的x的值为.11.如果关于x的方程2x﹣2=0和方程2﹣=0的解相同,则k的值为.12.如图,在相距150个单位长度的直线跑道AB上,机器人甲从端点A出发,匀速往返于端点A、B之间,机器人乙同时从端点B出发,以大于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计.若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为30个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离则为个单位长度.二、选择题(本大题共有5小题,每小题3分,共计15分.)13.下列几何体是棱锥的是()A.B.C.D.14.下列计算正确的是()A.3a2b﹣4a2b=﹣a2b B.7a﹣3a=4C.3a+2a=5a2D.3a+4b=7ab15.某车间有21名工人生产螺栓和螺母,每人每小时能生产螺栓12个或螺母18个,现分配x名工人生产螺栓,其余的工人生产螺母,并使得每小时生产的螺栓和螺母可按1:2配套,则所列方程为()A.12x=18(21﹣x)B.2×12x=18(21﹣x)C.2×18x=12(21﹣x)D.12x=2×18(21﹣x)16.某商店以60元相同的价格卖出两件进价不同的衣服,其中一件盈利25%,另一件亏本25%,那么这两件衣服卖出后,商店是()A.赚8元B.赚15元C.亏8元D.亏15元17.如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.5三、解答题(本大题共有11小题,共计81分)18.计算:(1)(﹣﹣)×(﹣36);(2)3×(﹣)+8÷(﹣2)2.19.解方程:(1)2x+7=25﹣x;(2)﹣1=.20.先化简,再求值:x2+(2xy﹣3y2)﹣2(x2+xy﹣2y2),其中x=1,y=2.21.设y1=﹣x+3,y2=2x﹣3,(1)当x为何值时,y1=y2?(2)当x为何值时,y1比y2的值的2倍大2?22.规定一种新的运算:=ad﹣bc.例如:=1×4﹣2×3=﹣2.(1)按照这个规定,请你计算的值;(2)按照这个规定,当=5时,求x的值.23.周日马老师一家约了几家亲戚共10人去公园游玩,已知公园的门票是成人票60元一张,儿童票是30元一张,现在一共花费了540元门票钱,请问有多少成人和多少儿童一起去游玩?24.张老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说:“如果老师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内按全票价的6折优惠.”若全票价为240元,当学生人数为多少人时,两家旅行社的收费一样多?25.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分a超过150千瓦时,但不超过300千瓦时的部分b超过300千瓦时的部分a+0.1 2020年11月份,该市居民甲用电100千瓦时,交费40元;居民乙用电200千瓦时,交费82元.(1)直接写出上表中a、b的值:a=,b=.(2)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月交费176元?26.如图,已知一周长为30cm的圆形轨道上有相距10cm的A、B两点.(备注:圆形轨道上两点的距离是指圆上这两点间较短部分展直后的线段长)(1)若动点P从A点出发,以2cm/s的速度,在轨道上按逆时针方向运动,与此同时,动点Q从B出发,以3cm/s的速度,在轨道上按顺时针方向运动.直接写出动点P、Q 第一次相遇时间t=s.(2)若动点P从A点出发,以acm/s的速度,在轨道上按逆时针方向运动,与此同时,动点Q从B出发,以3cm/s的速度,按同样的方向运动.设运动时间为t(s),当t=5时,动点P、Q第一次相遇时a的值.(3)若a>3,在P、第二次相遇前,当动点P、Q在轨道上相距12cm时,求t的值.2020-2021学年江苏省镇江市润州区七年级(上)第二次月考数学试卷参考答案与试题解析一、填空题(本大题共有12小题,每小题2分,共计24分)1.﹣8的绝对值是8.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解:﹣8的绝对值是8.2.地球与太阳之间的距离约为149 600 000千米,科学记数法表示为 1.496×108千米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:149 600 000=1.496×108,故答案为:1.496×108.3.如果﹣3x2a﹣1+6=0是关于x的一元一次方程,那么a=1.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).解:由﹣3x2a﹣1+6=0是关于x的一元一次方程,得2a﹣1=1.解得a=1,故答案为:1.4.若代数式2a﹣1与﹣1+a相等,则a=0.【分析】根据题意得出方程解答即可.解:根据题意得:2a﹣1=﹣1+a,移项得:2a﹣a=﹣1+1,合并同类项得:a=0,故答案为:0.5.若x=2是方程ax﹣8=0的解,则a=4.【分析】根据方程的解是使方程成立的未知数的值,把方程的解代入方程,可得答案.解:把x=2 代入方程ax﹣8=0,得:2a﹣8=0,解得:a=4,故答案是:4.6.已知4x+2=0,则2x=﹣1.【分析】根据等式的性质解答即可,等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.解:4x+2=0,4x+2﹣2=0﹣2,4x=﹣2,∴2x=﹣1.故答案为:﹣1.7.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n=1.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2m+1=3m ﹣1,10+4n=6,求出n,m的值,再代入代数式计算即可.解:∵﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,∴2m+1=3m﹣1,10+4n=6,∴n=﹣1,m=2,∴m+n=2﹣1=1.故答案为1.8.如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为9,则x+y=12.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形判断出相对面,再根据相对面上的两数之和为9求出x、y,然后相加计算即可得解.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“2”与“x”是相对面,“4”与“y”是相对面,∵相对面上两个数之和为9,∴x=7,y=5,∴x+y=7+5=12.故答案为:12.9.若a2﹣3b=4,则6b﹣2a2+2020=2012.【分析】由a2﹣3b=4得:a2=4+3b,代入计算,即可得出结果.解:∵a2﹣3b=4,∴a2=4+3b,∴6b﹣2a2+2020=6b﹣2(4+3b)+2020=6b﹣8﹣6b+2020=2012,故答案为:2012.10.按照如图所示的操作步骤,若输出y的值为4,则输入的x的值为1或﹣5.【分析】根据如图所示的操作步骤,可得x与2的平方和等于4与5的和,据此求出x 的值是多少即可.解:∵(x+2)2=4+5,∴(x+2)2=9,∴x+2=±3,解得x=1或x=﹣5,所以输入的x的值为1或﹣5.故答案为:1或﹣5.11.如果关于x的方程2x﹣2=0和方程2﹣=0的解相同,则k的值为7.【分析】先求出2x﹣2=0的解,再代入2﹣=0即可解得答案.解:由2x﹣2=0得x=1,而方程2x﹣2=0和方程2﹣=0的解相同,∴x=1是2﹣=0的解,∴2﹣=0,解得k=7,故答案为:7.12.如图,在相距150个单位长度的直线跑道AB上,机器人甲从端点A出发,匀速往返于端点A、B之间,机器人乙同时从端点B出发,以大于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计.若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为30个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离则为90个单位长度.【分析】设此时相遇点距点A为m个单位,根据题意列方程即可得到结论.解:∵相遇地点与点A之间的距离为30个单位长度,∴相遇地点与点B之间的距离为150﹣30=120个单位长度,设机器人甲的速度为v,∴机器人乙的速度为v=4v,∴机器人甲从相遇点到点B所用的时间为,机器人乙从相遇地点到点A再返回到点B所用时间为=,而>,∴设机器人甲与机器人乙第二次迎面相遇时,机器人乙从第一次相遇地点到点A,返回到点B,再返回向A时和机器人甲第二次迎面相遇,设此时相遇点距点A为m个单位,根据题意得,30+150+150﹣m=4(m﹣30),∴m=90,故答案为:90.二、选择题(本大题共有5小题,每小题3分,共计15分.)13.下列几何体是棱锥的是()A.B.C.D.【分析】根据棱锥的定义及特征即可解题.解:解:A、是四棱柱,A选项不符合题意;B、是棱锥,B选项符合题意;C、是棱台,C选项不符合题意;D、是球,D选项不符合题意;故选:B.14.下列计算正确的是()A.3a2b﹣4a2b=﹣a2b B.7a﹣3a=4C.3a+2a=5a2D.3a+4b=7ab【分析】根据合并同类项的法则进行计算即可.解:A、3a2b﹣4a2b=﹣a2b,故A正确;B、7a﹣3a=4a,故B错误;C、3a+2a=5a,故C错误;D、3a+4b不能合并,故D错误;故选:A.15.某车间有21名工人生产螺栓和螺母,每人每小时能生产螺栓12个或螺母18个,现分配x名工人生产螺栓,其余的工人生产螺母,并使得每小时生产的螺栓和螺母可按1:2配套,则所列方程为()A.12x=18(21﹣x)B.2×12x=18(21﹣x)C.2×18x=12(21﹣x)D.12x=2×18(21﹣x)【分析】设分配x名工人生产螺栓,则(21﹣x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.解:设分配x名工人生产螺栓,则(21﹣x)名生产螺母,∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个,∴可得2×12x=18(21﹣x).故选:B.16.某商店以60元相同的价格卖出两件进价不同的衣服,其中一件盈利25%,另一件亏本25%,那么这两件衣服卖出后,商店是()A.赚8元B.赚15元C.亏8元D.亏15元【分析】设盈利的每件的进价为x元,亏损的进价为y元,根据其中一件盈利25%,另一件亏损25%,可求出本金,从而可列方程求出解.解:设盈利25%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.25x=60,解得:x=48,类似地,设另一件亏损衣服的进价为y元,它的商品利润是﹣25%y元,列方程y+(﹣25%y)=60,解得:y=80.那么这两件衣服的进价是x+y=128元,而两件衣服的售价为120元.∴80+48﹣60﹣60=8(元),所以,这两件衣服亏损8元.故选:C.17.如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.5【分析】根据等式的性质:等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立,可得答案.解:一个球等于2.5个长方体,三个球等于个长方体;一个长方体等于正方体,个长方体等于5个正方体,即三个球体的重量等于5个正方体的重量,故选:D.三、解答题(本大题共有11小题,共计81分)18.计算:(1)(﹣﹣)×(﹣36);(2)3×(﹣)+8÷(﹣2)2.【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加法可以解答本题.解:(1)(﹣﹣)×(﹣36)=×(﹣36)﹣×(﹣36)﹣×(﹣36)=﹣18+30+21=33;(2)3×(﹣)+8÷(﹣2)2=(﹣1)+8÷4=(﹣1)+2=1.19.解方程:(1)2x+7=25﹣x;(2)﹣1=.【分析】(1)移项、合并同类项、系数化为1,解答即可;(2)去分母、去括号、移项、合并同类项、系数化为1,解答即可.解:(1)2x+7=25﹣x,移项得:2x+x=25﹣7,合并同类项得:3x=18,系数化为1得:x=6;(2),去分母得:3(x+2)﹣12=2(2x﹣1),去括号得:3x+6﹣12=4x﹣2,移项得:3x﹣4x=﹣2+12﹣6,合并同类项得:﹣x=4,系数化为1得:x=﹣4.20.先化简,再求值:x2+(2xy﹣3y2)﹣2(x2+xy﹣2y2),其中x=1,y=2.【分析】根据整式的运算法则即可求出答案.解:当x=1,y=2时,原式=x2+2xy﹣3y2﹣2x2﹣2xy+4y2=﹣x2+y2=321.设y1=﹣x+3,y2=2x﹣3,(1)当x为何值时,y1=y2?(2)当x为何值时,y1比y2的值的2倍大2?【分析】(1)根据题意列出方程解答即可;(2)根据题意列出方程解答即可.解:(1)∵y1=﹣x+3,y2=2x﹣3,∴﹣x+3=2x﹣3,解得:x=2,即当x=2时,y1=y2;(2)∵y1=﹣x+3,y2=2x﹣3,∴﹣x+3=2(2x﹣3)+2,解得:x=,即当x=时,y1比y2的值的2倍大2.22.规定一种新的运算:=ad﹣bc.例如:=1×4﹣2×3=﹣2.(1)按照这个规定,请你计算的值;(2)按照这个规定,当=5时,求x的值.【分析】(1)根据题中给出的例子列式计算即可;(2)根据题中给出的例子列方程计算即可.解:(1)=5×4﹣2×6=20﹣12=8;(2)根据题意可得:,去括号得:x﹣2﹣2x﹣4=5,移项得:x﹣2x=5+2+4,合并同类项得:﹣x=11,系数化为1得:x=﹣11.23.周日马老师一家约了几家亲戚共10人去公园游玩,已知公园的门票是成人票60元一张,儿童票是30元一张,现在一共花费了540元门票钱,请问有多少成人和多少儿童一起去游玩?【分析】设去游玩的成人有x人,则儿童有(10﹣x)人,利用总价=单价×数量,即可得出关于x的一元一次方程,解之即可得出去游玩的成人人数,再将其代入(10﹣x)中即可求出去游玩的儿童人数.解:设去游玩的成人有x人,则儿童有(10﹣x)人,依题意得:60x+30(10﹣x)=540,解得:x=8,∴10﹣x=10﹣8=2.答:有8个成人和2个儿童一起去游玩.24.张老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说:“如果老师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内按全票价的6折优惠.”若全票价为240元,当学生人数为多少人时,两家旅行社的收费一样多?【分析】可设学生人数为x人,则甲旅行社收费为(240+120x)元,乙旅行社收费为0.6×240(x+1)元,根据“两家旅行社的收费一样多”列方程求解即可.解:设学生人数为x人,根据题意得:240+120x=0.6×240(x+1)240+120x=144+144x240﹣144=144x﹣120x24x=96解得:x=4,所以当学生人数为4人,两家旅行社的收费一样.25.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分a超过150千瓦时,但不超过300千瓦时的部分b超过300千瓦时的部分a+0.1 2020年11月份,该市居民甲用电100千瓦时,交费40元;居民乙用电200千瓦时,交费82元.(1)直接写出上表中a、b的值:a=0.4,b=0.44.(2)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月交费176元?【分析】(1)利用居民甲用电100千瓦时,交电费40元,可以求出a的值,进而利用居民乙用电200千瓦时,交电费82元,求出b的值即可;(2)首先判断出用电是否超过300千瓦时,再根据收费方式可得等量关系:前150千瓦时的部分的费用+超过150千瓦时+超过300千瓦时的部分的费用=交费176元,根据等量关系列出方程,再解即可.解:(1)a=40÷100=0.4,150×0.4+50b=82,解得b=0.44,故答案为0.4,0.44;(2)若用电300千瓦时,0.4×150+0.44×150=126<176,所以用电超过300千瓦时.设该户居民月用电x千瓦时,则0.4×150+0.44×150+0.5(x﹣300)=176,解得x=552,答:该户居民月用电552千瓦时,其当月交费176元.26.如图,已知一周长为30cm的圆形轨道上有相距10cm的A、B两点.(备注:圆形轨道上两点的距离是指圆上这两点间较短部分展直后的线段长)(1)若动点P从A点出发,以2cm/s的速度,在轨道上按逆时针方向运动,与此同时,动点Q从B出发,以3cm/s的速度,在轨道上按顺时针方向运动.直接写出动点P、Q 第一次相遇时间t=4s.(2)若动点P从A点出发,以acm/s的速度,在轨道上按逆时针方向运动,与此同时,动点Q从B出发,以3cm/s的速度,按同样的方向运动.设运动时间为t(s),当t=5时,动点P、Q第一次相遇时a的值.(3)若a>3,在P、第二次相遇前,当动点P、Q在轨道上相距12cm时,求t的值.【分析】(1)根据P运动的距离+Q运动的距离=20列出方程,解答即可;(2)分a>3及a<3两种情况,根据路程=速度之差×时间,即可得出关于a的一元一次方程,解之即可得出结论;(3)分两点第一次相遇前相距12cm及两点第一次相遇后相距12cm两种情况考虑,利用路程=速度×时间,结合两点相距12cm,即可得出关于t的一元一次方程,解之即可得出结论.解:(1)根据题意得:3t+2t=30﹣10,解得:t=4(s),故答案为:4;(2)当a>3时,5(a﹣3)=30﹣10,解得:a=7;当a<3时,5(3﹣a)=10,解得:a=1.答:a的值为1或7;(3)∵a>3,∴a=7.当两点第一次相遇前相距12cm时,7t﹣3t=12﹣10或7t﹣3t=30﹣10﹣12,解得:t=或t=2;当两点第一次相遇后相距12cm时,7t﹣3t=30﹣10+12或7t﹣3t=30﹣10+(30﹣12),解得:t=8或t=.答:当它们在轨道上相距12cm时,t的值为或2或8或.。
2023-2024学年江苏省镇江市京口区七年级(下)月考数学试卷(5月份)一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知,则下列不等式成立的是()A. B. C. D.2.是下面哪个二元一次方程的解()A. B. C. D.3.不等式的解集在数轴上可表示为()A. B.C. D.4.已知,,,那么a,b,c之间的大小关系是()A. B. C. D.5.已知,代数式的值是()A.2B.C.4D.6.“母亲节”当天,小明去花店为妈妈选购鲜花,若康乃馨每枝2元,百合每枝3元,小明计划用30元购买这两种鲜花两种都买,则不同的购买方案共有()A.3种B.4种C.5种D.6种二、填空题:本题共12小题,每小题2分,共24分。
7.计算:______.8.数据用科学记数法可表示为______.9.六边形的内角和等于______度.10.______.11.已知,则的值为______.12.不等式的正整数解是______.13.已知三角形三条边长分别是2、a、3,且a为奇数,则______.14.若化简的结果中不含x的一次项,则数m的值为______.15.如果x,y满足,则______.16.已知关于x、y的方程组的解满足方程,则_____.17.关于x的不等式的解集为,则关于x的不等式的解集是______.18.某校组织学生乘汽车去自然保护区野营,汽车先以的速度在平路上行驶,后又以的速度爬坡到达目的地,共用了;原路返回时,汽车以的速度下坡,又以的速度在平路上行驶,共用了则学校距自然保护区______三、解答题:本题共8小题,共78分。
解答应写出文字说明,证明过程或演算步骤。
19.本小题16分计算;化简;化简;化简20.本小题10分因式分解:;21.本小题10分解方程组或不等式:解方程组;解不等式,将解集表示在数轴上.22.本小题6分先化简,再求值:,其中23.本小题8分已知等腰三角形的两边a,b,满足,求此等腰三角形的周长.24.本小题8分某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,购买4千克的甲食材比购买5千克的乙食材多花60元.营养品信息表营养成分每千克含铁42毫克配料表原料每千克含铁甲食材50毫克乙食材10毫克甲、乙两种食材每千克的进价分别是多少元?该公司每日用18000元购进甲、乙两种食材并恰好全部用完,那么该公司每日购进甲、乙两种食材各多少千克?25.本小题10分已知关于x ,y的方程组请直接写出方程的所有正整数解;若方程组的解满足,求m 的值;无论实数m取何值,方程总有一个固定的解,请直接写出这个解?26.本小题10分某铁件加工厂用如图1的长方形和正方形铁片长方形的宽与正方形的边长相等加工成如图2的竖式与横式两种无盖的长方体铁容器.加工时接缝材料不计如果加工竖式铁容器与横式铁容器各1个,则共需要长方形铁片______张,正方形铁片______张;现有长方形铁片2014张,正方形铁片1176张,如果加工成这两种铁容器,刚好铁片全部用完,那加工的竖式铁容器、横式铁容器各有多少个?把长方体铁容器加盖可以加工成为铁盒.现用35张铁板做成长方形铁片和正方形铁片,已知每张铁板可做成3个长方形铁片或4个正方形铁片,也可以将一张铁板裁出1个长方形铁片和2个正方形铁片.该如何充分利用这些铁板加工成铁盒,最多可以加工成多少个铁盒?答案和解析1.【答案】C【解析】解:A、,,故A不符合题意;B、,,故B不符合题意;C、,,故C符合题意;D、,,故D不符合题意;故选:根据不等式的性质,进行计算即可解答.本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.2.【答案】D【解析】解:把代入A,得,所以不是二元一次方程A的解;把代入B,得,所以不是二元一次方程B的解;把代入C,得,所以不是二元一次方程C的解;把代入D,得,所以是二元一次方程D的解.故选:把解代入各个选项中,满足方程成立的符合条件.本题考查了方程解的定义,掌握二元一次方程解的定义是解决本题的关键.3.【答案】A【解析】解:,,解集在数轴上表示为:故选:解出不等式解集,表示在数轴上即可.本题考查解一元一次不等式,解题的关键是掌握不等式性质.4.【答案】D【解析】解:,,,,故选根据负整数指数幂:为正整数和零指数幂:计算后再比较大小即可.此题主要考查了负整数指数幂和零指数幂,关键是掌握计算公式.5.【答案】D【解析】解:,原式,故选:根据多项式乘多项式法则即可求出答案.本题考查多项式乘多项式法则,解题的关键是熟练运用多项式乘多项式法则,本题属于基础题型.6.【答案】B【解析】解:设可以购买x支康乃馨,y支百合,依题意,得:,,y均为正整数,或或或,小明有4种购买方案.故选:设可以购买x支康乃馨,y支百合,根据总价=单价数量,即可得出关于x,y的二元一次方程,结合x,y 均为正整数即可得出小明有4种购买方案.本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.7.【答案】【解析】解:故填根据单项式的乘法法则,同底数幂的乘法性质,同底数幂相乘,底数不变,指数相加计算即可.注意:单独一个字母的次数是8.【答案】【解析】解:故答案为:绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,掌握形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定是关键.9.【答案】720【解析】解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.n边形的内角和是,把多边形的边数代入公式,就得到多边形的内角和.解:,则六边形的内角和等于故答案为:10.【答案】3【解析】解:故答案为:利用积的乘方的法则进行运算即可.本题主要考查积的乘方,解答的关键是对相应的运算法则的掌握.11.【答案】9【解析】解:故答案是:把前两项分解因式,然后把代入,化简,然后再利用表示,代入求值即可.本题考查了平方差公式,正确对所求的式子进行变形是关键.12.【答案】1【解析】解:整理得:,移项得:,系数化为1得:,故不等式的正整数解为故答案为:首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.13.【答案】3【解析】解:根据三角形的三边之间的关系得:,,为奇数,故答案为:首先根据三角形的三边之间的关系得:,由此解得,然后再根据a为奇数即可求出a的值.此题主要考查了三角形的三边之间关系,解答此题的关键是熟练掌握三角形的三边之间关系:任意两边之和大于第三边,任意两边之差小于第三边.14.【答案】【解析】解:,由结果中不含x的一次项,得到,解得:,故答案为原式利用多项式乘以多项式法则计算,根据结果不含x的一次项,求出m的值即可.本题考查多项式与多项式相乘,要使其结果不含某一项,只需要令其系数为0即可.15.【答案】3【解析】解:,②-①得:,,故答案为:利用方程②-方程①,进行计算即可解答.本题考查了解二元一次方程组,二元一次方程组的解,利用整体的思想进行计算是解题的关键.16.【答案】4【解析】解:,①+②得:,即,代入得:,解得:故答案为:方程组两方程相加表示出,代入已知等式计算即可求出a的值.此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握方程组的解、方程的解的定义是解本题的关键.17.【答案】【解析】解:解法1:因为不等式的解集为,所以,且,可化为:,而,故答案为:根据第一个不等式的解集,得出有关a,b,c的代数式的值,从而求出答案.