当前位置:文档之家› 西安交大数学建模实验报告

西安交大数学建模实验报告

西安交大数学建模实验报告
西安交大数学建模实验报告

数学建模实验报告

1,存货问题

(一)问题描述

某企业对于某种材料的月需求量为随机变量,具有如下表概率分布:

每次订货费为500元,每月每吨保管费为50元,每月每吨货物缺货费为1500元,每吨材料的购价为1000元。该企业欲采用周期性盘点的),(S s 策略来控制库存量,求最佳的s ,

S 值。(注:),(S s 策略指的是若发现存货量少于s 时立即订货,将存货补充到S ,使得经

济效益最佳。)

(二)问题分析

随机产生每个月需求量的概率,取遍每一个S 和s 的值,将每种S ,s 的组合对应的每月平均花费保存在数组money 里,筛选数组,选出其中费用最小值,并求出对应的S 和s 。模拟400个月的生产情况。

(三)程序代码

clear;clc;

need=0; remain=0; cost=0; mincostavg=inf; forsl=30:10:70 forsh=80:10:140 fornum=1:100000

m=rand; if m<=0.1 need=50;

elseif m<=0.3 need=60;

elseif m<=0.45 need=70;

elseif m<=0.7 need=80;

elseif m<=0.75 need=90;

elseif m<=0.85 need=100;

elseif m<=0.95

need=110;

else

need=120;

end

if remain

cost=cost+(sh-remain)*1000+500;

ifsh

cost=cost+(need-sh)*1500;

remain=0;

else

cost=cost+(sh-need)*50;

remain=sh-need;

end

else

if remain

cost=cost+(need-remain)*1500;

remain=0;

else

cost=cost+(remain-need)*50;

remain=remain-need;

end

end

end

costavg=cost/100000;

ifcostavg

mincostavg=costavg;

propersl=sl;

propersh=sh;

end

fprintf('s=%d, S=%d\nMonthly average cost=%.1f\n',sl,sh,costavg);

cost=0;

end

end

fprintf('\nWhen s=%d, S=%d\nThe least monthly average cost=%.1f\n',propersl,propersh,mincostavg);

(四)运行结果

s=30, S=80

Monthly average cost=85466.9

s=30, S=90

Monthly average cost=87007.6

Monthly average cost=87114.2 s=30, S=110

Monthly average cost=87951.0 s=30, S=120

Monthly average cost=86778.9 s=30, S=130

Monthly average cost=86411.8 s=30, S=140

Monthly average cost=86374.8 s=40, S=80

Monthly average cost=83707.2 s=40, S=90

Monthly average cost=84026.6 s=40, S=100

Monthly average cost=85089.1 s=40, S=110

Monthly average cost=85386.0 s=40, S=120

Monthly average cost=86294.0 s=40, S=130

Monthly average cost=85148.0 s=40, S=140

Monthly average cost=84992.9 s=50, S=80

Monthly average cost=83693.0 s=50, S=90

Monthly average cost=82548.0 s=50, S=100

Monthly average cost=82730.9 s=50, S=110

Monthly average cost=83873.1 s=50, S=120

Monthly average cost=84029.5 s=50, S=130

Monthly average cost=84908.4 s=50, S=140

Monthly average cost=84134.1 s=60, S=80

Monthly average cost=83615.9 s=60, S=90

Monthly average cost=82503.9 s=60, S=100

Monthly average cost=81677.0

Monthly average cost=81905.5

s=60, S=120

Monthly average cost=82946.0

s=60, S=130

Monthly average cost=83449.2

s=60, S=140

Monthly average cost=83871.3

s=70, S=80

Monthly average cost=83522.6

s=70, S=90

Monthly average cost=82525.8

s=70, S=100

Monthly average cost=81627.9

s=70, S=110

Monthly average cost=81323.3

s=70, S=120

Monthly average cost=82005.5

s=70, S=130

Monthly average cost=82601.6

s=70, S=140

Monthly average cost=82858.3

When s=70, S=110

The least monthly average cost=81323.3

(五)结果分析

用计算机模拟的结果和用数学分析的结果有一定的差异,由于计算机模拟时一般情况都是要简化模型的,所以在一定程度上会有所差异,我们可以考虑能不能通过改进算法来消除该差异,但对于一般的生产要求亦可以满足。

2,数据处理

(一)问题描述

在某海域测得一些点(x,y)处的水深z由下表给出,船的吃水深度为5英尺,在矩形区域(75,200)*(-50,150)里的哪些地方船要避免进入。

(a).输入插值基点数据

(b).在矩形区域(70,200)×(-50,150)做二维插值,三次插值。

(c).做海底曲面图

(d).做出水深小于5的海域范围,即z = 5的等高线。

(二)问题分析

本题所给值为离散点,可以采用先插值,再画图,最后画出等高线的方法解题。(三)程序代码

用matlab解题的程序代码:

x=[129 140 103.5 88 185.5 195 105 157.5 107.5 77 81 162 162 117.5];

y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5];

z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9];

xi=75:5:200;

yi=-50:5:150;

figure(1)

z1i=griddata(x,y,z,xi,yi','linear');//线性插值

surfc(xi,yi,z1i) //surfc画的三维曲面在曲面底部有等高线图

xlabel('X'),ylabel('Y'),zlabel('Z')

title('二次插值')

figure(2)

z2i=griddata(x,y,z,xi,yi','cubic'); //立方插值

surfc(xi,yi,z2i)

xlabel('X'),ylabel('Y'),zlabel('Z')

title('三次插值')

figure(3)

subplot(1,2,1),contour3(xi,yi,z1i,[-5 -5],'r') //一行两列第一个//三维等高线图

title('二次插值z = -5的等高线')

subplot(1,2,2),contour3(xi,yi,z2i,[-5 -5],'r') //一行两列第一个

title('三次插值z = -5的等高线')