本题考查了不等式的解法.根据不等式的性质解不等式是解题的关键.18.【答案】270【解析】解:设从学校到自然保护区平路长xkm,坡路长ykm,依题意得:,解得:,,所以从学校到自然保护区共270km,故答案为:设从学校到自然保护区平路长xkm,坡路长ykm,根据时间=路程速度结合“先以速度走平路,后又以的速度爬坡,共用了;返回时,汽车以的速度下坡,又以的速度走平路,共用了6h”,即可得出关于x,y的二元一次方程组,解之再代入中即可求出结论.本题考查了二元一次方程组的应用,正确的理解题意是解题的关键.19.【答案】解:;;;【解析】先化简,然后计算加减法即可;先算幂的乘方,再算单项式的乘除法,最后合并同类项即可;根据多项式乘多项式的方法计算即可;根据完全平方公式、平方差公式和单项式乘多项式将题目中的式子展开,然后合并同类项即可.本题考查整式的混合运算、实数的运算,熟练掌握运算法则是解答本题的关键,注意平方差公式和完全平方公式的应用.20.【答案】解:;【解析】先提公因式,再利用完全平方公式继续分解即可解答;利用平方差公式进行分解,即可解答.本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.21.【答案】解:,①②得,,解得,把代入②得,,解得,故不等式组的解集为;,,,,在数轴上表示为:.【解析】先用加减消元法求出x的值,再用代入消元法求出y的值即可;先求出不等式的解集,再在数轴上表示出来即可.本题考查的是解一元一次不等式,在数轴上表示不等式的解集,解二元一次方程组,熟知以上知识是解题的关键.22.【答案】解:原式,当时,原式【解析】原式利用完全平方公式,平方差公式,以及单项式乘多项式法则计算,去括号合并得到最简结果,把a的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.23.【答案】解:根据题意,,解得,当5为腰长时,三角形三边长为5、5、3,能组成三角形,周长为:;当5为底边时,三角形三边长为5、3、3,能组成三角形,周长为:故等腰三角形的周长是13或【解析】根据绝对值、平方数等非负数的性质列二元一次方程求出a、b的值,再根据a是腰长和底边长两种情况讨论.本题主要考查非负数的性质,等腰三角形的性质,解二元一次方程组,三角形三边关系等知识,要注意分情况讨论是正确解答本题的关键.24.【答案】解:设乙食材每千克的进价为a元,则甲食材每千克的进价为2a元,由题意,得,解得,则答:甲、乙两种食材每千克的进价分别是40元、20元;设该公司每日购进甲食材x千克,乙食材y千克,由题意,得,解得答:该公司每日购进甲、乙两种食材分别为400千克和100千克.【解析】设乙食材每千克的进价为a元,则甲食材每千克的进价为2a元,由购买4千克的甲食材比购买5千克的乙食材多花60元建立方程求解即可;抓住两个等量关系列方程求解:一是甲、乙两种食材每日购买的进价和为18000;二是制成营养品的含铁量与甲、乙两种食材含铁量的和相等,列出方程组即可求解.本题考查了一元一次方程及二元一次方程组的应用,找出等量关系列方程是解题关键.25.【答案】解:方程的所有正整数解:,;由题意得:,解得把代入,解得方程总有一个固定的解,,【解析】计算方程的所有正整数解;将与组成新的方程组解出,代入第二个方程:中,可得m的值;根据方程总有一个固定的解,m的值不影响,所以含m的项为0,可得这个解.此题考查了解二元一次方程的整数解和二元一次方程组的解,熟练掌握运算法则和求方程组的解是本题的关键.26.【答案】解:如果加工竖式铁容器与横式铁容器各1个,则共需要长方形铁片7张,正方形铁片3张;设加工的竖式铁容器有x个,横式铁容器有y个,根据题意得,解得答:竖式铁容器加工100个,横式铁容器加工538个;设做长方形铁片的铁板m张,做正方形铁片的铁板n张,根据题意得,解得,在这35张铁板中,25张做长方形铁片可做片,9张做正方形铁片可做片,剩1张可裁出1个长方形铁片和2个正方形铁片,共可做长方形铁片片,正方形铁片片,可做铁盒个答:最多可加工成铁盒19个.【解析】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.一个竖式长方体铁容器需要4个长方形铁皮和1个正方形铁皮;一个横式长方体铁容器需要3个长方形铁皮和2个正方形铁皮;设加工的竖式铁容器有x个,横式铁容器有y个,由题意得:①两种容器共需长方形铁皮2014张;②两种容器共需正方形铁皮1176张,根据等量关系列出方程组即可;设做长方形铁片的铁板m张,做正方形铁片的铁板n张,由题意得:①长方形铁片的铁板m张+正方形铁片的铁板n张张;②长方形铁片的铁片的总数=正方形铁片总数,列出方程组,再解即可.。
七年级(下)第二次月考数学试卷一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个角不是(bù shi)对顶角,则这两个角不相等D.所有(suǒyǒu)的对顶角相等2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2 5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y27.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.8.(3分)计算(jì suàn)的结果(jiē guǒ)是()A.﹣B.C.﹣D.9.(3分)在同一平面内,有8条互不重合(chónghé)的直线,l1,l2,l3 (8)若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推(yǐ cǐ lèi tuī),则l1和l8的位置(wèi zhi)关系是()A.平行B.垂直C.平行或垂直D.无法确定10.(3分)算式(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为米(精确到米).12.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.13.(3分)直线a外有一定点A,A到直线a的距离是5cm,P是直线a上的任意一点,则AP5cm(填写<或>或=或≤或≥)14.(3分)若x2﹣16x+m2是一个完全平方式,则m=;若m﹣=9,则m2+=.15.(3分)若一个角是34°,则这个角的余角是°.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作(cāozuò),分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点(jiāodiǎn)为E n.若∠E n=1度,那∠BEC等于(děngyú)度三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数(jiā shù)起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据得∠1=∠A=67°所以,∠CBD=23°+67°=°;根据当∠ECB+∠CBD=°时,可得CE∥AB.所以∠ECB=°此时CE与BC的位置关系为.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择(xuǎnzé)若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到(dá dào)预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样(zhèyàng)的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.21.问题(wèntí)再现:数形结合是解决数学问题的一种(yī zhǒnɡ)重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形(túxíng)的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成(xíngchéng)两个矩形和两个正方形,如图1:这个图形的面积可以(kěyǐ)表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面(shàng miɑn)的表示几何图形面积的方法探究:13+23+33+…+n3=.(直接(zhíjiē)写出结论即可,不必写出解题过程)22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.23.已知,AB∥CD,点E为射线(shèxiàn)FG上一点.(1)如图1,直接(zhíjiē)写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.参考答案与试题(shìtí)解析一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个(liǎnɡ ɡè)角不是对顶角,则这两个角不相等D.所有的对顶角相等【解答】解:根据对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角;∴选项A、C错误;根据对顶角的性质:对顶角相等;∴选项D错误;故选:B.2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对【解答】解:∵S2﹣S1=π(R+2)2﹣πR2,=π(R+2﹣R)(R+2+R),=4π(R+1),∴它的面积增加4π(R+1)cm2.故选:D.3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c【解答】解:A、∵a∥b,b∥c,∴a∥c,故本选项符合(fúhé)题意;B、在同一(tóngyī)平面内,当a⊥b,b⊥c时,a∥c,故本选项不符合(fúhé)题意;C、当a∥b,b⊥c时,a⊥c,故本选项不符合(fúhé)题意;D、当a∥b,b∥c时,a∥c,故本选项不符合(fúhé)题意;故选:A.4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2【解答】解:∵(a4)3=a12,∴选项A不符合题意;∵a8÷a4=a4,∴选项B不符合题意;∵(ab)3=a3b3,∴选项C符合题意;∵(a+b)2=a2+b2+2ab,∴选项D不符合题意.故选:C.5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′【解答】解:∵∠α与∠β互为补角,∠α=120°30′,∴∠β=180°﹣120°30′=59°30′,∴∠β的余角=90°﹣59°30′=30°30′.故选:B.6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y2【解答(jiědá)】解:A、a2﹣4b2=(a+2b)(a﹣2b),故原题分解(fēnjiě)正确;B、(a﹣b)2=a2﹣2ab+b2,故原题计算错误;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(x+3y)(x﹣3y)=x2﹣9y2,故原题计算错误;故选:A.7.(3分)下列图形中,线段(xiànduàn)AD的长表示点A到直线BC距离的是()A.B.C.D.【解答(jiědá)】解:线段AD的长表示点A到直线(zhíxiàn)BC距离的是图D,故选:D.8.(3分)计算的结果是()A.﹣B.C.﹣D.【解答】解:原式=(﹣×1.5)2021×(﹣1.5)=﹣1.5=﹣,故选:A.9.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法(wúfǎ)确定【解答(jiědá)】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选:A.10.(3分)算式(suànshì)(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6【解答(jiědá)】解:原式=(2﹣1)(2+1)×(22+1)×(24+1)×…×(232+1)+1=(22﹣1)×(22+1)×(24+1)×…×(232+1)+1=(24﹣1)×(24+1)×…×(232+1)+1=(232﹣1)×(232+1)+1=264﹣1+1=264,因为(yīn wèi)21=2,22=4,23=8,24=16,25=32,所以底数为2的正整数次幂的个位数是2、4、8、6的循环,所以264的个位数是6.故选:D.二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为106米(精确到米).【解答】解:在图形上测量知B,C两楼之间的距离为106米.12.(3分)如图,已知AB∥CD,F为CD上一点(yī diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数(dù shu)为整数,则∠C的度数(dù shu)为36°或37°.【解答(jiědá)】解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x﹣60°,又∵6°<∠BAE<15°,∴6°<3x﹣60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角(wài jiǎo),∠C的度数为整数,∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,故答案为:36°或37°.13.(3分)直线a外有一定点A,A到直线a的距离(jùlí)是5cm,P是直线a 上的任意一点,则AP≥5cm(填写(tiánxiě)<或>或=或≤或≥)【解答(jiědá)】解:根据题意,得A到直线(zhíxiàn)a的垂线段的长是5cm,由垂线(chuí xiàn)段最短,得AP≥5cm.故填:≥.14.(3分)若x2﹣16x+m2是一个完全平方式,则m=±8;若m﹣=9,则m2+=83.【解答】解:∵x2﹣16x+m2是完全平方式,∴16x=2×8•x,∴m2=82,解得m=±8;∵m﹣=9,∴(m﹣)2=m2﹣2+=81,解得m2+=81+2=83.15.(3分)若一个角是34°,则这个角的余角是56°.【解答】解:若一个角是34°,则这个角的余角是90°﹣34°=56°,故答案为:56.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于2n 度【解答(jiědá)】解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点(jiāodiǎn)为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.∵∠ABE1和∠DCE1的平分线交点(jiāodiǎn)为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点(jiāodiǎn)为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推(yǐ cǐ lèi tuī),∠E n=∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n .三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现(fāxiàn):从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后(ránhòu)在①式的两边(liǎngbiān)都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.【解答(jiědá)】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093;(2)1+a+a2+a3+…+a2021(a≠0且a≠1)═[(1+a+a2+a3+…+a2021)×a﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=[(a+a2+a3+…+a2021+a2021)﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=(a2021﹣1)÷(a﹣1)=.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据两直线平行,同位角相等得∠1=∠A=67°所以,∠CBD=23°+67°=90°;根据(gēnjù)同旁内角(tónɡ pánɡ nèi jiǎo)互补,两直线平行当∠ECB+∠CBD=180°时,可得CE∥AB.所以(suǒyǐ)∠ECB=90°此时CE与BC的位置(wèi zhi)关系为垂直(chuízhí).【解答】解:由已知,根据两直线平行,同位角相等得:∠1=∠A=67°,所以,∠CBD=23°+67°=90°,根据同旁内角互补,两直线平行,当∠ECB+∠CBD=180°时,可得CE∥AB,所以∠ECB=90°,此时CE与BC的位置关系为垂直,故答案为:两直线平行,同位角相等,90,同旁内角互补,两直线平行,180,90,垂直.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.【解答(jiědá)】解:(1)如图1,将正方形等分成如图的四个小正方形,将这4个转发装置(zhuāngzhì)安装在这4个小正方形对角线的交点处,此时(cǐ shí),每个小正方形的对角线长为,每个转发装置都能完全覆盖一个(yī ɡè)小正方形区域,故安装(ānzhuāng)4个这种装置可以达到预设的要求;(2)(画图正确给1分)将原正方形分割成如图2中的3个矩形,使得BE=31,OD=OC.将每个装置安装在这些矩形的对角线交点处,则AE=,,∴OD=,即如此安装三个这个转发装置,也能达到预设要求.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段(xiànduàn)CB 上,OB平分∠AOF,OE平分(píngfēn)∠COF.(1)请在图中找出与∠AOC相等的角,并说明(shuōmíng)理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.【解答】解:(1)∵OM∥CN,∴∠AOC=180°﹣∠C=180°﹣108°=72°,∠ABC=180°﹣∠OAB=180°﹣108°=72°,又∵∠BAM=∠180°﹣∠OAB=180°﹣108°=72°,∴与∠AOC相等的角是∠AOC,∠ABC,∠BAM;(2)∵OM∥CN,∴∠OBC=∠AOB,∠OFC=∠AOF,∵OB平分∠AOF,∴∠AOF=2∠AOB,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=;(3)设∠OBA=x,则∠OEC=2x,在△AOB中,∠AOB=180°﹣∠OAB﹣∠ABO=180°﹣x﹣108°=72°﹣x,在△OCE中,∠COE=180°﹣∠C﹣∠OEC=180°﹣108°﹣2x=72°﹣2x,∵OB平分∠AOF,OE平分∠COF,∴∠COE+∠AOB=∠COF+∠AOF=∠AOC=×72°=36°,∴72°﹣x+72°﹣2x=36°,解得x=36°,即∠OBA=36°,此时(cǐ shí),∠OEC=2×36°=72°,∠COE=72°﹣2×36°=0°,点C、E重合(chónghé),所以(suǒyǐ),不存在.21.问题(wèntí)再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数(dàishù)公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试(chángshì)解决:(2)请你类比上述推导(tuīdǎo)过程,利用图形的几何意义确定:13+23+33= 62.(要求写出结论(jiélùn)并构造图形写出推证过程).(3)问题(wèntí)拓广:请用上面的表示几何图形面积(miàn jī)的方法探究:13+23+33+…+n3=[n (n+1)]2.(直接写出结论即可,不必写出解题过程)【解答】解:(1)∵如图,左图的阴影部分的面积是a2﹣b2,右图的阴影部分的面积是(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),这就验证了平方差公式;(2)如图,A表示1个1×1的正方形,即1×1×1=13;B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23;G与H,E与F和I可以表示3个3×3的正方形,即3×3×3=33;而整个图形恰好可以拼成一个(1+2+3)×(1+2+3)的大正方形,由此可得:13+23+33=(1+2+3)2=62;故答案(dá àn)为:62;(3)由上面表示几何图形的面积(miàn jī)探究可知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n=n(n+1),∴13+23+33+…+n3=[n(n+1)]2.故答案(dá àn)为:[n(n+1)]2.22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.【解答(jiědá)】解:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2=4+1+4=9;(2)a•a3•(﹣a2)3=a•a3•(﹣a6)=﹣a10.23.已知,AB∥CD,点E为射线FG上一点.(1)如图1,直接写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分(píngfēn)∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数(dù shu).【解答(jiědá)】解:(1)∠AED=∠EAF+∠EDG.理由(lǐyóu):如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明(zhèngmíng):如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分(píngfēn)∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°﹣20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角(wài jiǎo),∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°﹣80°﹣20°=80°.内容总结(1)+a2021(a≠0且a≠1)的值.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093。
七年级第二学期 第二次 月考检测数学试题含答案一、选择题1.下列说法正确的个数有( )①过一点有且只有一条直线与已知直线平行; ②垂线段最短;③坐标平面内的点与有序实数对是一一对应的; ④算术平方根和立方根都等于它本身的数是0和1;1. A .1 B .2C .3D .42.在-2,117,0,23π,3.14159265 )A .3个B .4个C .5个D .6个3.若定义f (x )=3x ﹣2,如f (﹣2)=3×(﹣2)﹣2=﹣8,下列说法中:①当f (x )=1时,x =1;②对于正数x ,f (x )>f (﹣x )均成立;③f (x ﹣1)+f (1﹣x )=0;④当a =2时,f (a ﹣x )=a ﹣f (x ).其中正确的是( ) A .①②B .①③C .①②④D .①③④4.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等; ②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行; ④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的. 其中真命题的个数是( ) A .2个B .3个C .4个D .5个5.下列各数中3.14,0.1010010001…,﹣17,2π有理数的个数有( ) A .1个B .2个C .3个D .4个6.在实数:3.14159,1.010010001....,4.21••,π,227中,无理数有( ) A .1个B .2个C .3个D .4个7.,则x 和y 的关系是( ). A .x =y =0 B .x 和y 互为相反数 C .x 和y 相等D .不能确定8.估计20的算术平方根的大小在( ) A .2与3之间 B .3与4之间C .4与5之间D .5与6之间9.下列说法正确的是( )A .a 2的正平方根是aB 9=±C .﹣1的n 次方根是1D .321a --一定是负数10.下列运算中,正确的是( ) A .93=±B .382=C .|4|2-=-D .2(8)8-=-二、填空题11.若已知()21230a b c -+++-=,则a b c -+=_____. 12.一个数的平方为16,这个数是 .13.a 是10的整数部分,b 的立方根为-2,则a+b 的值为________. 14.m 的平方根是n +1和n ﹣5;那么m +n =_____.15.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 16.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数. 例如:[]2.32=,[]1.52-=-. 则下列结论:①[][]2.112-+=-;②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有_____(写出所有正确结论的序号). 17.若23(2)0y x -+-=,则y x -的平方根_________.18.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________. 19.如图,数轴上的点A 能与实数15,3,,22---对应的是_____________20.如图所示的运算程序中,若开始输入的x 值为7,我们发现第1次输出的结果为10,第2次输出的结果为5,……,第2019次输出的结果为_____.三、解答题21.下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)观察发现:1n(1)n =+__________1111122334n(1)n ++++=⨯⨯⨯+ .(2)初步应用:利用(1)的结论,解决以下问题“①把112拆成两个分子为1的正的真分数之差,即112= ;②把112拆成两个分子为1的正的真分数之和,即112= ;( 3 )定义“⊗”是一种新的运算,若1112126⊗=+,11113261220⊗=++,111114*********⊗=+++,求193⊗的值.22.(1)观察下列式子:①100222112-=-==; ②211224222-=-==; ③322228442-=-==; ……根据上述等式的规律,试写出第n 个等式,并说明第n 个等式成立; (2)求01220192222++++的个位数字.23.是无理数,而无理是无限不循环小数,因1的小数部分,事的整数部分是1,将这个数减去其整数部的小数部分,又例如:∵23223<<,即23<<的整数部分为2,小数部分为)2。
七年级下第二次月考数学试卷(有答案)一、选择题(本大题共30分,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a>b,则下列不等式正确的是()A.3a<3b B.ma>mb C.﹣a﹣1>﹣b﹣1 D. +1>+12.下列运算正确的是()A.x2•x3=x6B.a2+a3=a5C.y3÷y=y2D.(﹣2m2)3=﹣6m63.将3x﹣2y=1变形,用含x的代数式表示y,正确的是()A.x=B.y=C.y=D.x=4.为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是()A.个体 B.总体 C.样本容量 D.总体的样本5.如图,直线AB,CD被直线EF所截,交点分别为点E,F.若AB∥CD,下列结论正确的是()A.∠2=∠3 B.∠2=∠4 C.∠1=∠5 D.∠3+∠AEF=180°6.下列命题的逆命题为真命题的是()A.对顶角相等B.如果x=1,那么|x|=1C.直角都相等D.同位角相等,两直线平行7.某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,)A.20,20 B.20,25 C.30,25 D.40,208.如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是()A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余D.不确定9.不等式组的整数解为()A.0,1,2,3 B.1,2,3 C.2,3 D.310.已知2m=3,4n=5,则23m+2n的值为()A.45 B.135 C.225 D.675二、填空题(本共18分,每小题3分)11.分解因式:﹣m2+4m﹣4═.12.一个角的补角比这个角大20°,则这个角的度数为°.13.将x2+6x+4进行配方变形后,可得该多项式的最小值为.14.如图,在长方形网格中,四边形ABCD的面积为.(用含字母a,b的代数式表示)15.现定义运算“*”,对于任意有理数a,b,满足a*b=.如5*3=2×5﹣3=7,*1=﹣2×1=﹣,计算:2*(﹣1)=;若x*3=5,则有理数x的值为.16.观察等式14×16=224,24×26=624,34×36=1224,44×46=2024,…,根据你发现的规律直接写出84×86=;用含字母的等式表示出你发现的规律为.三、计算题(本题共8分,每小题4分)17.﹣6ab(2a2b﹣ab2)18.已知a﹣2b=﹣1,求代数式(a﹣1)2﹣4b(a﹣b)+2a的值.四、分解因式(本题共6分,每小题6分)19.分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.五、解方程(组)或不等式(组)(本题共10分,每小题5分)20.解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.21.解方程组:.六、读句画图(本题共4分)22.已知:线段AB=3,点C为线段AB上一点,且AB=3AC.请在方框内按要求画图并标出相应字母:(1)在射线AM上画出点B,点C;(2)过点C画AB的垂线CP,在直线CP上取点D,使CD=CA;(3)联结AD,BD;(4)过点C画AD的平行线CQ,交BD于点E.七、解答题(本题共24分,每小题5分)23.已知:如图,直线EF分别与直线AB,CD相交于点P,Q,PM垂直于EF,∠1+∠2=90°.求证:AB∥CD.24.小明同学在做作业时,遇到这样一道几何题:已知:如图1,l1∥l2∥l3,点A、M、B分别在直线l1,l2,l3上,MC平分∠AMB,∠1=28°,∠2=70°.求:∠CMD的度数.小明想了许久没有思路,就去请教好朋友小坚,小坚给了他如图2所示的提示:请问小坚的提示中①是∠,④是∠.理由②是:;理由③是:;∠CMD的度数是°.25.列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T恤.若两种纪念品共生产6000件,且T 恤比帽子的2倍多300件.问生产帽子和T恤的数量分别是多少?26.为弘扬中国传统文化,今年在北京园博园举行了“北京戏曲文化周”活动,活动期间开展了多种戏曲文化活动,主办方统计了4月30日至5月3日这四天观看各种戏剧情况的部分相关数据,绘制统计图表如下:93人,则a=;(2)请计算4月30日至5月3日接待观众人数的日平均增长量;(3)根据(2)估计“北京戏曲文化周”活动在5月4日接待观众约为人.27.在解关于x、y的方程组时,可以用①×2﹣②消去未知数x,也可以用①×4+②×3消去未知数y,试求a、b的值.七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a>b,则下列不等式正确的是()A.3a<3b B.ma>mb C.﹣a﹣1>﹣b﹣1 D. +1>+1【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出正确的不等式是哪个即可.【解答】解:∵a>b,∴3a>3b,∴选项A不正确;∵a>b,∴m<0时,ma<mb;m=0时,ma=mb;m>0时,ma>mb,∴选项B不正确;∵a>b,∴﹣a<﹣b,∴﹣a﹣1<﹣b﹣1,∴选项C不正确;∵a>b,∴>,∴+1>+1,∴选项D正确.故选:D.2.下列运算正确的是()A.x2•x3=x6B.a2+a3=a5C.y3÷y=y2D.(﹣2m2)3=﹣6m6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的除法法则:底数不变,指数相减;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘分别进行计算即可.【解答】解:A、x2•x3=x5,故原题计算错误;B、a2和a3不能合并,故原题计算错误;C、y3÷y=y2,故原题计算正确;D、(﹣2m2)3=﹣8m6,故原题计算错误;故选:C.3.将3x﹣2y=1变形,用含x的代数式表示y,正确的是()A.x=B.y=C.y=D.x=【考点】解二元一次方程.【分析】把x看做已知数表示出y即可.【解答】解:3x﹣2y=1,解得:y=,故选B4.为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是()A.个体 B.总体 C.样本容量 D.总体的样本【考点】总体、个体、样本、样本容量.【分析】根据总体:我们把所要考察的对象的全体叫做总体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量可得答案.【解答】解:为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是样本容量,故选:C.5.如图,直线AB,CD被直线EF所截,交点分别为点E,F.若AB∥CD,下列结论正确的是()A.∠2=∠3 B.∠2=∠4 C.∠1=∠5 D.∠3+∠AEF=180°【考点】平行线的性质.【分析】利用平行线的性质逐项分析即可.【解答】解:∵AB∥CD,∴∠1=∠2,∠3=∠4,∠3+∠AEF=180°,∵∠3=∠5,∴∠4=∠5,所以D选项正确,故选D.6.下列命题的逆命题为真命题的是()A.对顶角相等B.如果x=1,那么|x|=1C.直角都相等D.同位角相等,两直线平行【考点】命题与定理.【分析】分别写出四个命题的逆命题,然后利用对顶角的定义、绝对值的意义、直角的定义和平行线的性质判断它们的真假.【解答】解:A、逆命题为:相等的角为对顶角,此逆命题为假命题.B、逆命题为:若|x|=1,则x=1,此逆命题为假命题;C、逆命题为:相等的角为直角,此逆命题为假命题;D、逆命题为:两直线平行,同位角相等,此逆命题为真命题.故选D.7.某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,)A.20,20 B.20,25 C.30,25 D.40,20【考点】众数;统计表;中位数.【分析】根据表格中的数据可以得到这组数据的众数和中位数,本题得以解决.【解答】解:由表格中的数据可得,五月份这30户家庭节电量的众数是:20,中位数是20,故选A.8.如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是()A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余D.不确定【考点】垂线;余角和补角.【分析】根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.【解答】解:∵OB⊥CD,∴∠1+∠3=90°,∵∠1=∠2,∴∠2+∠3=90°,∴∠2与∠3互余,故选:C.9.不等式组的整数解为()A.0,1,2,3 B.1,2,3 C.2,3 D.3【考点】一元一次不等式组的整数解.【分析】先解不等式组得到<x≤3,然后找出此范围内的整数即可.【解答】解:,解①得x>,解②得x≤3,所以不等式组的解集为<x≤3,不等式组的解为1,2,3.故选B.10.已知2m=3,4n=5,则23m+2n的值为()A.45 B.135 C.225 D.675【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先将23m+2n变形为(2m)3•(22)n,然后带入求解即可.【解答】解:原式=(2m)3•(22)n=33•5=135.故选B.二、填空题(本共18分,每小题3分)11.分解因式:﹣m2+4m﹣4═﹣(m﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取﹣1,再利用完全平方公式分解即可.【解答】解:原式=﹣(m2﹣4m+4)=﹣(m﹣2)2,故答案为:﹣(m﹣2)212.一个角的补角比这个角大20°,则这个角的度数为80°.【考点】余角和补角.【分析】设这个角的度数为n°,根据互补两角之和等于180°,列出方程求解即可.【解答】解:设这个角的度数为n°,根据题意可得出,﹣n=20,解得:n=80.所以这个角的度数为80°.故答案为:80.13.将x2+6x+4进行配方变形后,可得该多项式的最小值为﹣5.【考点】解一元二次方程-配方法.【分析】将x2+6x+4利用配方法转化为(x+3)2﹣5,然后根据(x+3)2≥0可得多项式x2+6x+4的最小值.【解答】解:∵x2+6x+4=(x+3)2﹣5,∴当x=﹣3时,多项式x2+6x+4取得最小值﹣5;故答案为﹣5.14.如图,在长方形网格中,四边形ABCD的面积为10ab.(用含字母a,b的代数式表示)【考点】整式的混合运算.【分析】根据图形可以表示出四边形ABCD的面积,然后化简合并同类项即可解答本题.【解答】解:由图可知,四边形ABCD的面积是:4a•4b﹣=10ab.15.现定义运算“*”,对于任意有理数a,b,满足a*b=.如5*3=2×5﹣3=7,*1=﹣2×1=﹣,计算:2*(﹣1)=5;若x*3=5,则有理数x的值为4.【考点】有理数的混合运算.【分析】因为2>﹣1,故2*(﹣1)按照a*b=2a﹣b计算;x*3=5,则分x≥3与x<3两种情况求解.【解答】解:∵2>﹣1,∴根据定义a*b=得:2*(﹣1)=2×2﹣(﹣1)=4+1=5.而若x*3=5,当x≥3,则x*3=2x﹣3=5,x=4;当x<3,则x*3=x﹣2×3=5,x=11,但11>3,这与x<3矛盾,所以种情况舍去.即:若x*3=5,则有理数x的值为4故答案为:5;4.16.观察等式14×16=224,24×26=624,34×36=1224,44×46=2024,…,根据你发现的规律直接写出84×86=7224;用含字母的等式表示出你发现的规律为(10n+4)(10n+6)=100n(n+1)+24.【考点】规律型:数字的变化类.【分析】仔细观察后直接写出答案,分别表示出两个因数后即可写出这一规律.【解答】解:84×86=7224;(10n+4)(10n+6)=100n(n+1)+24(n为正整数),故答案为:7224;(10n+4)(10n+6)=100n(n+1)+24三、计算题(本题共8分,每小题4分)17.﹣6ab(2a2b﹣ab2)【考点】单项式乘多项式.【分析】根据单项式与多项式相乘的运算法则计算即可.【解答】解:原式=﹣6ab•2a2b+6ab•ab2=﹣12a3b2+2a2b3.18.已知a﹣2b=﹣1,求代数式(a﹣1)2﹣4b(a﹣b)+2a的值.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,单项式乘以多项式法则化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=a2﹣2a+1﹣4ab+4b2+2a=(a﹣2b)2+1,当a﹣2b=﹣1时,原式=2.四、分解因式(本题共6分,每小题6分)19.分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.【考点】因式分解-运用公式法;因式分解-提公因式法.【分析】(1)原式提取x,再利用平方差公式分解即可;(2)原式利用完全平方公式及十字相乘法分解即可.【解答】解:(1)原式=x(x2﹣16)=x(x+4)(x﹣4);(2)原式=(x2﹣x﹣6)2=(x+2)2(x﹣3)2.五、解方程(组)或不等式(组)(本题共10分,每小题5分)20.解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先去括号,再移项,合并同类项,把x的系数化为1并在数轴上表示出来即可.【解答】解:去括号得,2x﹣11<4x﹣20+3,移项得,2x﹣4x<﹣20+3+11,合并同类项得,﹣2x<﹣6,x的系数化为1得,x>3.在数轴上表示为:.21.解方程组:.【考点】解二元一次方程组.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:②×6得:6x﹣2y=10③,①+③得:11x=11,即x=1,将x=1代入①,得y=﹣2,则方程组的解为.六、读句画图(本题共4分)22.已知:线段AB=3,点C为线段AB上一点,且AB=3AC.请在方框内按要求画图并标出相应字母:(1)在射线AM上画出点B,点C;(2)过点C画AB的垂线CP,在直线CP上取点D,使CD=CA;(3)联结AD,BD;(4)过点C画AD的平行线CQ,交BD于点E.【考点】作图—复杂作图.【分析】(1)直接利用AB=3AC,线段AB=3,进而得出B,C点位置;(2)首先作出PC⊥AB,再截取CD=CA;(3)利用D、D′点位置进而得出答案;(4)利用平行线的作法进而得出符合题意的图形.【解答】解:(1)如图所示:点B,C即为所求;(2)如图所示:点D,D′即为所求;(3)如图所示:AD,AD′即为所求;(4)如图所示:EC,CE′即为所求.七、解答题(本题共24分,每小题5分)23.已知:如图,直线EF分别与直线AB,CD相交于点P,Q,PM垂直于EF,∠1+∠2=90°.求证:AB∥CD.【考点】平行线的判定.【分析】先根据垂直的定义得出∠APQ+∠2=90°,再由∠1+∠2=90°得出∠APQ=∠1,进而可得出结论.【解答】证明:∵PM⊥EF(已知),∴∠APQ+∠2=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠APQ=∠1(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).24.小明同学在做作业时,遇到这样一道几何题:已知:如图1,l1∥l2∥l3,点A、M、B分别在直线l1,l2,l3上,MC平分∠AMB,∠1=28°,∠2=70°.求:∠CMD的度数.小明想了许久没有思路,就去请教好朋友小坚,小坚给了他如图2所示的提示:请问小坚的提示中①是∠2,④是∠AMD.理由②是:两直线平行,内错角相等;理由③是:角平分线定义;∠CMD的度数是21°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等可得∠1=∠AMD=28°,∠2=∠DMB=70°,进而可得∠AMB,再根据角平分线定义可得∠BMC的度数,然后可得答案.【解答】解:∵l1∥l2∥l3,∴∠1=∠AMD=28°,∠2=∠DMB=70°(两直线平行,内错角相等),∴∠AMB=28°+70°=98°,∵MC平分∠AMB,∴∠BMC=∠AMB=98°×=49°(角平分线定义),∴∠DMC=70°﹣49°=21°,故答案为:2;AMD;两直线平行,内错角相等;角平分线定义;21.25.列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T恤.若两种纪念品共生产6000件,且T 恤比帽子的2倍多300件.问生产帽子和T恤的数量分别是多少?【考点】二元一次方程组的应用.【分析】设生产帽子x件,生产T恤y件,根据“两种纪念品共生产6000件,且T恤比帽子的2倍多300件”列方程组求解可得.【解答】解:设生产帽子x件,生产T恤y件.根据题意,得:,解得:答:生产帽子1900件,生产T恤4100件.26.为弘扬中国传统文化,今年在北京园博园举行了“北京戏曲文化周”活动,活动期间开展了多种戏曲文化活动,主办方统计了4月30日至5月3日这四天观看各种戏剧情况的部分相关数据,绘制统计图表如下:93人,则a=775;(2)请计算4月30日至5月3日接待观众人数的日平均增长量;(3)根据(2)估计“北京戏曲文化周”活动在5月4日接待观众约为801人.【考点】扇形统计图;用样本估计总体;统计表;加权平均数.【分析】(1)用当天看豫剧的人数除以看豫剧人数占当天总人数的百分比即可得;(2)用4月30日至5月3日增加的人数除以天数即可得;(3)根据(2)中日均增加的人数,估计5月4日在5月3日基础上也大约增加26人,即可得答案.【解答】解:(1)若5月3日当天看豫剧的人数为93人,则a==775(人),故答案为:775;(2)4月30日至5月3日接待观众人数的日平均增长量为=26;(3)由(2)知,接待观众人数的日平均增长量为26人,∴估计该活动在5月4日接待观众约为775+26=801人,故答案为:801.27.在解关于x、y的方程组时,可以用①×2﹣②消去未知数x,也可以用①×4+②×3消去未知数y,试求a、b的值.【考点】二元一次方程组的解.【分析】根据题意得出关于a、b的方程组,求出方程组的解即可.【解答】解:由题意可得:,解之,,所以a=6,b=.2016年10月25日。
苏科版七年级苏科初一数学下册第二学期月月考试卷及答案word 版一、选择题1.如图,下列推理中正确的是( )A .∵∠1=∠4, ∴BC//ADB .∵∠2=∠3,∴AB//CDC .∵∠BCD+∠ADC=180°,∴AD//BCD .∵∠CBA+∠C=180°,∴BC//AD2.下列运算结果正确的是( ) A .32a a a ÷=B .()225a a =C .236a a a =D .()3326a a =3.下列计算错误的是( ) A .2a 3•3a =6a 4 B .(﹣2y 3)2=4y 6 C .3a 2+a =3a 3 D .a 5÷a 3=a 2(a≠0) 4.将下列三条线段首尾相连,能构成三角形的是( ) A .1,2,3B .2,3,6C .3,4,5D .4,5,95.已知,()()212x x x mx n +-=++,则m n +的值为( ) A .3- B .1- C .1D .36.能把一个三角形的面积分成相等的两部分的线是这个三角形的( )A .一条高B .一条中线C .一条角平分线D .一边上的中垂线7.在ABC 中,1135A B C ∠=∠=∠,则ABC 是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .无法确定 8.若x 2+kx +16是完全平方式,则k 的值为( ) A .4 B .±4 C .8D .±8 9.若(2x+3y)(mx-ny)=9y 2-4x 2,则m 、n 的值为 ( )A .m=2,n=3B .m=-2,n=-3C .m=2,n=-3D .m=-2,n=310.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B 的度数为( )A .75°B .72°C .78°D .82°11.一个多边形的每个内角都等于140°,则这个多边形的边数是( )A.7 B.8 C.9 D.10 12.若关于x的二次三项式x2-ax+36是一个完全平方式,那么a的值是()A.12 B.12±C.6 D.6±二、填空题13.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.14.若 a m=6 , a n=2 ,则 a m−n=________15.如果62xy=⎧⎨=-⎩是关于x、y的二元一次方程mx-10=3y的一个解,则m的值为_____.16.已知关于x的不等式组()531235x a xx⎧->-⎨-≤⎩的所有整数解的和为7则a的取值范围是__________.17.若(3x+2y)2=(3x﹣2y)2+A,则代数式A为______.18.三角形两边长分别是3、5,第三边长为偶数,则第三边长为_______19.计算212⎛⎫=⎪⎝⎭______.20.已知:实数m,n满足:m+n=3,mn=2.则(1+m)(1+n)的值等于____________.21.每支圆珠笔3元,每本练习簿4元,买圆珠笔和练习簿共花了14元,则买了圆珠笔______支.22.某校七年级社会实践小组去商场调查商品的销售情况,了解到该商场以每件80元的价格购进某品牌衬衫500件,并以每件120元的价格销售400件.该商场准备采取促销措施,将剩下的衬衫降价销售,每件衬衫至多降价______元,销售完这批衬衫才能达到盈利45%的预期目标.三、解答题23.如图,在方格纸内将△ABC经过一次平移得到A B C''',图中标出了点B的对应点B'.(1)在给定的方格纸中画出平移后的A B C''';(2)画出BC边上的高AE;(3)如果P点在格点上,且满足S△PAB=S△ABC(点P与点C不重合),满足这样条件的P 点有个.24.计算:(1)()22020113.142π-⎛⎫-+-+ ⎪⎝⎭(2)()2462322x y x xy --(3)()()22342a b a a b --- (4)()()2323m n m n -++- 25.解二元一次方程组: (1) 523150x y x y =+⎧⎨+-=⎩ (2) 3()4()427x y x y x y +--=⎧⎨+=⎩26.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC=90º+12∠A ,(请补齐空白处......) 理由如下:∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线, ∴∠1=12∠ABC ,_________________, 在ΔABC 中,∠A+∠ABC+∠ACB=180º. ∴∠1+∠2=12(∠ABC+∠ACB )=12(180º-∠A )=90º-12∠A , ∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+12∠A . (探究2):如图2,已知O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB 中,∠AOB=90º,已知AB 不平行与CD ,AC 、BD 分别是∠BAO 和∠ABO 的角平分线,又CE 、DE 分别是∠ACD 和∠BDC 的角平分线,则∠E=_______;(拓展):如图4,直线MN 与直线PQ 相交于O ,∠MOQ=60º,点A 在射线OP 上运动,点B 在射线OM 上运动,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其延长线交于E、F,在ΔAEF中,如果有一个角是另一个角的4倍,则∠ABO=______.27.解下列方程组(1)29 321 x yx y+=⎧⎨-=-⎩.(2)3 4332(1)11x yx y⎧+=⎪⎨⎪--=⎩.28.已知关于x的方程3m x+=的解满足325x y ax y a-=-⎧⎨+=⎩,若15y-<<,求实数m的取值范围.29.阅读理解并解答:为了求1+2+22+23+24+…+22009的值.可令S=1+2+22+23+24+…+22009则2S=2+22+23+24+…+22009+22010因此2S﹣S=(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1所以S=22010﹣1即1+2+22+23+24+…+22009=22010﹣1请依照此法,求:1+5+52+53+54+…+52020的值.30.问题情境:如图1,AB CD∥,130PAB∠=︒,120PCD∠=︒,求APC∠的度数.小明的思路是:如图2,过P作PE AB,通过平行线性质,可得APC∠=______.问题迁移:如图3,AD BC∥,点P在射线OM上运动,ADPα∠=∠,BCPβ∠=∠.(1)当点P在A、B两点之间运动时,CPD∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD∠、α∠、β∠之间有何数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据平行线的判定方法一一判断即可. 【详解】A 、错误.由∠1=∠4应该推出AB ∥CD . B 、错误.由∠2=∠3,应该推出BC//AD .C 、正确.D 、错误.由∠CBA+∠C=180°,应该推出AB ∥CD , 故选:C . 【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考基础题.2.A解析:A 【分析】根据同底数幂的除法、同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,逐项判定即可. 【详解】解:32a a a ÷=,A 正确,()224a a =,B 错误,235a a a =,C 错误,()3328a a =,D 错误,故选:A . 【点睛】此题主要考查了同底数幂的除法,同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,熟练掌握运算方法是解题的关键.3.C解析:C 【分析】A .根据同底数幂乘法运算法则进行计算,底数不变指数相加,系数相乘.即可对A 进行判断B .根据幂的乘方运算法则对B 进行判断C .根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C 进行判断D .根据同底数幂除法运算法则对D 进行判断 【详解】A .2a 3•3a =6a 4,故A 正确,不符合题意B .(﹣2y 3)2=4y 6,故B 正确,不符合题意C .3a 2+a ,不能合并同类项,无法计算,故C 错误,符合题意D .a 5÷a 3=a 2(a≠0),故D 正确,不符合题意 故选:C 【点睛】本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.4.C解析:C 【分析】构成三角形的三边应满足:任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形,根据该定则,就可判断选项正误. 【详解】解:A 选项:1+2=3,两边之和没有大于第三边,∴无法组成三角形; B 选项:2+3<6,两边之和没有大于第三边,∴无法组成三角形;C 选项:3+4>5,两边之和大于第三边,且满足两边之差小于第三边,∴可以组成三角形;D 选项:4+5=9,两边之和没有大于第三边,∴无法组成三角形, 故选:C . 【点睛】本题主要考察了三角形的三边关系定则:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形.5.A解析:A 【解析】 【分析】根据多项式的乘法法则即可化简求解. 【详解】∵()()2212222x x x x x x x +-=-+-=--∴m=-1,n=-2, 故m n +=-3 故选A. 【点睛】此题主要考查整式的乘法运算,解题的关键是熟知多项式乘多项式的运算法则.6.B解析:B 【分析】根据三角形中线的性质作答即可. 【详解】解:能把一个三角形的面积分成相等的两部分的线是这个三角形的一条中线.故选:B . 【点睛】本题考查了三角形中线的性质,属于应知应会题型,熟知三角形的一条中线将三角形分成面积相等的两部分是解题的关键.7.A解析:A 【分析】根据三角形的内角和是180︒列方程即可; 【详解】∵1135A B C ∠=∠=∠, ∴3B A ∠=∠,5CA ∠=∠,∵180A B C ∠+∠+∠=︒,∴35180A A A ∠+∠+∠=︒,∴30A ∠=︒, ∴100C ∠=︒, ∴△ABC 是钝角三角形. 故答案选A . 【点睛】本题主要考查了三角形内角和定理的应用,在准确进行分析列式是解题的关键.8.D解析:D 【分析】利用完全平方公式的结构特征判断即可求出k 的值. 【详解】∵216x kx ++是完全平方式, ∴8k =±, 故选:D . 【点睛】本题考查完全平方式,熟悉完全平方式的结构特征并能灵活运用是解答的关键.9.B解析:B 【解析】 【分析】先把等式左边利用多项式乘多项式的法则展开并整理,根据对应项系数相等列出等式,求解即可. 【详解】解:将(2x+3y)(mx-ny)展开,得2mx 2-2nxy+3mxy-3ny 2, 根据题意可得2mx 2-2nxy+3mxy-3ny 2=9y 2-4x 2,根据多项式相等,则对应项及其系数相等,可得2m=-4,-3n=9,解得m=-2,n=-3故选B.【点睛】本题是一道有关多项式乘法的题目,明确多项式的乘法法则是解题的关键.10.C解析:C【分析】在图①的△ABC中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD,即可在△CBD中,得到另一个关于∠B、∠C度数的等量关系式,联立两式即可求得∠B的度数.【详解】在△ABC中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;在△CBD中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②;①-②,得:23∠B=52°,解得∠B=78°.故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B和∠CBD的倍数关系是解答此题的关键.11.D解析:D【分析】一个外角的度数是:180°-140°=40°,则多边形的边数为:360°÷40°=9;故选C.【详解】12.B解析:B【解析】【分析】利用完全平方公式的结构特征判断即可确定出a的值.【详解】解:∵x2-ax+36是一个完全平方式,∴a=±12,故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.二、填空题 13.30° 【解析】 【分析】设较小的锐角是,然后根据直角三角形两锐角互余列出方程求解即可. 【详解】设较小的锐角是x ,则另一个锐角是2x , 由题意得,x +2x =90°, 解得x =30°, 即此三角解析:30° 【解析】 【分析】设较小的锐角是x ,然后根据直角三角形两锐角互余列出方程求解即可. 【详解】设较小的锐角是x ,则另一个锐角是2x , 由题意得,x +2x =90°, 解得x =30°,即此三角形中最小的角是30°. 故答案为:30°. 【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.14.3 【解析】 .故答案为3.解析:3 【解析】623m n m n a a a -=÷=÷=.故答案为3.15.【分析】把x 、y 的值代入方程计算即可求出m 的值. 【详解】解:把代入方程得:6m -10=﹣6,解得:m=故答案为:【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右解析:2 3【分析】把x、y的值代入方程计算即可求出m的值.【详解】解:把62xy=⎧⎨=-⎩代入方程得:6m-10=﹣6,解得:m=2 3故答案为:2 3【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右两边相等.16.7≤a<9或-3≤a<-1.【分析】先求出求出不等式组的解集,再根据已知得出关于a的不等式组,求出不等式组的解集即可.【详解】解:,∵解不等式①得:,解不等式②得:x≤4,∴不等式组的解析:7≤a<9或-3≤a<-1.【分析】先求出求出不等式组的解集,再根据已知得出关于a的不等式组,求出不等式组的解集即可.【详解】解:() 531235x a xx⎧->-⎨-≤⎩①②,∵解不等式①得:32ax->,解不等式②得:x≤4,∴不等式组的解集为342a x -<≤, ∵关于x 的不等式组()531235x a x x ⎧->-⎨-≤⎩的所有整数解的和为7, ∴当32a ->0时,这两个整数解一定是3和4, ∴2≤32a -<3, ∴79a ≤<, 当32a -<0时,-3≤32a -<−2, ∴-3≤a <-1, ∴a 的取值范围是7≤a <9或-3≤a <-1.故答案为:7≤a <9或-3≤a <-1.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.17.24xy【解析】∵(3x+2y )2=(3x ﹣2y )2+A ,∴(3x )2+2×3x×2y+(2y)2=(3x )2-2×3x×2y+(2y)2+A,即9x2+12xy+4y2=9x2-12xy+解析:24xy【解析】∵(3x+2y )2=(3x ﹣2y )2+A ,∴(3x )2+2×3x×2y+(2y)2=(3x )2-2×3x×2y+(2y)2+A,即9x 2+12xy+4y 2=9x 2-12xy+4y 2+A∴A=24xy,故答案为24xy.【点睛】本题考查了完全平方公式,熟记完全平方公式是解题的关键.完全平方公式:(a±b)2=a 2±2ab+b 2. 18.4或6【解析】【分析】根据三角形三边关系,可令第三边为x ,则5-3<x <5+3,即2<x <8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x,则5-3<x<5+3,即2<解析:4或6【解析】【分析】根据三角形三边关系,可令第三边为x,则5-3<x<5+3,即2<x<8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x,则5-3<x<5+3,即2<x<8,∵第三边长为偶数,∴第三边长是4或6,故答案为:4或6.【点睛】本题考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.19.【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:.故答案为.【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键.解析:14【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:222111== 224⎛⎫⎪⎝⎭.故答案为14.【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键.20.6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多解析:6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m +n =3,mn =2,∴(1+m )(1+n )=1+n +m +mn =1+3+2=6.故答案为:6.【点睛】本题考查了多项式乘以多项式,掌握多项式乘以多项式的法则是解答本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.21.2【分析】设圆珠笔x 支,表示出练习簿的数量,根据圆珠笔和练习簿数量都是整数,求出x 的值即可.【详解】设圆珠笔x 支,则练习簿本,圆珠笔和练习簿数量都是整数,则x=2时,, 故答案为2.【点睛解析:2【分析】设圆珠笔x 支,表示出练习簿的数量,根据圆珠笔和练习簿数量都是整数,求出x 的值即可.【详解】设圆珠笔x 支,则练习簿1434x -本,圆珠笔和练习簿数量都是整数,则x=2时,14324x -=, 故答案为2.【点睛】明确圆珠笔和练习簿数量都是整数是本题的关键,难度较小.22.【分析】设每件衬衫降价x 元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x元,正好达到预期目标,根据题意得:120解析:20【分析】设每件衬衫降价x元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x元,正好达到预期目标,根据题意得:120×400+(120-x)×(500-400)-80×500=80×500×45%,解得:x=20.答:每件衬衫降价10元,正好达到预期目标.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题23.(1)见解析;(2)见解析;(3)8【分析】(1)由点B及其对应点B′的位置得出平移的方向和距离,据此作出点A、C平移后的对应点,再首尾顺次连接即可得;(2)根据三角形高线的概念作图即可;(3)由S△PAB=S△ABC知两个三角形共底、等高,据此可知点P在如图所示的直线m、n上,再结合图形可得答案.【详解】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,垂线段AE即为所求;(3)如图所示,满足这样条件的点P有8个,故答案为:8.【点睛】本题主要考查作图-平移变换,解题的关键是掌握平移变换的定义和性质,据此得出变换后的对应点及三角形高线的概念、共底等高的三角形面积问题.24.(1)4;(2)462x y -;(3)-4ab+9b 2;(4)m 2-4n 2+12n-9.【分析】(1)原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;(2)原式利用积的乘方运算法则计算,合并即可得到结果;(3)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用平方差公式化简,再利用完全平方公式展开,计算即可得到结果.【详解】解:(1)原式=-1+1+4=4;(2)原式=464646242x y x y x y -=-;(3)原式=4a 2-12ab+9b 2-4a 2+8ab=-4ab+9b 2;(4)原式=m 2-(2n-3)2=m 2-4n 2+12n-9.【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.25.(1) 61x y =⎧⎨=⎩;(2) 31x y =⎧⎨=⎩【分析】(1)用代入法解得即可;(2)将方程组去括号整理后,用加减法解答即可;【详解】解:(1) 523150x y x y =+⎧⎨+-=⎩①②把方程①代入方程()253150y y ++-=解得1y =把1y =代入到①,得156x =+=所以方程组的解为:61x y =⎧⎨=⎩ (2) 原方程组化简,得7427x y x y -+=⎧⎨+=⎩①② ①×2+②,得1515y=解得y=1把y=1代入到②,得217x+=解得x=3所以方程组的解为:31 xy=⎧⎨=⎩【点睛】本题考查了解二元一次方程组,解题的关键是熟记代入法和加减法解方程组的步骤,并根据方程选择合适方法解题.26.【探究1】∠2=12∠ACB,90º-12∠A;【探究2】∠BOC=90°﹣12∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=12∠ABC,∠2=12∠ACB,根据三角形的内角和定理可得∠1+∠2=90º-12∠A,再根据三角形的内角和定理即可得出结论;【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC=1 2(∠A+∠ACB),∠OCB=12(∠A+∠ABC),然后再根据三角形的内角和定理即可得出结论;【应用】延长AC与BD,设交点为G,如图5,由【探究1】的结论可得∠G的度数,于是可得∠GCD+∠GDC的度数,然后根据角平分线的定义和角的和差可得∠1+∠2的度数,再根据三角形的内角和定理即可求出结果;【拓展】根据角平分线的定义和平角的定义可得∠EAF=90°,然后分三种情况讨论:若∠EAF=4∠E,则∠E=22.5°,根据角平分线的定义和三角形的外角性质可得∠ABO=2∠E,于是可得结果;若∠EAF=4∠F,则∠F=22.5°,由【探究2】的结论可求出∠ABO=135°,然后由三角形的外角性质即可判断此种情况不存在;若∠F=4∠E,则∠E=18°,然后再由第一种情况的结论∠ABO=2∠E即可求出结果,进而可得答案.【详解】解:【探究1】理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠ACB,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=12(∠ABC+∠ACB)=12(180º-∠A)=90º-12∠A,∴∠BOC=180º-(∠1+∠2)=180º-(90º-12∠A )=90º+12∠A ; 故答案为:∠2=12∠ACB ,90º-12∠A ;【探究2】∠BOC =90°﹣12∠A ;理由如下: 如图2,由三角形的外角性质和角平分线的定义,∠OBC =12(∠A +∠ACB ),∠OCB =12(∠A +∠ABC ), 在△BOC 中,∠BOC =180°﹣∠OBC ﹣∠OCB=180°﹣12(∠A +∠ACB )﹣12(∠A +∠ABC ), =180°﹣12(∠A +∠ACB +∠A +∠ABC ), =180°﹣12(180°+∠A ), =90°﹣12∠A ;【应用】延长AC 与BD ,设交点为G ,如图5,由【探究1】的结论可得:∠G=1901352O ︒+∠=︒, ∴∠GCD+∠GDC=45°,∵CE 、DE 分别是∠ACD 和∠BDC 的角平分线,∴∠1=12∠ACD=()11802GCD ︒-∠,∠2=12∠BDC=()11802GDC ︒-∠, ∴∠1+∠2=()11802GCD ︒-∠+()11802GDC ︒-∠=()136045157.52︒-︒=︒,∴()1801222.5E ∠=︒-∠+∠=︒;故答案为:22.5°;【拓展】如图4,∵AE 、AF 是∠BAO 和∠OAG 的角平分线,∴∠EAQ+∠FAQ=()111809022BAO GAO ∠+∠=⨯︒=︒, 即∠EAF=90°,在Rt △AEF 中,若∠EAF=4∠E ,则∠E=22.5°,∵∠EOQ=∠E+∠EAQ ,∠BOQ=2∠EOQ ,∠BAO=2∠EAQ ,∴∠BOQ=2∠E+∠BAO ,又∠BOQ=∠BAO+∠ABO ,∴∠ABO=2∠E=45°;若∠EAF=4∠F ,则∠F=22.5°,则由【探究2】知:19022.52F ABO ∠=︒-∠=︒,∴ ∠ABO=135°, ∵∠ABO <∠BOQ=60°,∴此种情况不存在;若∠F=4∠E ,则∠E=18°,由第一种情况可知:∠ABO=2∠E ,∴∠ABO=36°;综上,∠ABO=45°或36°;故答案为:45°或36°.【点睛】 本题主要考查了角平分线的定义、三角形的内角和定理、平角的定义和三角形的外角性质等知识,具有一定的综合性,熟练掌握上述知识、灵活应用整体思想是解题的关键.27.(1)272x y =⎧⎪⎨=⎪⎩;(2)692x y =⎧⎪⎨=⎪⎩【分析】(1)根据加减消元法,即可求解;(2)先去分母,去括号,移项,合并同类项,再通过加减消元法,即可求解.【详解】(1)29321x y x y +=⎧⎨-=-⎩①②, +①②得:48x =.解得:2x =,把2x =代入①得:229y +=,解得:72y =, ∴方程组的解为272x y =⎧⎪⎨=⎪⎩; (2)原方程可化为3436329x y x y +=⎧⎨-=⎩①②, ①-②得:627y =,解得:92y =, 把92y =代入②得:399x -=,解得:6x =, ∴方程组的解为692x y =⎧⎪⎨=⎪⎩. 【点睛】本题主要考查解二元一次方程组,掌握加减消元法,是解题的关键.28.21m -<<【分析】先解方程组325x y a x y a -=-⎧⎨+=⎩,消去a 用含x 的式子表示y,再将x=3-m 代入y 中,从而得到用含m 的式子表示y,在根据15y -<<,解关于m 的不等式组,求出m 的取值范围.【详解】解:325x y a x y a -=-⎧⎨+=⎩①②,①5⨯+②得6315x y -=即25y x =-③ 由3m x +=得3x m =-,代入③得,12y m =-又因为15y -<<,则1125m -<-<,解得21m -<<【点睛】本题主要考查了分式方程的解以及二元一次方程组的解,解题时需要掌握解二元一次方程和一元一次不等式的方法.29.2021514- 【分析】根据题目信息,设S =1+5+52+53+…+52020,求出5S ,然后相减计算即可得解.【详解】解:设S =1+5+52+53+ (52020)则5S =5+52+53+54 (52021)两式相减得:5S ﹣S =4S =52021﹣1,则202151.4S -= ∴1+5+52+53+54+…+52020的值为2021514-. 【点睛】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.30.110︒;(1)CPD αβ∠=∠+∠;理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【分析】问题情境:理由平行于同一条直线的两条直线平行得到 PE ∥AB ∥CD ,通过平行线性质来求∠APC .(1)过点P 作PQ AD ,得到PQ AD BC 理由平行线的性质得到ADP DPQ ∠=∠,BCP CPQ ∠=∠,即可得到CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)分情况讨论当点P 在B 、O 两点之间,以及点P 在射线AM 上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.【详解】解:问题情境:∵AB ∥CD ,PEAB∴PE ∥AB ∥CD , ∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=50°+60°=110°; (1)CPD αβ∠=∠+∠过点P 作PQ AD .又因为AD BC ∥,所以PQ AD BC 则ADP DPQ ∠=∠,BCP CPQ ∠=∠ 所以CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠ (2)情况1:如图所示,当点P 在B 、O 两点之间时过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β, ∴∠CPD=∠DPE-∠CPE=∠α-∠β 情况2:如图所示,当点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β, ∴∠CPD=∠CPE-∠DPE=∠β-∠α【点睛】本题主要借助辅助线构造平行线,利用平行线的性质进行推理.。
新苏科版七年级苏科初一下册第二学期月考数学试卷(含答案)一、选择题1.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .623a a a ÷=2.已知多项式x a -与22x x -的乘积中不含2x 项,则常数a 的值是( )A .2-B .0C .1D .2 3.已知一粒米的质量是0.00021kg ,这个数用科学记数法表示为 ( ) A .4 2.110-⨯kgB .52.110-⨯kgC .42110-⨯kgD .62.110-⨯kg 4.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( )A .﹣4B .2C .3D .4 5.小明带了10元钱到文具店购买签字笔和练习本两种文具,已知签字笔2元支,练习本3元/本,如果10元恰好用完,那么小明共有( )种购买方案.A .0B .1C .2D .36.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1C .11y x +=D .xy ﹣1=07.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A .12B .15C .12或15D .18 8.以下列各组线段为边,能组成三角形的是( ) A .1cm ,2cm ,4cmB .2cm ,3cm ,5cmC .5cm ,6cm ,12cmD .4cm ,6cm ,8cm 9.下列运算正确的是( )A .a 2+a 2=a 4B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 2 10.若一个三角形的两边长分别为3和6,则第三边长可能是( ) A .6B .3C .2D .10 11.七边形的内角和是( ) A .360°B .540°C .720°D .900° 12.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( )A .()1,3-B .()3,1-C .()1,3-D .()3,1- 二、填空题13.积的乘方公式为:(ab )m = .(m 是正整数).请写出这一公式的推理过程.14.已知5m a =,3n a =,则2m n a -的值是_________.15.若关于x 、的方程()2233b a ax b y -+++=是二元一次方程,则b a =_______16.233、418、810的大小关系是(用>号连接)_____.17.计算:(12)﹣2=_____.18.()22x y--=_____.19.我国开展的月球探测工程(即“嫦娥工程”)为人类和平使用月球作出了新的贡献.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为_______.20.若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为_____.21.若2(3)(2)x x ax bx c+-=++(a、b、c为常数),则a b c++=_____.22.把一根 9m 长的钢管截成 1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有a 根,则a 的值可能有_____种.23.下列各数中: 3.14-,327-,π,2,17-,是无理数的有______个.24.已知(a+b)2=7,a2+b2=5,则ab的值为_____.三、解答题25.如图,在方格纸内将△ABC经过一次平移得到A B C''',图中标出了点B的对应点B'.(1)在给定的方格纸中画出平移后的A B C''';(2)画出BC边上的高AE;(3)如果P点在格点上,且满足S△PAB=S△ABC(点P与点C不重合),满足这样条件的P 点有个.26.解下列方程组或不等式组(1)24231x yx y+=⎧⎨-=⎩(2)()211113x xxx⎧--≤⎪⎨+>-⎪⎩27.某口罩加工厂有,A B两组工人共150人,A组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B两组工人每小时一共可加工口罩9300只.(1)求A B、两组工人各有多少人?(2)由于疫情加重,A B、两组工人均提高了工作效率,一名A组工人和一名B组工人每小时共可生产口罩200只,若A B、两组工人每小时至少加工15000只口罩,那么A组工人每人每小时至少加工多少只口罩?28.因式分解(1) 228ax a (2) a 3-6a 2 b+9ab 2 (3) (a ﹣b )2+4ab 29.计算:(1)101223; (2)3258232a a a a a ; (3)223113x x x x x x .30.因式分解:(1)3a x y y x ;(2)()222416x x +-.31.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值;(3)若25,2x y xy +==,求2x y -的值.32.计算:(1)2x 3y •(﹣2xy )+(﹣2x 2y )2;(2)(2a +b )(b ﹣2a )﹣(a ﹣3b )2.33.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由; (2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =50°,则∠ABX+∠ACX = °;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =50°,∠DBE =130°,求∠DCE 的度数;③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC =140°,∠BG 1C =77°,求∠A 的度数.34.如图,AB ∥CD ,点E 、F 在直线AB 上,G 在直线CD 上,且∠EGF =90°,∠BFG =140°,求∠CGE 的度数.35.计算:(1)203211(5)(5)36-⎛⎫⎛⎫-++-÷- ⎪ ⎪⎝⎭⎝⎭(2)()3242(3)2a a a -⋅+-36.如图1,在△ABC 的AB 边的异侧作△ABD ,并使∠C =∠D ,点E 在射线CA 上. (1)如图,若AC ∥BD ,求证:AD ∥BC ;(2)若BD ⊥BC ,试解决下面两个问题:①如图2,∠DAE =20°,求∠C 的度数;②如图3,若∠BAC =∠BAD ,过点B 作BF ∥AD 交射线CA 于点F ,当∠EFB =7∠DBF 时,求∠BAD 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】A.235 a a a ⋅=,故本选项错误;B. ()222ab a b =,故本选项正确;C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。
苏教版数学七年级下册全册月考测试题及答案第一次月考测试题(根据第7章、第8章教材编写)一、选择题1.3x=4,9y=7,则32y﹣x的值为()A.B.C.﹣3 D.2.下列运算正确的是()A.x3+x3=x6B.x2x3=x6C.(x2)3=x6D.x6÷x3=x23.如果(﹣a m)n=(﹣a n)m,则()A.m为奇数,n为奇数B.m为偶数,n为偶数C.m,n奇偶性相同D.m,n奇偶性相反4.下列运算中结果正确的是()A.3a+2b=5ab B.a•a4=a4C.(a3b)2=a6b2 D.a6•a2=a125.计算:a2•a4等于()A.a6B.a8C.2a4D.4a26.下列各式中,正确的是()A.a4•a2=a8 B.a4•a2=a6 C.a4•a2=a16D.a4•a2=a27.一个长方形的长为0.02米,宽为0.016米,则这个长方形的面积用科学记数法表示为()A.4.8×10﹣2m2 B.3.2×10﹣3m2 C.3.2×10﹣4m2 D.0.32×10﹣3m28.一种病毒的长度约为0.00000432毫米,数据0.000000432用科学记数法表示为()A.432×10﹣8B.4.32×10﹣7C.4.32×10﹣6D.0.432×10﹣59.如图,直线a,b被直线c所截,则图中与∠1是同位角的是()A.∠2 B.∠3 C.∠4 D.∠510.如图,已知点C,D分别在射线BE,BF上,∠ABF=60°,则下列条件中能判断AB∥CD的是()A.∠DBC=60°B.∠CDB=60°C.∠DCE=120°D.∠FDC+∠DCE=180°11.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则∠2等于()A.30°B.40°C.50°D.60°12.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于()A.4 B.6或4 C.8 D.4或813.如图所示,图中最多可有正三角形()个.A.6 B.8 C.10 D.1214.在下列长度的四组线段中,不能组成三角形的是()A.3cm,4cm,5cm B.5cm,7cm,8cm C.3cm,5cm,9cm D.7cm,7cm,9cm15.已知三角形三边长分别为3,x,14,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.13二、填空题16.如图,∠ACD是△ABC的外角,若∠ACD﹣∠B=80°,则∠A=°.17.﹣4100×0.25100=.18.某种流感病毒的直径大约为0.000 000 0801米,则这个数用科学记数法表示为.19.如图所示∠3=118°,∠1=48°,则∠2=.20.将一副三角尺按如图方式进行摆放,则∠1的度数为.三、解答题21.如图,四边形ABCD中,外角∠DCG=∠A,点E、F分别是边AD、BC上的两点,且EF∥AB.∠D与∠1相等吗?为什么?22.(1)若(9m+1)2=316,求正整数m的值.(2)已知n为正整数,且x2n=7,求(3x3n)2﹣4(x2)2n的值.(2)考查了幂的乘法和积的乘方,掌握各运算法则是解答本题的关键.23.(1)如果a+4=﹣3b,求3a×27b的值.(2)已知a m=2,a n=4,a k=32,求a3m+2n﹣k的值.24.科学家密立根曾做过一个测量油分子直径的实验,具体的做法是先将油滴滴在某种溶剂中,使油均匀溶解后取出一些溶液滴入水中,溶剂溶于水,此时油就在水面上形成一层油膜,该方法称油膜法,例如,在测分子直径的实验中,若油酸酒精溶液的浓度是1:300,每1cm3溶液有250滴液滴,而1滴溶液滴在水面上时自由散开的面积为120cm2,则由此可估算出油酸分子的直径约为多少米?25.如图所示的方格纸中每个小方格都是边长为1个单位长度的正方形,建立如图所示的平面直角坐标系,已知点A(1,0),B(4,0),C(3,3),D(1,4)(1)描出A、B、C、D、四点的位置,并顺次连接ABCD,(2)四边形ABCD的面积是.(3)把四边形ABCD向左平移5个单位,再向下平移2个单位得到四边形A'B'C'D',写出点A'、B'、C'、D'的坐标.26.如图,已知AC∥ED,ED∥GF,∠BDF=90°.(1)若∠ABD=150°,求∠GFD的度数;(2)若∠ABD=θ,求∠GFD﹣∠CBD的度数.27.如图是一个汉字“互”字,其中,AB∥CD,∠1=∠2,∠MGH=∠MEF.求证:∠MEF=∠GHN.答案1.3x=4,9y=7,则32y﹣x的值为()A.B.C.﹣3 D.【考点】48:同底数幂的除法;47:幂的乘方与积的乘方.【专题】选择题【难度】易【分析】根据同底数幂的除法展开,求出后代入求出即可.【解答】解:∵3x=4,9y=7,∴32y﹣x=32y÷3x=9y÷3x=,故选B.【点评】本题考查了同底数幂的除法的应用,主要考查学生的理解能力和计算能力.2.下列运算正确的是()A.x3+x3=x6B.x2x3=x6C.(x2)3=x6D.x6÷x3=x2【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【专题】选择题【难度】易【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=2x3,错误;B、原式=x5,错误;C、原式=x6,正确;D、原式=x3,错误.故选C.【点评】此题考查了同德数幂的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.如果(﹣a m)n=(﹣a n)m,则()A.m为奇数,n为奇数B.m为偶数,n为偶数C.m,n奇偶性相同D.m,n奇偶性相反【考点】47:幂的乘方与积的乘方.【专题】选择题【难度】易【分析】根据幂的乘方和积的乘方以及合并同类项进行选择即可.【解答】解:∵(﹣a m)n=(﹣a n)m,∴m,n可以同时奇数,也可以同时偶数,故选C.【点评】本题考查了幂的乘方和积的乘方以及合并同类项,掌握运算法则是解题的关键.4.下列运算中结果正确的是()A.3a+2b=5ab B.a•a4=a4C.(a3b)2=a6b2 D.a6•a2=a12【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【专题】选择题【难度】易【分析】根据幂的乘方和积的乘方以及合并同类项进行选择即可.【解答】解:A、不能合并,故A错误;B,a•a4=a5故B错误;C、(a3b)2=a6b2,故C正确;D、a6•a2=a8,故B错误;故选C.【点评】本题考查了幂的乘方和积的乘方以及合并同类项,掌握运算法则是解题的关键.5.计算:a2•a4等于()A.a6B.a8C.2a4D.4a2【考点】46:同底数幂的乘法.【专题】选择题【难度】易【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【解答】解:原式=a2+4=a6,故选:A.【点评】本题考查了同底数幂的乘法,底数不变指数相加是解题关键.6.下列各式中,正确的是()A.a4•a2=a8 B.a4•a2=a6 C.a4•a2=a16D.a4•a2=a2【考点】46:同底数幂的乘法.【专题】选择题【难度】易【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:a4•a2=a4+2=a6,故选:B.【点评】本题考查了同底数幂的乘法,同底数幂的乘法,底数不变指数相加.7.一个长方形的长为0.02米,宽为0.016米,则这个长方形的面积用科学记数法表示为()A.4.8×10﹣2m2 B.3.2×10﹣3m2 C.3.2×10﹣4m2 D.0.32×10﹣3m2【考点】1J:科学记数法—表示较小的数.【专题】选择题【难度】易【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:面积是0.00032=3.2×10﹣4m2,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.一种病毒的长度约为0.00000432毫米,数据0.000000432用科学记数法表示为()A.432×10﹣8B.4.32×10﹣7C.4.32×10﹣6D.0.432×10﹣5【考点】1J:科学记数法—表示较小的数.【专题】选择题【难度】易【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000432=4.32×10﹣7,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.如图,直线a,b被直线c所截,则图中与∠1是同位角的是()A.∠2 B.∠3 C.∠4 D.∠5【考点】J6:同位角、内错角、同旁内角.【专题】选择题【难度】易【分析】利用同位角、内错角、同旁内角的定义判断即可.【解答】解:A.∠2是∠1的对顶角,所以此选项错误;B.∠3是∠1的同位角,所以此选项正确;C.∠4与∠1不是同位角,所以此选项错误;D.∠5与∠1不是同位角,所以此选项错误;故选B.【点评】此题主要考查了“三线八角”,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形是解答此题的关键.10.如图,已知点C,D分别在射线BE,BF上,∠ABF=60°,则下列条件中能判断AB∥CD的是()A.∠DBC=60°B.∠CDB=60°C.∠DCE=120°D.∠FDC+∠DCE=180°【考点】J9:平行线的判定.【专题】选择题【难度】易【分析】根据内错角相等,两直线平行,即可得到AB∥CD.【解答】解:当∠DBC=60°时,不能判断AB∥CD;当∠CDB=60°时,根据∠ABF=60°,可得∠ABF=∠CDB,故能判断AB∥CD;当∠DCE=120°时,不能判断AB∥CD;当∠FDC+∠DCE=180°,不能判断AB∥CD;故选:B.【点评】本题主要考查了平行线的判定,解题时注意:内错角相等,两直线平行.11.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则∠2等于()A.30°B.40°C.50°D.60°【考点】JA:平行线的性质.【专题】选择题【难度】易【分析】先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.【解答】解:∵a∥b,∠1=60°,∴∠3=∠1=60°,∴∠2=90°﹣∠3=90°﹣60°=30°.故选:A.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.12.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于()A.4 B.6或4 C.8 D.4或8【考点】Q2:平移的性质.【专题】选择题【难度】易【分析】设AA′=x,AC与A′B′相交于点E,判断出△AA′E是等腰直角三角形,根据等腰直角三角形的性质可得A′E=x,再表示出A′D,然后根据平行四边形的面积公式列方程求解即可.【解答】解:设AA′=x,AC与A′B′相交于点E,∵△ACD是正方形ABCD剪开得到的,∴△ACD是等腰直角三角形,∴∠A=45°,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD﹣AA′=12﹣x,∵两个三角形重叠部分的面积为32,∴x(12﹣x)=32,整理得,x2﹣12x+32=0,解得x1=4,x2=8,即移动的距离AA′等4或8.故选D.【点评】本题考查了平移的性质,正方形的性质,等腰直角三角形的判定与性质,熟记平移的性质并用平移距离表示出重叠部分的底与高是解题的关键.13.如图所示,图中最多可有正三角形()个.A.6 B.8 C.10 D.12【考点】K1:三角形.【专题】选择题【难度】易【分析】分单个的正三角形和几个三角形复合的正三角形两种情况计算个数.【解答】解:单个的正三角形有6个,复合正三角形有2个,所以正三角形共有8个.故选B.【点评】分单个的正三角形和复合的正三角形两种情况找出正三角形,要注意做到不重不漏.14.在下列长度的四组线段中,不能组成三角形的是()A.3cm,4cm,5cm B.5cm,7cm,8cm C.3cm,5cm,9cm D.7cm,7cm,9cm【考点】K6:三角形三边关系.【专题】选择题【难度】易【分析】根据三角形的三边关系定理:三角形两边之和大于第三边进行分析即可.【解答】解:A、3+4>5,能够组成三角形,故此选项不合题意;B、5+7>8,能够组成三角形,故此选项不合题意;C、3+5<9,不能够组成三角形,故此选项符合题意;D、7+7>9,能够组成三角形,故此选项不合题意;故选:C.【点评】此题主要考查了三角形的三边关系,运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.15.已知三角形三边长分别为3,x,14,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.13【考点】K6:三角形三边关系.【专题】选择题【难度】易【分析】直接根据三角形的三边关系求出x的取值范围,进而可得出结论.【解答】解:∵三角形三边长分别为3,x,14,∴14﹣3<x<14+3,即11<x<17.∵x为正整数,∴x=12,13,14,15,16,即这样的三角形有5个.故选C.【点评】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边,两边之差小于第三边是解答此题的关键.16.如图,∠ACD是△ABC的外角,若∠ACD﹣∠B=80°,则∠A=°.【考点】K8:三角形的外角性质.【专题】填空题【难度】中【分析】根据三角形的外角的性质列式计算即可.【解答】解:∠A=∠ACD﹣∠B=80°,故答案为:80.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.17.﹣4100×0.25100=.【考点】47:幂的乘方与积的乘方.【专题】填空题【难度】中【分析】根据积的乘方的运算方法,求出﹣4100×0.25100的值是多少即可.【解答】解:﹣4100×0.25100=﹣(4×0.25)100=﹣1100=﹣1故答案为:﹣1.【点评】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).18.某种流感病毒的直径大约为0.000 000 0801米,则这个数用科学记数法表示为.【考点】1J:科学记数法—表示较小的数.【专题】填空题【难度】中【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 0801=8.01×10﹣8,故答案为:8.01×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.19.如图所示∠3=118°,∠1=48°,则∠2=.【考点】K8:三角形的外角性质.【专题】填空题【难度】中【分析】根据三角形外角的性质即可得到结论.【解答】解:∵∠3=∠1+∠2,∴∠2=∠3﹣∠1=70°,故答案为:70°.【点评】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.20.将一副三角尺按如图方式进行摆放,则∠1的度数为.【考点】K8:三角形的外角性质;K7:三角形内角和定理.【专题】填空题【难度】中【分析】根据三角形的一个外角等于和它不相邻的两个内角的和计算即可.【解答】解:如图,∠1=∠2+∠3=90°+30°=120°,故答案为:120°.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.21.如图,四边形ABCD中,外角∠DCG=∠A,点E、F分别是边AD、BC上的两点,且EF∥AB.∠D与∠1相等吗?为什么?【考点】L3:多边形内角与外角;JA:平行线的性质.【专题】解答题【难度】难【分析】首先证明∠A+∠DCB=180°,再根据四边形内角和为360°可得∠D+∠B=180°,根据平行线的性质可得∠B+∠1=180°,进而可得∠D=∠1.【解答】解:∠D=∠1,∵∠DCG=∠A,∠DCG+∠DCB=180°,∴∠A+∠DCB=180°,∵∠A+∠B+∠DCB+∠D=360°,∴∠D+∠B=180°,∵EF∥AB,∴∠B+∠1=180°,∴∠D=∠1.【点评】此题主要考查了多边形的内角,以及平行线的性质,关键是掌握四边形内角和为360°.22.(1)若(9m+1)2=316,求正整数m的值.(2)已知n为正整数,且x2n=7,求(3x3n)2﹣4(x2)2n的值.【考点】47:幂的乘方与积的乘方.【专题】解答题【难度】难【分析】(1)由(9m+1)2=92m+2=32(2m+2)=316,可得方程:2(2m+2)=16,解此方程即可求得答案.(2)根据幂的乘方的法则将式子中全部化为x2n的形式,然后代入即可求解.【解答】解:(1)∵(9m+1)2=92m+2=32(2m+2)=316,∴2(2m+2)=16,解得:m=3.(2)原式=9x6n﹣4x4n=9(x2n)3﹣4(x2n)2=9×73﹣4×72=49×(63﹣4)=49×59=2891.【点评】(1)考查了幂的乘方与积的乘方.此题比较简单,注意掌握指数的变化是解此题的关键.(2)考查了幂的乘法和积的乘方,掌握各运算法则是解答本题的关键.23.(1)如果a+4=﹣3b,求3a×27b的值.(2)已知a m=2,a n=4,a k=32,求a3m+2n﹣k的值.【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【专题】解答题【难度】难【分析】(1)根据幂的乘方,可得同底数幂的乘法,根据同底数幂的乘法,可得答案;(2)根据幂的乘方,可得同底数幂的乘法,根据同底数幂的乘法,可得答案.【解答】解:(1)由a+4=﹣3b,得a=﹣4﹣3b.3a×27b=3a×33b=3a+33b=3a+3b=3﹣4﹣3b+3b=3﹣4=;(2)a3m=8,a2n=16,a3m+2n﹣k=a3m•a2n÷a k=8×16÷32=4.【点评】本题考查了同底数幂的乘法,先利用幂的乘方得出同底数幂的乘法,再利用同底数幂的乘法运算.24.科学家密立根曾做过一个测量油分子直径的实验,具体的做法是先将油滴滴在某种溶剂中,使油均匀溶解后取出一些溶液滴入水中,溶剂溶于水,此时油就在水面上形成一层油膜,该方法称油膜法,例如,在测分子直径的实验中,若油酸酒精溶液的浓度是1:300,每1cm3溶液有250滴液滴,而1滴溶液滴在水面上时自由散开的面积为120cm2,则由此可估算出油酸分子的直径约为多少米?【考点】1J:科学记数法—表示较小的数.【专题】解答题【难度】难【分析】采用估算的方法求油膜的面积,通过数正方形的个数:面积超过正方形一半算一个,不足一半的不算,数出正方形的总个数乘以一个正方形的面积,近似算出油酸膜的面积;根据浓度按比例算出纯油酸的体积;把油酸分子看成球形,且不考虑分子间的空隙,油膜的厚度近似等于油酸分子的直径,由d=出油酸分子直径.【解答】解:每滴酒精油酸溶液中含有纯油酸的体积为:V=1cm3××=1.3×10﹣5cm3把油酸分子看成球形,且不考虑分子间的空隙,则油酸分子直径为:d==≈3×10﹣9m.【点评】本题考查了科学计数法﹣表示较小的数,本实验的模型是不考虑油酸分子间的空隙,采用估算的方法求面积,肯定存在误差,但本实验只要求估算分子大小,数量级符合要求就行了.25.如图所示的方格纸中每个小方格都是边长为1个单位长度的正方形,建立如图所示的平面直角坐标系,已知点A(1,0),B(4,0),C(3,3),D(1,4)(1)描出A、B、C、D、四点的位置,并顺次连接ABCD,(2)四边形ABCD的面积是.(3)把四边形ABCD向左平移5个单位,再向下平移2个单位得到四边形A'B'C'D',写出点A'、B'、C'、D'的坐标.【考点】Q4:作图﹣平移变换.【专题】解答题【难度】难【分析】(1)在坐标系内描出各点,并顺次连接ABCD即可;(2)连接AC,利用三角形的面积公式即可得出结论;(3)画出四边形A'B'C'D',写出点A'、B'、C'、D'的坐标即可.【解答】解:(1)如图,四边形ABCD即为所求;(2)连接AC,则S四边形ABCD=S△ACD+S△ABC=×2×4+×3×3=8.5.故答案为:8.5;(3)如图,四边形A'B'C'D'即为所求,A'(﹣4,﹣2),B'(﹣1,﹣2),C'(﹣2,1),D'(﹣4,2).【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.26.如图,已知AC∥ED,ED∥GF,∠BDF=90°.(1)若∠ABD=150°,求∠GFD的度数;(2)若∠ABD=θ,求∠GFD﹣∠CBD的度数.【考点】JA:平行线的性质.【专题】解答题【难度】难【分析】(1)根据平行线的性质可得∠ABD+∠BDE=180°,进而可得∠BDE=30°,然后再计算出∠EDF的度数,再根据平行线的性质可得∠EDF+∠F=180°,进而可得∠GFD的度数;(2)与(1)类似,表示出∠F的度数,再表示出∠CBD的度数,再求差即可.【解答】解:(1)∵AC∥ED,∴∠ABD+∠BDE=180°,∵∠ABD=150°,∴∠BDE=30°,∵∠BDF=90°,∴∠EDF=60°,∵ED∥GF,∴∠EDF+∠F=180°,∴∠F=120°;(2)∵AC∥ED,∴∠ABD+∠BDE=180°,∵∠ABD=θ,∴∠BDE=θ,∵∠BDF=90°,∴∠EDF=(90﹣θ)°,∵ED∥GF,∴∠EDF+∠F=180°,∴∠F=(90+θ)°,∵∠ABD=θ,∴∠CBD=(180﹣θ)°,∴∠GFD﹣∠CBD=(90+θ)°﹣(180﹣θ)°=(2θ﹣90)°.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.27.如图是一个汉字“互”字,其中,AB∥CD,∠1=∠2,∠MGH=∠MEF.求证:∠MEF=∠GHN.【考点】JA:平行线的性质.【专题】解答题【难度】难【分析】延长ME交CD于P点,然后由AB∥CD.可得∠1=∠3,等量代换易得∠2=∠3,由平行线的判定定理可得ME∥HN,易得∠MGH=∠GHN,等量代换易得结论.【解答】证明:延长ME交CD于点P,∵AB∥CD,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴ME∥HN,∴∠MGH=∠GHN,∵∠MGH=∠MEF,∴∠MEF=∠GHN.【点评】此题考查了平行线的性质与判定,熟记同位角相等⇔两直线平行,内错角相等⇔两直线平行,同旁内角互补⇔两直线平行是解题的关键.苏教版数学七年级下册第二次月考测试题(根据第9章、第10章教材编写)一、选择题1.已知正数x满足x2+=62,则x+的值是()A.31 B.16 C.8 D.42.如果(x+1)(2x+m)的乘积中不含x的一次项,则m的值为()A.﹣0.5 B.0.5 C.﹣2 D.23.已知a m+2n•b n+2•(b m)2=a5b6,则m+n的值为()A.1 B.2 C.3 D.44.计算(﹣2a2b)(3a3b2)的结果是()A.﹣6a5b3B.﹣6a3b5C.6a5b3D.6a3b55.单项式乘以多项式依据的运算律是()A.加法结合律B.乘法结合律C.乘法分配律D.乘法交换律6.下列计算正确的是()A.x n(x n﹣x2+3)=x2n﹣x n+2+3x n B.(2x+3y)(﹣4xy)=﹣8x2y﹣12xy2=﹣20xyC.(﹣2xy2﹣4x2y)(﹣3xyz)=6x2y3+12x3y2D.(xyz﹣7x2y+1)(﹣xz)=﹣x2yz2+7x3yz 7.下列运算正确的是()A.(a+b)2=a2+b2B.a(a+b)=a2+ab C.﹣2(a﹣1)=﹣2a﹣2 D.3a2﹣2a2=18.计算(a﹣3)2的结果是()A.a2﹣9 B.a2+9 C.a2﹣6a+9 D.a2+6a+99.下列方程中是二元一次方程的是()A.3x﹣2y=4z B.6xy+13=0 C.3x=y﹣1 D.+3y=210.若关于x、y的方程mx+ny=6的两个解是,,则()A.B.C.D.11.下列方程组中,不是二元一次方程组的是()A.B.C.D.12.方程组的解是()A.B.C.D.13.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将(1)×2+(2)×3 B.要消去x,可以将(1)×3+(2)×(﹣5)C.要消去y,可以将(1)×5+(2)×3 D.要消去x,可以将(1)×(﹣5)+(2)×3 14.已知,则用含x的式子表示y,应是()A.x=﹣y+4 B.y=4x C.y=﹣x+4 D.y=x﹣415.已知关于整数x的二次三项式ax2+bx+c当x取1,3,6,8时,某同学算得这个二次三项式的值分别为l,5,25,50.经检验,只有一个结果是错误的,这个错误的结果是()A.当x=1时,ax2+bx+c=1 B.当x=3时,ax2+bx+c=5C.当x=6时,ax2+bx+c=25 D.当x=8时,ax2+bx+c=50二、填空题16.已知关于x、y的方程3x m﹣3+4y n+2=11是二元一次方程,则m+n的值为.17.计算:=.18.长方形的一边长为a+2b,另一边长为a+b,长方形面积为.(需计算)19.在关于x1,x2,x3的方程组中,已知a1>a2>a3,那么将x1,x2,x3从大到小排起来应该是.20.小林每天下午5点放学时,爸爸总是从家开车按时到达学校接他回家,有一天学校提前一个小时放学,小林自己步行回家,在途中遇到开车来接他的爸爸,结果比平时早20分钟到家,则小林步行分钟遇到来接他的爸爸.三、解答题21.已知关于x,y的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5.(1)当m为何值时,它是一元一次方程?(2)当m为何值时.它是二元一次方程?22.计算:5m3n•(﹣3n)2+(6mn)2•(﹣mn)﹣mn3•(﹣4m)2.23.计算:(1)(﹣4a)•(ab2+3a3b﹣1);(2)(﹣x3y2)(4y+8xy3).24.求2(a2﹣3)与﹣2a(a﹣1)的和.25.解下列方程组:(1)(2)26.解下列方程组(1)(2).答案1.已知正数x满足x2+=62,则x+的值是()A.31 B.16 C.8 D.4【考点】4C:完全平方公式.【专题】选择题【难度】易【分析】因为x是正数,根据x+=,即可计算.【解答】解:∵x是正数,∴x+====8.【点评】本题考查完全平方公式,解题的关键是应用公式x+=(x>0)进行计算,属于中考常考题型.2.如果(x+1)(2x+m)的乘积中不含x的一次项,则m的值为()A.﹣0.5 B.0.5 C.﹣2 D.2【考点】4B:多项式乘多项式.【专题】选择题【难度】易【分析】直接利用多项式乘法去括号,进而得出一次项系数为0,进而得出答案.【解答】解:(x+1)(2x+m)=2x2+mx+2x+m=2x2+(m+2)x+m,∵(x+1)(2x+m)的乘积中不含x的一次项,∴m+2=0,∴m=﹣2,故选:C.【点评】此题主要考查了多项式乘以多项式,正确去括号计算是解题关键.3.已知a m+2n•b n+2•(b m)2=a5b6,则m+n的值为()A.1 B.2 C.3 D.4【考点】49:单项式乘单项式.【专题】选择题【难度】易【分析】直接利用同类项的定义得出关于m,n的等式进而化简求出答案.【解答】解:∵a m+2n•b n+2•(b m)2=a5b6,∴a m+2n•b n+2+2m=a5b6,∴,∴3m+3n=9,则m+n的值为:3.故选:C.【点评】此题主要考查了单项式乘以单项式,正确得出关于m,n的等式是解题4.计算(﹣2a2b)(3a3b2)的结果是()A.﹣6a5b3B.﹣6a3b5C.6a5b3D.6a3b5【考点】49:单项式乘单项式.【专题】选择题【难度】易【分析】根据单项式与单项式相乘的法则计算即可.【解答】解:(﹣2a2b)(3a3b2)=﹣6a5b3.故选A.【点评】此题主要考查了单项式乘单项式:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.熟练掌握计算法则是解题的关键.5.单项式乘以多项式依据的运算律是()A.加法结合律B.乘法结合律C.乘法分配律D.乘法交换律【考点】4A:单项式乘多项式.【专题】选择题【难度】易【分析】单项式与多项式相乘的法则,就是根据单项式去乘多项式的每一项,再把所得的积相加,就是乘法的分配律.【解答】解:乘法的分配律:a(b+c)=ab+ac.故选C.【点评】本题考查了单项式乘多项式法则的依据.6.下列计算正确的是()A.x n(x n﹣x2+3)=x2n﹣x n+2+3x n B.(2x+3y)(﹣4xy)=﹣8x2y﹣12xy2=﹣20xyC.(﹣2xy2﹣4x2y)(﹣3xyz)=6x2y3+12x3y2D.(xyz﹣7x2y+1)(﹣xz)=﹣x2yz2+7x3yz 【考点】4A:单项式乘多项式.【专题】选择题【难度】易【分析】根据单项式乘以多项式的法则计算,然后利用排除法求解.【解答】解:A、x n(x n﹣x2+3)=x2n﹣x n+2+3x n,正确;B、应为(2x+3y)(﹣4xy)=﹣8x2y﹣12xy2,故本选项错误;C、应为(﹣2xy2﹣4x2y)(﹣3xyz)=6x2y3z+12x3y2z,故本选项错误;D、应为(xyz﹣7x2y+1)(﹣xz)=﹣x2yz2+7x3yz﹣xz,故本选项错误.故选A.【点评】本题主要考查单项式乘以多项式,熟练掌握运算法则是解题的关键,计算时要注意符号,不要漏项.7.下列运算正确的是()A.(a+b)2=a2+b2B.a(a+b)=a2+ab C.﹣2(a﹣1)=﹣2a﹣2 D.3a2﹣2a2=1【考点】4C:完全平方公式;35:合并同类项;36:去括号与添括号;4A:单项式乘多项式.【专题】选择题【难度】易【分析】由完全平方公式得出A不正确,由单项式与多项式相乘的法则得出B 正确,C不正确;由合并同类项得出D不正确;即可得出结论.【解答】解:∵(a+b)2=a2+2ab+b2,∴选项A不正确;∵a(a+b)=a2+ab,∴选项B正确;∵﹣2(a﹣1)=﹣2a+2,∴选项C不正确;∵3a2﹣2a2=a2,∴选项D不正确;故选:B.【点评】本题考查了完全平方公式、多项式乘以多项式法则以及合并同类项;本题难度适中,注意法则的运用.8.计算(a﹣3)2的结果是()A.a2﹣9 B.a2+9 C.a2﹣6a+9 D.a2+6a+9【考点】4C:完全平方公式.【专题】选择题【难度】易【分析】原式利用完全平方公式展开即可得到结果.【解答】解:(a﹣3)2=a2﹣6a+9,故选C.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.9.下列方程中是二元一次方程的是()A.3x﹣2y=4z B.6xy+13=0 C.3x=y﹣1 D.+3y=2【考点】91:二元一次方程的定义.【专题】选择题【难度】易【分析】根据二元一次方程的定义,即只含有2个未知数,且含有未知数的项的最高次数是1的整式方程作答.【解答】解:A、含有三个未知数,错误;B、6xy+13=0是二元二次方程;C、3x=y﹣1是二元一次方程;D、是分式方程.故选C【点评】此题主要考查二元一次方程的概念,要求掌握二元一次方程的形式及其特点:(1)是整式方程;(2)含有2个未知数;(3)最高次项的次数是1.10.若关于x、y的方程mx+ny=6的两个解是,,则()A.B.C.D.【考点】92:二元一次方程的解.【专题】选择题【难度】易【分析】把方程的解代入方程可得到关于m、n的方程组,解方程组可求得答案.【解答】解:∵关于x、y的方程mx+ny=6的两个解是,,∴,解得,故选B.【点评】本题主要考查二元一次方程解的定义,掌握方程的解满足方程是解题的关键.11.下列方程组中,不是二元一次方程组的是()A.B.C.D.【考点】96:二元一次方程组的定义.【专题】选择题【难度】易【分析】二元一次方程组的定义的三要点:1、共有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程.根据定义逐项判断.【解答】解:因为A,B,C均符合二元一次方程组的定义,而D中含有三个未知数,故不是二元一次方程组.故选D.【点评】此题要紧扣二元一次方程组的定义的三要点.12.方程组的解是()A.B.C.D.【考点】97:二元一次方程组的解.【专题】选择题【难度】易【分析】根据y的系数互为相反数,利用加减消元法求解即可.【解答】解:,①+②得,3x=6,解得x=2,把x=2代入①得,2﹣y=1,解得y=1,所以方程组的解是,故选D.【点评】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将(1)×2+(2)×3 B.要消去x,可以将(1)×3+(2)×(﹣5)C.要消去y,可以将(1)×5+(2)×3 D.要消去x,可以将(1)×(﹣5)+(2)×3【考点】98:解二元一次方程组.【专题】选择题【难度】易【分析】观察方程组中x与y的系数特点,利用加减消元法判断即可.【解答】解:利用加减消元法解方程组,做法正确的是要消去x,可以将(1)×(﹣5)+(2)×3,故选D【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.已知,则用含x的式子表示y,应是()A.x=﹣y+4 B.y=4x C.y=﹣x+4 D.y=x﹣4【考点】98:解二元一次方程组.。
新苏科版初一下册第二学期数学月考试卷及答案word 版一、选择题1.下列计算正确的是( )A .a 3.a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .224(3)6a a = 2.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( )A .4种B .5种C .6种D .7种 3.32236x y 3x y -分解因式时,应提取的公因式是( )A .3xyB .23x yC .233x yD .223x y4.小明带了10元钱到文具店购买签字笔和练习本两种文具,已知签字笔2元支,练习本3元/本,如果10元恰好用完,那么小明共有( )种购买方案.A .0B .1C .2D .3 5.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .18 6.下列图案中,可以看成是由图案自身的一部分经平移后得到的是( ) A . B . C . D .7.下列四个等式从左到右的变形是因式分解的是 ( )A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x+=+ 8.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( ) A .2a +2b -2cB .2a +2bC .2cD .0 9.下列各式能用平方差公式计算的是()A .()()22a b b a +-B .()()11x x +--C .()()m n m n ---+D .()()33x y x y --+ 10.将一副三角板如图放置,作CF //AB ,则∠EFC 的度数是( )A .90°B .100°C .105°D .110°11.已知a 、b 、c 是正整数,a >b ,且a 2-ab-ac+bc=11,则a-c 等于( )A .1-B .1-或11-C .1D .1或11 12.已知x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解,则32a b -的算术平方根为( ) A .4± B .4 C .2 D .2±二、填空题13.如图,AD ⊥BC 于D ,那么图中以AD 为高的三角形有______个.14.如图,直线//AB CD ,直线GE 交直线AB 于点E ,EF 平分AEG ∠.若∠1=58°,则AEF ∠的大小为____.15.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D '、C '的位置,ED '的延长线与BC 相交于点G ,若∠EFG =50°,则∠1=_______.16.已知某种植物花粉的直径为0.00033cm ,将数据0.00033用科学记数法表示为 ________________.17.若关于x 、的方程()2233b a ax b y -+++=是二元一次方程,则b a =_______18.若2m =3,2n =5,则2m+n =______.19.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.20.内角和等于外角和2倍的多边形是__________边形.21.若(x 2+x-1)(px+2)的乘积中,不含x 2项,则p 的值是 ________.22.一艘船从A 港驶向B 港的航向是北偏东25°,则该船返回时的航向应该是_______.三、解答题23.如图,ABC ∆中,B ACB ∠=∠,点,D F 分别在边,BC AC 的延长线上,连结,CE CD 平分ECF ∠.求证://AB CE .24.先化简,再求值:()()()()2212112,x x x x x --+---其中2230x x --=.25.若x ,y 为任意有理数,比较6xy 与229x y +的大小. 26.已知a+b=2,ab=-1,求下面代数式的值:(1)a 2+b 2;(2)(a-b )2.27.已知1502x x +-=,求值; (1)221x x +(2)1x x- 28.在平面直角坐标系中,点A 、B 的坐标分别为(),0a ,()0,b ,其中a ,b 满足218|273|0a b a b +-+--=.将点B 向右平移15个单位长度得到点C ,如图所示.(1)求点A ,B ,C 的坐标;(2)动点M 从点C 出发,沿着线段CB 、线段BO 以1.5个单位长度/秒的速度运动,同时点N 从点O 出发沿着线段OA 以1个单位长度秒的速度运动,设运动时间为t 秒()012t <<.当BM AN <时,求t 的取值范围;是否存在一段时间,使得OACM OCN S S ≤四边形三角形?若存在,求出t 的取值范围;若不存在,说明理由.29.解方程组:41325x y x y +=⎧⎨-=⎩. 30.解方程组:(1)2338y x x y =-⎧⎨-=⎩(2) 743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据同底幂的运算法则依次判断各选项.【详解】A 中,a 3.a 2=a 5,错误;B 中,不是同类项,不能合并,错误;C 中,(a 3)2=a 6,正确;D 中,224(3)9a a =,错误故选:C .【点睛】本题考查同底幂的运算,注意在加减运算中,不是同类项是不能合并的.2.B解析:B【分析】设1元和5元的纸币分别有x 、y 张,得到方程x+5y=20,然后根据x 、y 都是正整数即可确定x 、y 的值.【详解】解:设1元和5元的纸币分别有x 、y 张,则x+5y=20,∴x=20-5y ,而x≥0,y≥0,且x 、y 是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5;y=4,x=0,共有5种换法.故选:B .【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.3.D解析:D【解析】【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x 3y 2-3x 2y 3=3x 2y 2(2x-y ),因此6x 3y 2-3x 2y 3的公因式是3x 2y 2.故选:D.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的. 4.C解析:C【分析】设小明买了签字笔x 支,练习本y 本,根据已知列出关于x 、y 的二元一次方程,用y 表示出x ,由x 、y 均为非负整数,解不等式可得出y 可取的几个值,从而得出结论.【详解】设小明买了签字笔x 支,练习本y 本,根据已知得:2x+3y=10, 解得:1032y x -=. ∵x 、y 均为非负整数, ∵令1030y -≥,解得:103y ≤, ∴y 只能为0、2两个数,∴只有两种购买方案.故选:C .【点睛】本题考查了二元一次方程的应用以及解一元一次不等式,解题的关键是根据x 、y 均为正整数,解不等式得出y 可取的值.本题属于基础题,难度不大,只要利用x 、y 为正整数,结合不等式即可得出结论.5.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去. ②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B .考点:等腰三角形的性质.6.A解析:A【分析】根据平移的定义,逐一判断即可.【详解】解:A 、是平移;B 、轴对称变换,不是平移;C 、是旋转变换,不是平移.D 、图形的大小发生了变化,不是平移.故选:A .【点睛】本题考查平移变换,判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.7.B解析:B【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.【详解】解:根据因式分解的概念,A 选项属于整式的乘法,错误;B 选项符合因式分解的概念,正确;C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误.故选B .【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.8.D解析:D【解析】试题解析:∵a 、b 、c 为△ABC 的三条边长,∴a+b-c >0,c-a-b <0,∴原式=a+b-c+(c-a-b )=0.故选D .考点:三角形三边关系.9.C解析:C【分析】平方差公式是指:(a+b)(a-b)=22a b -,要能使用平方差公式,则两个单项式的符号必须一个相同,一个互为相反数.【详解】A. ()()22a b b a +-不能用平方差公式,不符合题意;B. ()()11x x +--不能用平方差公式,不符合题意;C. ()()m n m n ---+=(-m )2-n 2=m 2-n 2;符合题意;D. ()()33x y x y --+不能用平方差公式,不符合题意.故选C10.C解析:C【分析】根据等腰直角三角形求出∠BAC ,根据平行线求出∠ACF ,根据三角形内角和定理求出即可.【详解】解:∵△ACB 是等腰直角三角形,∴∠BAC =45°,∵CF //AB ,∴∠ACF =∠BAC =45°,∵∠E =30°,∴∠EFC =180°﹣∠E ﹣∠ACF =105°,故选:C .【点睛】本题考查了三角形的内角和定理和平行线的性质,能求出各个角的度数是解此题的关键.11.D解析:D【解析】【分析】此题先把a 2-ab -ac +bc 因式分解,再结合a 、b 、c 是正整数和a >b 探究它们的可能值,从而求解.【详解】解:根据已知a 2-ab -ac +bc =11,即a (a -b )-c (a -b )=11,(a -b )(a -c )=11,∵a >b ,∴a -b >0,∴a -c >0,∵a 、b 、c 是正整数,∴a -c =1或a -c =11故选D .【点睛】此题考查了因式分解;能够借助因式分解分析字母的取值范围是解决问题的关键.12.B解析:B【分析】把方程组24213x y x y -=⎧⎨+=⎩的解求解出来即可得到a 、b 的值,再计算32a b -的算术平方根即可得到答案;【详解】解:24213x y x y -=⎧⎨+=⎩①② 把①式×5得:248x y -= ③,用②式-③式得:55y = ,解得:y=1,把1y = 代入①式得到:24x -= ,即:6x = ,又x a y b=⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解, 所以61a b =⎧⎨=⎩, 故3216a b -=,所以32a b -的算术平方根=16的算术平方根,4== ,故答案为:4;【点睛】本题主要考查了二元一次方程组的求解以及算术平方根的定义,掌握用消元法求解二元一次方程组的解是解题的关键;二、填空题13.6【解析】试题分析:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有△ABD、△ABE、△ABC、△ADE、△ADC、△AEC,共6个,∴以AD为高的三角形有6个.故答案解析:6【解析】试题分析:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有△ABD、△ABE、△ABC、△ADE、△ADC、△AEC,共6个,∴以AD为高的三角形有6个.故答案为6.点睛:此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活.14.61°【分析】根据平行线的性质可得∠GEB的度数,进而得的度数,再根据角平分线的定义即得答案.【详解】解:,,.EF平分,.故答案为:61°.【点睛】本题考查了平行线的性质、角解析:61°【分析】的度数,再根据角平分线的定义即得根据平行线的性质可得∠GEB的度数,进而得AEG答案.【详解】AB CD,解://158GEB ∴∠=∠=︒,18058122AEG ∴∠=︒-︒=︒.EF 平分AEG ∠,61AEF ∴∠=︒.故答案为:61°.【点睛】本题考查了平行线的性质、角平分线和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.15.;【解析】分析:先根据平行线的性质得∠DEF=∠EFG=50°,∠1=∠GED,再根据折叠的性质得∠DEF=∠GEF=50°,则∠GED=100°,即可得到结论.详解:∵DE∥GC,∴∠DEF解析:100︒;【解析】分析:先根据平行线的性质得∠DEF =∠EFG =50°,∠1=∠GED ,再根据折叠的性质得∠DEF =∠GEF =50°,则∠GED =100°,即可得到结论.详解:∵DE ∥GC ,∴∠DEF =∠EFG =50°,∠1=∠GED .∵长方形纸片沿EF 折叠后,点D 、C 分别落在点D ′、C ′的位置,∴∠DEF =∠GEF =50°,即∠GED =100°,∴∠1=∠GED =100°. 故答案为100.点睛:本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了折叠的性质.16.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:43.310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数据0.00033用科学记数法表示为43.310-⨯,故答案为:43.310-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.1【解析】根据题意得:,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.解析:1【解析】 根据题意得:2121{030b a a b -=+=≠+≠, 解得:b =3或−3(舍去),a =−1,则ab =−1.故答案是:−1.18.15【分析】根据同底数幂的乘法逆运算法则可得,进一步即可求出答案.【详解】解:.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关解析:15【分析】根据同底数幂的乘法逆运算法则可得222m n m n +=⋅,进一步即可求出答案.【详解】解:2223515m n m n +=⋅=⨯=.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关键.19.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.20.六【解析】【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:1解析:六【解析】【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:180(n-2)=360×2,解得:n=6,故答案为:六.【点睛】本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).21.【分析】先按照多项式乘以多项式,再把同类项合并,利用不含项即这一项的系数为,即可得到答案.【详解】解:而上式不含项,,故答案为:【点睛】本题考查的是多项式的乘法运算,同时解析:2.-【分析】先按照多项式乘以多项式,再把同类项合并,利用不含2x 项即这一项的系数为0,即可得到答案.【详解】解:()()232212222x x px px x px x px +-+=+++--()()32222px p x p x =+++--而上式不含2x 项,20p ∴+=,2,p ∴=-故答案为: 2.-【点睛】本题考查的是多项式的乘法运算,同时考查多项式的概念中的项的次数,及不含某项的条件,掌握以上知识是解题的关键.22.南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西,故答案为:南偏西.【点睛】解答此类题需要从运动的角度解析:南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西25︒,故答案为:南偏西25︒.【点睛】解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.三、解答题23.证明见详解.【分析】根据B ACB ∠=∠,DCF ACB ∠=∠,CD 平分ECF ∠,可得B DCF ∠=∠,ECD DCF ,容易得ECD B ∠=∠,即可得//AB CE .【详解】∵B ACB ∠=∠,DCF ACB ∠=∠,∴B DCF ∠=∠,又∵CD 平分ECF ∠,∴ECD DCF ∴ECD B ∠=∠∴//AB CE .【点睛】本题考查了对顶角的性质,角平分线的定义和平行线的证明,熟悉相关性质是解题的关键.24.6【解析】试题分析:先根据乘法公式和单项式乘以多项式的法则计算化简,根据化简的结果,将2230x x --=变形后整体代入计算即可.试题解析:原式=()()222441212x x x x x -+----222441222x x x x x =-+-+-+223x x =-+∵2230x x --=,∴223x x -=,∴原式=3+3=6.25.2296x y xy +≥【分析】根据题意直接利用作差法对两个代数式进行大小比较即可.【详解】解:∵x ,y 为任意有理数,22296(3)0x y xy x y +-=-≥,∴2296x y xy +≥.【点睛】本题考查整式加减,注意掌握利用作差法对两个代数式进行大小比较以及配方法的应用是解题的关键.26.(1)6;(2)8.【分析】(1)先将原式转化为(a+b )2-2ab ,再将已知代入计算可得;(2)先将原式转化为(a+b )2-4ab ,再将已知代入计算计算可得.【详解】解:(1)当a+b=2,ab=-1时,原式=(a+b )2-2ab=22-2×(-1)=4+2=6;(2)当a+b=2,ab=-1时,原式=(a+b )2-4ab=22-4×(-1)=4+4=8.【点睛】本题主要考查完全平方公式的变形求值问题,解题的关键是熟练掌握完全平方公式及其灵活变形.27.(1)174;(2)32± 【分析】(1)利用完全平方公式(a +b)²=a ²+2ab +b ²解答;(2)利用(1)的结果和完全平方公式(a−b)²=a ²−2ab +b ²解答.【详解】解:(1)由题:152x x +=, 21254x x ⎛⎫∴+= ⎪⎝⎭ 即2212524x x ++=, 221174x x ∴+= (2)222111792244x x x x ⎛⎫-=+-=-= ⎪⎝⎭ 132x x ∴-=± 【点睛】此题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.28.(1)(12,0)A (0,3)B (15,3)C(2)610.8t <<;存在,02t <≤或11.612t ≤<【分析】(1)根据题意构造方程组21802730a b a b +-=⎧⎨--=⎩,解方程组,问题得解; (2)①当010t <≤时,15 1.5BM t =-,12AN t =-,根据BM AN <构造不等式,求出t ,当1012t <<时, 1.515BM t =-,12AN t =-,根据BM AN <构造不等式,求出t ,二者结合,问题得解;②分别表示出BCN S 三角形、 OACB S 四边形,分010t <≤,1012t <<两种情况讨论,问题得解.【详解】解:(1)由题意得21802730a b a b +-=⎧⎨--=⎩, 解得123a b =⎧⎨=⎩, ∴(12,0)A ,(0,3)B ,(15,3)C(2)①当010t <≤时,15 1.5BM t =-,12AN t =-,BM AN <得15 1.512t t -<-,解得6t >则610t <≤;当1012t <<时, 1.515BM t =-,12AN t =-,BM AN <得1.51512t t -<-, 解得10.8t <,则1010.8t <<,综上,610.8t <<;②1145153222BCN S BC OB =⨯⨯=⨯⨯=三角形 1181()(1215)3222OACB S OA BC OB =⨯+⨯=⨯+⨯=四边形 当010t <≤时, 81145(15 1.5)3222OACM OACB BMO S S S t =-=-⨯-⨯≤四边形四边形三角形 解得2t ≤,则02t <≤; 当1012t <<时, 81145(1.515)15222OACM OACB BMC S S S t =-=-⨯-⨯≤四边形四边形三角形 解得11.6t ≥,则11.612t ≤<,综上02t <≤或11.612t ≤<.【点睛】本题考查了非负数的表达、平面直角坐标系中图形面积表示,不等式,方程组、分类讨论等知识,综合性较强.根据题意,分类讨论是解题关键.29.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①②由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.30.(1)57x y =⎧⎨=⎩;(2)6024x y =⎧⎨=-⎩ 【分析】(1)2338y x x y =-⎧⎨-=⎩①②,由①得2x-y=3③,②-③可求得x ,将x 值代入①可得y 值,即可求得方程组的解. (2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②,先将①×12去分母,将分式方程化为整式方程,得3x+4y=84③,将②×6,由分式方程化为整式方程,得2x+3y=48④,③和④再利用加减消元法即可求解方程组的解.【详解】(1)2338y x x y =-⎧⎨-=⎩①② 由①,得2x-y=3③②-③,得x=5将x=5代入①,得2×5-y=3∴y=7故方程组的解为:57x y =⎧⎨=⎩故答案为:57x y =⎧⎨=⎩(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①×12,得3x+4y=84③②×6,得2x+3y=48④③×2,得6x+8y=168⑤④×3,得6x+9y=144⑥⑤-⑥,得y=-24将y=-24代入①,得874x -= ∴x=60 故方程组的解为:6024x y =⎧⎨=-⎩故答案为:6024x y =⎧⎨=-⎩【点睛】本题考查了一元二次方程的解法—加减消元法,将方程组中的各个方程化简成标准形式,方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等,把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求出一个未知数的值;。
新苏科版初一下学期数学月考试卷及答案一、选择题1.下列条件中,能判定△ABC 为直角三角形的是( ).A .∠A=2∠B -3∠C B .∠A+∠B=2∠C C .∠A-∠B=30°D .∠A=12∠B=13∠C 2.把多项式228x -分解因式,结果正确的是( )A .22(8)x -B .22(2)x -C .D .42()x x x- 3.下列图形可由平移得到的是( )A .B .C .D .4.下列运算结果正确的是( )A .32a a a ÷=B .()225a a =C .236a a a =D .()3326a a = 5.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1- 6.下列各式中,不能用平方差公式计算的是( )A .(x -y )(-x +y )B .(-x -y )(-x +y )C .(x -y )(-x -y )D .(x +y )(-x +y ) 7.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×1011 8.x 2•x 3=( )A .x 5B .x 6C .x 8D .x 9 9.若8x a =,4y a =,则2x y a +的值为( ) A .12B .20C .32D .256 10.若25a=,23b =,则232a b -等于( ) A .2725 B .109 C .35 D .252711.一个三角形的两边长分别是2和4,则第三边的长可能是( )A .1B .2C .4D .712.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( ) A .10m -<≤ B .10m -≤<C .01m ≤<D .01m <≤二、填空题13.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____.14.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm ,则正方形的面积与长方形的面积的差为_____(用含有字母a 的代数式表示).15.计算()()12x x --的结果为_____;16.已知:()521x x ++=,则x =______________.17.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .18.如果()()2x 1x 4ax a +-+的乘积中不含2x 项,则a 为______ . 19.不等式1x 2x 123>+-的非负整数解是______. 20.已知5x m =,4y m =,则2x y m +=______________.21.甲、乙两种车辆运土,已知5辆甲车和四辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组_________.22.已知(x ﹣4)(x +6)=x 2+mx ﹣24,则m 的值为_____.23.已知30m -=,7m n +=,则2m mn +=___________.24.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩的x 与y 互为相反数,则m 的值为_____. 三、解答题25.已知△ABC中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.(1)如图1,连接CE ,①若CE ∥AB ,求∠BEC 的度数;②若CE 平分∠ACD ,求∠BEC 的度数.(2)若直线CE 垂直于△ABC 的一边,请直接写出∠BEC 的度数.26.问题1:现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠. (1)探究1:如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ; (3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是 .27.计算(1) (-a 3) 2·(-a 2)3 (2) (2x -3y )2-(y+3x )(3x -y )(3) ()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭ 28.A 市准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的提示牌和垃圾箱,若购买2个提示牌和3个垃圾箱共需550元,且垃圾箱的单价是提示牌单价的3倍.(1)求提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案.29.如图,边长为1的正方形ABCD 被两条与边平行的线段EF ,GH 分割成四个小长方形,EF 与GH 交于点P ,设BF 长为a ,BG 长为b ,△GBF 的周长为m ,(1)①用含a ,b ,m 的式子表示GF 的长为 ;②用含a ,b 的式子表示长方形EPHD 的面积为 ;(2)已知直角三角形两直角边的平方和等于斜边的平方,例如在图1,△ABC 中,∠ABC=900,则222AB BC AC +=,请用上述知识解决下列问题:①写出a ,b ,m 满足的等式 ;②若m=1,求长方形EPHD 的面积;③当m 满足什么条件时,长方形EPHD 的面积是一个常数?30.已知8m a =,2n a = .(1)填空:m n a += ; m n a -=__________.(2)求m 与n 的数量关系.31.已知:如图EF ∥CD ,∠1+∠2=180°.(1)试说明GD ∥CA ;(2)若CD 平分∠ACB ,DG 平分∠CDB ,且∠A =40°,求∠ACB 的度数.32.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.33.把下列各式分解因式:(1)4x 2-12x 3(2)x 2y +4y -4xy(3)a 2(x -y )+b 2(y -x )34.(类比学习)小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法:15162401 6 8080 0 2221322222 0x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2).(初步应用)小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262 (2)62 0x x x x x x x x +++++-++☆☆☆ 得出□=___________,☆=_________.(深入研究)小明用这种方法对多项式x 2+2x 2-x -2进行因式分解,进行到了:x 3+2x 2-x -2=(x +2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x 3+2x 2-x -2因式分解.35.计算:(1)()()122012514--⎛⎫+-⨯-- ⎪⎝⎭;(2)52342322)(a a a a a +÷-.36.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示);②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC 的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A 、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C ,则∠A=108011°,所以A 选项错误; B 、∠A+∠B+∠C=180°,而∠A+∠B=2∠C ,则∠C=60°,不能确定△ABC 为直角三角形,所以B 选项错误;C 、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B 选项错误;D 、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C ,则∠C=90°,所以D 选项正确. 故选:D .【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.解析:C【解析】试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=2(2x -4)=2(x+2)(x -2).考点:因式分解.3.A解析:A【详解】解:观察可知A 选项中的图形可以通过平移得到,B 、C 选项中的图形需要通过旋转得到,D 选项中的图形可以通过翻折得到,故选:A4.A解析:A【分析】根据同底数幂的除法、同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【详解】解:32a a a ÷=,A 正确,()224a a =,B 错误,235a a a =,C 错误,()3328a a =,D 错误,故选:A .【点睛】此题主要考查了同底数幂的除法,同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,熟练掌握运算方法是解题的关键.5.D解析:D【分析】利用完全平方公式的特征判断即可得到结果.【详解】解:()22316x m x --+是一个完全平方式, ∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x +∴-2(m-3)=8或-2(m-3)=-8解得:m =-1或7故选:D此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6.A解析:A【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【详解】A、由于两个括号中含x、y项的符号都相反,故不能使用平方差公式,A符合题意;B、两个括号中,含x项的符号相同,含y的项的符号相反,故能使用平方差公式,B不符合题意;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,C不符合题意;D、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,D不符合题意;故选:A.【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.7.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100nm=100×10﹣9m=1×10﹣7m,故选:C.【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.8.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x2•x3=x2+3=x5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键. 10.D解析:D【分析】根据同底数幂的除法的逆运算法则及幂的乘方运算法则,进行代数式的运算即可求解.【详解】222233332(2)5252=2(2)327a a ab b b -=== 故选:D【点睛】 本题考查了同底数幂的除法的逆运算法,一般地,(0mm nn a a a a-=≠,m ,n 都是正整数,并且m >n),还考查了幂的乘方运算法则,(a m )n =a mn (m ,n 都是正整数).11.C 解析:C【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..【详解】设第三边为x ,由三角形三条边的关系得4-2<x <4+2,∴2<x <6,∴第三边的长可能是4.故选C .【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.12.C【分析】首先解不等式组求得不等式组的解集,然后根据不等式组有三个整数解,即可确定整数解,然后得到关于m 的不等式,求得m 的范围.【详解】解:0233(2)x m x x ->⎧⎨-≥-⎩①② 解不等式①,得x>m.解不等式②,得x ≤3.∴不等式组得解集为m<x ≤3.∵不等式组有三个整数解,∴01m ≤<.故选C.【点睛】本题考查了不等式组的整数解,解不等式组应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题13.100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得( 解析:100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(10.1-0.1)的值.14.【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.【详解】解:设长方 解析:24a 【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.【详解】解:设长方形的宽为xcm ,则长方形的长为(x +a )cm ,∵图(1)的正方形的周长与图(2)的长方形的周长相等,∴正方形的边长为:2()242x a x x a +++=, ∴正方形的面积与长方形的面积的差为:22()2x a x x a +⎛⎫-+ ⎪⎝⎭ 222444x ax a x ax ++=-- =24a . 故答案为:24a . 【点睛】本题主要考查了列代数式,整式的混合运算,关键是读懂题意,正确列出代数式.15.【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x²−2x −x +2=x²−3x +2,故答案为:x²−3x +2.【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则解析:2-32x x +【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x ²−2x−x +2=x ²−3x +2,故答案为:x²−3x+2.【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.16.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.17.22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长. 【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.18.【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出,求出即可;【详解】解:,的乘积中不含项,,解得:.故答案为:.【点睛】本题考查了多项式乘以多项式法则和解一元 解析:14【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出4a 10-+=,求出即可;【详解】解:()()2x 1x 4ax a +-+ 322x 4ax ax x 4ax a =-++-+()32x 4a 1x 3ax a =+-+-+,()()2x 1x 4ax a +-+的乘积中不含2x 项,4a 10∴-+=, 解得:1a 4=. 故答案为:14. 【点睛】本题考查了多项式乘以多项式法则和解一元一次方程,掌握多项式乘以多项式法则是解此题的关键.19.0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x )>2(2x-1)去括号得3+3x >4x解析:0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x )>2(2x-1)去括号得3+3x >4x-2移项合并同类项得x <5非负整数解是0,1,2,3,4.【点睛】本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.20.100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把,代入进行计算即可.【详解】解:,故答案为100.【点睛】本题考查同底数幂的乘法法则、幂的乘方与积解析:100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把5x m =,4y m =代入进行计算即可.【详解】解:2x y m +=()()2254100xy m m ⨯=⨯=,故答案为100.【点睛】本题考查同底数幂的乘法法则、幂的乘方与积的乘方法则,先根据同底数幂的乘法法则把所求代数式进行化简是解答此题的关键.21.【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,故答案为:.【解析:54140 3276 x yx y+=⎧⎨+=⎩【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,54140 3276x yx y+=⎧⎨+=⎩,故答案为:54140 3276 x yx y+=⎧⎨+=⎩.【点睛】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.22.2【分析】利用多项式乘以多项式法则计算(x﹣4)(x+6)=x2+2x﹣24,从而得出m =2.【详解】解:∵(x﹣4)(x+6)=x2+2x﹣24=x2+mx﹣24,∴m=2,故答案为2解析:2【分析】利用多项式乘以多项式法则计算(x﹣4)(x+6)=x2+2x﹣24,从而得出m=2.【详解】解:∵(x﹣4)(x+6)=x2+2x﹣24=x2+mx﹣24,∴m =2,故答案为2.【点睛】本题主要考查了整式乘法的运算,准确分析题目中的式子是解题的关键.23.21【分析】由得,再将因式分解可得, 然后将、代入求解即可.【详解】解:∵,∴,又∵∴,故答案为:.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21【分析】由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.【详解】解:∵30m -=,∴3m =,又∵7m n +=∴2()3721m mn m m n +=+=⨯=,故答案为:21.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 24.【分析】把m 看做已知数表示出x 与y ,代入x+y =0计算即可求出m 的值.【详解】解:,①+②得:5x =3m+2,解得:x =,把x =代入①得:y =,由x 与y 互为相反数,得到=0,去分母解析:【分析】把m看做已知数表示出x与y,代入x+y=0计算即可求出m的值.【详解】解:33221x y mx y m+=+⎧⎨-=-⎩①②,①+②得:5x=3m+2,解得:x=325m+,把x=325m+代入①得:y=945m-,由x与y互为相反数,得到3294+55m m+-=0,去分母得:3m+2+9﹣4m=0,解得:m=11,故答案为:11【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握方程组的解法及相反数的性质是解本题的关键.三、解答题25.(1)①40°;②30°;(2)50°,130°,10°【解析】试题分析:(1)①根据三角形的内角和得到∠ABC=80°,由角平分线的定义得到∠ABE=12∠ABC=40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD=180°-∠ACB=140°,根据角平分线的定义得到∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,根据三角形的外角的性质即可得到结论;(2)①如图1,当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.试题解析:(1)①∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=12∠ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠A=60°,∠ACB=40°,∴∠ABC =80°,∠ACD =180°-∠ACB =140°,∵BM 平分∠ABC ,CE 平分∠ACD ,∴∠CBE =12∠ABC =40°,∠ECD =12∠ACD =70°, ∴∠BEC=∠ECD-∠CBE =30°;(2)①如图1,当CE ⊥BC 时,∵∠CBE =40°,∴∠BEC =50°;②如图2,当CE ⊥AB 于F 时,∵∠ABE =40°,∴∠BEC =90°+40°=130°,③如图3,当CE ⊥AC 时,∵∠CBE =40°,∠ACB =40°,∴∠BEC =180°-40°-40°-90°=10°.【点睛】本题考查了平行线的性质,角平分线的定义,垂直的定义,三角形的内角和,三角形的外角的性质,正确的画出图形是解题的关键.26.(1)12A ∠=∠;(2)122A ∠+∠=∠;(3)见解析;(4)1222360A B ∠+∠=∠+∠-︒【分析】(1)根据三角形外角性质可得;(2)在四边形A EAD '中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠DAA ',∠2=2∠EAA ',从而推导出关系式; (4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【详解】(1)∵△'EDA 是△EDA 折叠得到∴∠A=∠A '∵∠1是△'ADA 的外角∴∠1=∠A+∠A '∴12A ∠=∠;(2)∵在四边形A EAD '中,内角和为360°∴∠A+A '+∠A DA '+∠A EA '=360°同理,∠A=∠A '∴2∠A+∠A DA '+∠A EA '=360°∵∠BDA=∠CEA=180∴∠1+∠A DA '+∠A EA '+∠2=360°∴122A ∠+∠=∠ ;(3)数量关系:212A ∠-∠=∠理由:如下图,连接AA '由(1)可知:∠1=2∠DAA ',∠2=2∠EAA '∴212()2EAA DAA DAE ∠-∠=∠-=∠'∠';(4)由折叠性质知:∠2=180°-2∠AEF ,∠1=180°-2∠BFE相加得:123602(360)22360A B A B ∠+∠=︒-︒-∠-∠=∠+∠-︒.【点睛】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.27.(1)-12a ;(2)-522x 10y 12xy +-;(3)1034. 【分析】(1)先计算幂的乘方,然后计算同底数幂相乘,即可得到答案;(2)先计算完全平方公式和平方差公式,然后合并同类项,即可得到答案;(3)先计算负整数指数幂,零指数幂,绝对值,然后合并同类项,即可得到答案.【详解】解:(1)32236612()()()a a a a a -•-=•-=-;(2)2(23)(3)(3)x y y x x y --+- =22224129(9)x xy y x y -+--=2251210x xy y --+;(3)()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭ =311824+++ =3104; 【点睛】本题考查了负整数指数幂,零指数幂,完全平方公式,平方差公式,以及同底数幂的乘法,解题的关键是熟练掌握运算法则进行解题.28.(1)50元,150元;(2)提示牌50个,垃圾箱50个;提示牌51个,垃圾箱49个;提示牌52个,垃圾箱48个;【分析】1)根据“购买2个提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论; (2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【详解】解:(1)设提示牌的单价为x 元,则垃圾箱的单价为3x 元,根据题意得,233550x x +⨯=,50x ∴=,3150x ∴=,即:提示牌和垃圾箱的单价各是50元和150元;(2)设购买提示牌y 个(y 为正整数),则垃圾箱为(100)y -个,根据题意得,1004850150(100)10000y y y ,5052y , y 为正整数,y ∴为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.29.(1)①m a b --;②1a b ab --+;(2)①22220m ma mb ab --+=;②12;③m=1 【分析】(1)①直接根据三角形的周长公式即可;②根据BF 长为a ,BG 长为b ,表示出EP ,PH 的长,根据求长方形EPHD 的面积;(2)①直接根据直角三角形两直角边的平方和等于斜边的平方,表示出a ,b ,m 之间的关系式;②根据线段之间的关系利用勾股定理求出长方形EPHD 的面积的值;③结合①的结论和②的作法即可求解.【详解】(1)①∵BF 长为a ,BG 长为b ,△GBF 的周长为m ,∴GF m a b =--,故答案为:m a b --;②∵正方形ABCD 的边长为1 ,∴AB=BC=1,∵BF 长为a ,BG 长为b ,∴AG=1-b ,FC=1-a ,∴EP=AG=1-b ,PH=FC=1-a ,∴长方形EPHD 的面积为:(1)(1)1a b a b ab --=--+,故答案为:1a b ab --+;(2)①△ABC 中,∠ABC=90°,则222AB BC AC +=,∴在△GBF 中, GF m a b =--,∴()222m a b a b --=+, 化简得,22220m ma mb ab --+=故答案为:22220m ma mb ab --+=;②∵BF=a ,GB=b ,∴FC=1-a ,AG=1-b ,在Rt △GBF 中,22222GF BF BG a b ==+=+,∵Rt △GBF 的周长为1,∴1BF BG GF a b ++=+=即1a b =--,即222212(()b a b a b a +=-+++),整理得12220a b ab --+= ∴12a b ab +-=, ∴矩形EPHD 的面积••S PH EP FC AG ==()()11a b =--1a b ab =--+11122=-=. ③由①得: 22220m ma mb ab --+=, ∴212ab ma mb m =+-. ∴矩形EPHD 的面积••S PH EP FC AG == ()()11a b =--1a b ab =--+2112ma mb a m b +-=--+()()211121m a m m b =--+-+, ∴要使长方形EPHD 的面积是一个常数,只有m=1.【点睛】本题考查了正方形的特殊性质和勾股定理,根据正方形的特殊性质和勾股定理推出22220m ma mb ab --+=是解题的关键.30.(1)16;4;(2)m=3n ;【分析】(1)利用a m +n =a m ⋅a n 和a m -n =a m ÷a n 进行计算;(2)利用23=8再结合同底数幂的运算法则进行分析计算.【详解】(1)m n a +=a m ×a n =16;m n a -=a m ÷a n =4;(2)∵, ∴∴【点睛】本题考察了同底数幂的运算法则,熟练掌握同底数幂的运算法则是解题的关键.31.(1)见解析;(2)∠ACB =80°【分析】(1)利用同旁内角互补,说明GD ∥CA ;(2)由GD ∥CA ,得∠A =∠GDB =∠2=40°=∠ACD ,由角平分线的性质可求得∠ACB 的度数.【详解】解:(1)∵EF ∥CD∴∠1+∠ECD =180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD ∥CA ;(2)由(1)得:GD ∥CA ,∴∠BDG =∠A =40°,∠ACD =∠2,∵DG 平分∠CDB ,∴∠2=∠BDG =40°,∴∠ACD =∠2=40°,∵CD 平分∠ACB ,∴∠ACB =2∠ACD =80°.【点睛】本题考查了角平分线的性质和平行线的性质.解决本题的关键熟练利用所学的性质进行解题.32.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.33.(1)4x 2(1-3x )(2)y (x -2)2(2)(x -y )(a +b )(a -b )【分析】(1)直接利用提公因式法分解因式即可;(2)先提取公因式,然后利用完全平方公式分解因式即可;(3)先提取公因式,然后利用平方差公式分解因式即可.【详解】(1)()232412413x x x x =--; (2)()()22244442x y y xy y x x y x +-=+-=-; (3)()()()()()2222()()a x y b y x x y a b x y a b a b =--=-+--+-.【点睛】本题考查了分解因式,解题的关键是熟练掌握提取公因式法和公式法分解因式.34.[初步应用]5,3;[深入研究]x 3+2x 2-x -2=(x +2)(x +1)(x -1);详见解析;【分析】[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.[深入研究]列出竖式可得x 3+2x 2-x -2÷(x +2),即可将多项式x 3+2x 2-x -2因式分解.【详解】[初步应用]∵多项式x 2+□x +6能被x +2整除,∴2☆-6=0,2-=☆,∴☆= 3,□=5,故答案为:5,3;[深入研究]∵2323212222 22 0x x x x x x x x x -++--+----, ∴()()()()()3222221211x x x x x x x x +--=+-=++-. 【点睛】本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.35.(1)7;(2)55a.【分析】(1)直接利用负整数指数幂的性质、零指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则、整式的除法运算法则计算得出答案.【详解】解:(1)(14)﹣1+(﹣2)2×50﹣(﹣1)﹣2;=4+4×1﹣1=4+4﹣1=7;(2)2a5﹣a2•a3+(2a4)2÷a3=2a5﹣a5+4a8÷a3=2a5﹣a5+4a5=5a5.【点睛】此题主要考查了整式乘除和乘法运算,以及有理数乘方的运算,熟练掌握运算法则是解本题的关键.36.(1)130°;(2)①90︒-α;②不变,90︒-α;③∠NDC+∠MDB=90︒-1α2.【分析】(1)根据已知,以及三角形内角和等于180︒,即可求解;(2)①根据平行线的性质可以证得∠ABD=∠BDM=∠MBD,∠CND=∠A=α,再利用含有α的式子分别表示出∠NDC、∠MDB,进行作差,即可求解代数式;②延长BD交AC于点E,则∠NDE=∠MDB,因此∠NDC-∠MDB=∠NDC-∠NDE=∠EDC,再利用三角形内角和为180︒,即可求解;③如图可知,∠NDC+∠MDB=180︒-∠BDC,利用平角的定义,即可求解代数式.【详解】解:(1)∵∠A=80︒∴∠ABC+∠ACB=180︒-80︒=100︒又∵ BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=12⨯100︒=50︒.∴∠BDC=180︒-50︒=130︒.(2)①∵MN//AB,BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠BDM=∠MBD,∠CND=∠A=α,∴∠NDC=180︒-α-12∠ACB,∠MDB=12∠ABC,∴∠NDC-∠MDB=180︒-α-12∠ACB-12∠ABC=180︒-α-12(∠ACB+∠ABC)=180︒-α-12(180︒-α)=90︒-α.②不变;延长BD交AC于点E,如图:∴∠NDE=∠MDB,∵∠BDC=180︒-12(∠ACB+∠ABC)=180︒-12(180︒-α)=90︒+1α2,∴∠NDC-∠MDB=∠NDC-∠NDE=∠EDC=180︒-∠BDC=180︒-(90︒+1α2)=90︒-α,同①,说明MN在旋转过程中∠NDC-∠MDB的度数只与∠A有关系,而∠A始终不变,故:MN在旋转过程中∠NDC-∠MDB的度数不会发生改变.③如图可知,∠NDC+∠MDB=180︒-∠BDC,由②知∠BDC=90︒+1α2,∴∠NDC+∠MDB=180︒-(90︒+1α2)=90︒-1α2.故∠NDC与∠MDB的关系是∠NDC+∠MDB=90︒-1α2.【点睛】本题目考查平行线与三角形的综合,涉及知识点有平行线的性质,三角形内角和等于180°等,是中考的常考知识点,难度一般,熟练掌握以上知识点的综合运用是顺利解题的关键.。
七年级月考2数学参考答案七年级月考2数学参考答案数学是一门需要逻辑思维和解决问题的学科,对于学生来说,掌握好数学知识和技巧是非常重要的。
而月考则是学生检验自己学习成果的重要方式之一。
在这篇文章中,我将为大家提供一份七年级月考2数学的参考答案。
第一部分:选择题1. B2. C3. A4. D5. B6. C7. A8. D9. B10. C第二部分:填空题1. 182. 643. 0.254. 55. 76. 97. 248. 1259. 1610. 45第三部分:解答题1. 请计算下列各式的值:(1)3 × (4 + 2) = 18;(2)8 ÷ 4 + 2 × 3 = 10;(3)5 × 3 - 4 ÷ 2 = 13。
2. 请计算下列各式的值:(1)12 + 5 × 2 - 8 ÷ 4 = 21;(2)7 × (8 - 3) + 4 ÷ 2= 35;(3)9 ÷ 3 × (4 + 2) = 36。
3. 请计算下列各式的值:(1)20 ÷ 5 × (3 + 2) = 20;(2)6 × (4 - 2) ÷ 3 = 4;(3)15 - 3 × (2 + 1) = 6。
4. 请计算下列各式的值:(1)8 × (6 ÷ 2) - 4 = 20;(2)7 - 2 × (5 - 3) = 3;(3)12 ÷ (3 + 1) × 2 = 6。
通过以上参考答案,希望能够帮助大家更好地理解和掌握七年级月考2数学的知识和技巧。
同时,也提醒大家在学习数学的过程中要注重练习和思考,只有通过不断的实践和思考,才能真正掌握数学的本质和应用。
在解答数学题目的过程中,要注意运算的顺序和规律。
括号内的运算要先进行,然后再进行乘法和除法,最后进行加法和减法。
江苏初一初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.有理数的相反数是 ( )A.2B.C.-D.-22.如果某商场盈利5万记作+5万元,那么亏损2万元,应记作(). -2万元.-2 .+2万元.以上都不对3.三个数:、+、的大小关系是(). ...4.下列计算正确的是 ( )A.(-3)-(-5)=-8B.(-3)+(-5)=+8C.(-3)3=-9D.-32=-95.若,则a与b的关系是 ( )A.a=b B.a=b C.a=b=0D.a=b或a=-b6.若,则的值为 ( )A.-1B.1C.-4D.47.有理数a、b在数轴上的位置如图所示,则下列各代数式值为正数的是 ( )A.a-b B.a-1C.a2+a D.b-a-18.如果有理数是最小的正整数,是最大的负整数,是绝对值最小的有理数,是倒数等于它本身的数,那么式子的值是().-2;.-1;.0;.1;9.小惠在纸上画了一条数轴后,折叠纸面,使数轴上表示l的点与表示-3的点重合,若数轴上A、B两点之间的距离为8(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数为. ( )A.-4 B.-5 C.-3 D.-210.探究数字“黑洞”:“黑洞”原指非常奇怪的天体,它的体积小,密度大,吸引力强,任何物体到它那里都别想出来,无独有偶,数字中也有类似的“黑洞”,满足某种条件的所有数,通过一种计算,都能被它“吸”进去,无一能逃脱它的魔掌。
比如:任意找一个3的倍数,先把这个数每个数位都立方,再相加,得到一个新的数,然后把这个新数每个数位上的数字再立方,求和………………,重复运算下去,就能得到一个固定的数T= ,我们称它为数字“黑洞”,T为何具有如此魔力?通过认真的观察、分析,你一定能发现它的奥秘!此短文中的T是(). 363 .153 . 159 . 456二、填空题1.的倒数是_______,的绝对值是_______.2.大于且小于2的所有整数是3.在数轴上,表示-2与-6的点之间的距离是_______个单位长度.4.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为_______万元,5.在有理数-3,,(-3) 2,(-3)3中,负数有_______个。
xx学校xx学年xx学期xx试卷
姓名:_____________ 年级:____________ 学号:______________
题型选择题填空题简答题xx题xx题xx题总分得分
一、xx题
评卷人得分
(每空xx 分,共xx分)
试题1:
我校的校园面积约是12000平方米,用科学记数法表示为()
A. 12×103
B. 120×102
C.1.2×104
D.0.12×105
试题2:
下列说法中正确的是()
A.0是最小的有理数
B.0的相反数、绝对值、倒数都是0
C.0不是正数也不是负数
D.0不是整数也不是分数
试题3:
在数轴上与-2距离3个单位长度的点表示的数是()
A.1
B.5
C.-5
D.1和-5
试题4:
两个数的和为正数,那么这两个数是()
A.正数
B.负数 C .至少有一个为正数 D.一正一负
试题5:
下列比较大小正确的
是()A.B.
C.D.
试题6:
马虎同学做了以下4道计算题:①;②;③;
④请你帮他检查一下,他一共做对了()
A、1题
B、2题
C、3题
D、4题
试题7:
火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398
次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开
往北京。
根据以上规定,杭州开往北京的某一直快列车的车次号可能
是()
A、20
B、119
C、138
D、319
试题8:
定义:,,例如,,则等于()A. B. C. D.
试题9:
-3的相反数是;倒数是。
试题10:
下列数中:-3,0,-2,20,-1.25,1,1.060060006…,-,-(-5) ,
正整数是,无理数是。
试题11:
小明在超市买一食品,外包装上印有“总净含量(300±5)g”的字样。
小明拿去称了一下,发现只有297g.则食品生产厂家(填“有”或“没有”)欺诈行为。
试题12:
绝对值小于的所有负整数的和为。
试题13:
设是最小的自然数,是最大的负整数,是绝对值最小的有理数,则三个数的和为。
试题14:
,则;
试题15:
=1,则。
试题16:
观察下面一列数,根据规律写出横线上的两个数,-;;-;;
;……;第2009个数是。
试题17:
若,则= 。
试题18:
你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第_____次后可拉出64根细面条.第n次(n为正整数)可拉出_______根细面条.
试题19:
如图所示是计算机某计算程序,若开始输入,则最后输出的结果是________.
试题20:
试题21:
试题22:
48×(-+-)
试题23:
-12十3×(-2)2+(-6)÷(-)2
试题24:
在数轴上表示下列各数,并把它们按照从小到大的顺序排列
,,,,
试题25:
某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下。
(单位:km)(本题6分)
第一次第二次第三次第四次第五次第六次第七次
错误!未找到引用源。
错误!未
找到引
用源。
错误!未
找到引
用源。
+12 错误!未
找到引
用源。
错误!未
找到引
用源。
-10
(1)B地在A地哪个方向,与A地相距多少千米?
(2)巡逻车在巡逻过程中,离开A地最远是多少千米?
(3)若每km耗油0.3升,问共耗油多少升?
试题26:
已知:,>,求。
(本题6分)
试题27:
如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并观察下列问题.
(1)第4个图中,共有白色瓷砖块;第n个图中,共有白色瓷砖块;
(2)第4个图中,共有瓷砖块;第n个图中,共有瓷砖块;(3)如果每块黑瓷砖4元,白瓷砖3元,铺设当n=10时,共需花多少钱购买瓷砖?
试题28:
读一读:式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.•由于上述式子比较长,书写也不方便,为了
简便起见,我们可以将“1+2+3+4+5+•…+100”表示为,这里“”是求和符号.例如:1+3+5+7+9+…+99,即
从1开始的100以内的连续奇数的和,可表示为(2n-1);又如13+23+33+43+53+63+73+83+93+103可表示为
n3.通过对上以材料的阅读,请解答下列问题.
(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________________;
(2)计算(n2-1)=________________.(填写最后的计算结果)
试题29:
已知A、B在数轴上分别表示、.
(1)对照数轴填写下表:
6 -6 -6 2 -1.5
4 0 -4 -10 -1.5
A、B两点的距离 2 0
(2)若A、B两点间的距离记为,试问和、(<)有何数量关系;
(3)写出数轴上到7和-7的距离之和为14的所有整数,并求这些整数的和;
(4)若点C表示的数为,当点C在什么位置时,取得的值最小.
试题1答案:
、C
试题2答案:
C
试题3答案:
D
试题4答案:
C
试题5答案:
D
试题6答案:
C
试题7答案:
C
试题8答案:
A
试题9答案:
3,;
试题10答案:
20 、-(-5) , -2、 1.060060006…试题11答案:
没有
试题12答案:
、-10
试题13答案:
、-1
试题14答案:
±6,
试题15答案:
±1
试题16答案:
, -
试题17答案:
-27
试题18答案:
6,
试题19答案:
-10;
试题20答案:
-29 ;
试题21答案:
1 ;
试题22答案:
24 ;
试题23答案:
-43;
试题24答案:
画数轴(略)(5’)
-︱-1︱<0<<<-(-3.5)(答对1分)
试题25答案:
(1)东 16km (2)26km (3)18升
试题26答案:
a=+2 b=-3 a+b= -5 -1
试题27答案:
(1)20 ,n(n+1));(2)42,(n+2)(n+3);(3)514元. 试题28答案:
(1)(2分)(2)50 (3分)
试题29答案:
(1)6,2,12;(3分)
(2)由(1)可得:d=|a-b|或d=b-a;(2分)
(3)只要在-7和7之间的整数均满足到7和-7的距离之和为14,有:-7、-6、-5、-4、-3、-2、-1、0、1、2、3、4、5、6、7,(2分)
所有满足条件的整数之和为:-7+(-6)+(-5)+(-4)+(-3)+(-2)+(-1)+0+1+2+3+4+5+6+7=0;(1分)
(4)根据数轴的几何意义可得-1和2之间的任何一点均能使|x+1|+|x-2|取得的值最小.故可得:点C的范围在:-1≤x ≤2时,能满足题意.(2分)。