(四)运行结果

(五)结果分析

图像表明,在红圈以内的区域,船只都应该避免进入

3,线性规划

(一)问题描述

有A、B、C三个场地,每一个场地都出产一定数量的原料,同时也消耗一定数量的产品,具体数据如下表所示。已知制成每吨产品需要消耗3吨原料,A、B 两地,A、C两地和B、C两地之间的距离分别为150千米、100千米和200千米,假设每万吨原料运输1千米的运费为5000元,每万吨产品运输1千米的运费为6000元。由于地区条件的差异,在不同地区设厂的费用不同,由于条件的限制,在B处建厂的规模不能超过5万吨,问:在这三地如何建厂、规模建多大才能使得总费用最小?

(二)问题分析

设A地建厂规模为每年生产x万吨;B地建厂规模为每年生产y万吨;C地建厂规模为每年生产z万吨。又设从C运到A的产品共计J万吨;从C运到B 的产品共计T万吨;从A运到B的产品共计F万吨;从B运到A的产品共计G 万吨;从C运到A的原料共计R万吨;从C运到B的原料共计P万吨;从A运到B的原料共计L万吨;从B运到A的原料共计M万吨;从A运到C的原料共计N 万吨;从B运到C的原料共计V万吨.

又有约束条件:①本地生产的产品必须必运出多;②不可能产生原料和产品经过超过两个地方的运输值;③运输量皆为正值;④经过运输后产品配置已经达到最优,即每个地方产品量等于销量;⑤要达到最优从C地只能往外运原料和产品,因为C地不可销售,所以产品不能运往C地,否则产品从生产到销售必经过两个以上的地点。

目标函数:

O=100*Z+120*Y+150*X+(F*150*6000)/10000+(J*100*6000)/10000+(T*200*600 0)/10000+

(G*150*6000)/10000+(R*100*5000)/10000+

(P*200*5000)/10000+(L*150*5000)/10000+(M*150*5000)/10000+(N*100*5000)/1 0000+(V*200*5000)/10000

约束条件:

X+Y+Z 20,N+L≤20,16≥M+V,

24≥R+P,X-F≥0,Y-G≥0,F-G+T+Y==13,G+J-F+X==7,

J+T-Z 0,M≥0,L≥0,P≥0,R≥0,Y≤5,Y≥0,Z≥0,X≥0,J≥0,T≥0,G≥0,F≥0,3

X-M+L-R-20+N 0,3 Y-P-16+M-L+V 0,3 Z-24-N-V+P+R 0,N≥0,V≥0

(三)程序代码

(四)运行结果

(五)结果分析

由程序和运行结果知,

(1)A地建7万吨。B地建5万吨。C地建8万吨。

(2)具体运输上面程序已经解决。

(3)最低费用3485万元。

4,水位-时间曲线的计算机仿真问题

(一)问题描述

如图所示,一碗型容器,关于中轴对称。高为π/2m,下底长度为2m,上底长度为4m。上下底间的曲面半径可以用r=1+sin(h)m描述。现在在容器底部开一小口,小口面积为b=0.001平方米。请利用计算机仿真方法,给出水位高度h与时间t的关系。

(二)问题分析

在dt的很小一段时间内,水的流速可以看成是不变的与高度h有关的函数,为v=sqrt(2*g*h)在dt时间内流出的水量,可以近似的为一圆柱,对应的圆柱高为dh。由于容器下降的水量与流出的水量相等,可得dh与dt的关系为:dh=dt*b*v/(pi*r*r),而其中的h值可由h=h-dh求出。

(三)程序代码:

clear;clc;clf

grid

hold on

axis([0,6000,0,2])

dt=0.1; %步长取t=0.1s

t=0

b=0.001;

g=9.8;

h=pi/2; %初始水位h

while h>=0.001 %当h≤0.001时认为容器内水已经全部漏尽,循环体部分

v=sqrt(2*g*h);

h=h-b*v*dt/(pi*(1+sin(h))*(1+sin(h)))

t=t+dt;

plot(t,h, 'b.','markersize',3);

end;

fprintf('t=%.0f\n',t)

(四)运行结果

①实验数据如下图所示(仅显示循环的最后部分)

(五)结果分析:

由以上两图可知,水漏尽时间大约是3849s。

5,解决电缆最少铺设费用问题

(一)问题描述:

1条河宽1km,两岸各有一个城镇A与B,A与B的直线距离为4km。今需铺设一条电缆连接A与B,已知地下电缆的修建费是2万元/km,水下电缆的修建费是4万元/km,假设两岸为平行的直线,问应该如何架设电缆方可以使总的修建费用最少?(取AB连线与水平的夹角为30°,直线AB与两河岸的交点到A、B的距离可以任意指定。)

(二)问题分析

针对问题建立几何模型如下图所示。电缆的入水口和出水口应该在DE范围内。可再此范围内采用事件步长的仿真法求解最小费用对应点的近似值。分析时,可设A就在河岸上,相应的B需要沿射线AB向右上方移动,构成等效模型。而我们对问题的讨论就依据等效模型进行。

(三)程序代码:

clear;clc;clf%清空记忆

grid %为坐标纸打网格

ac=2*(3)^0.5;

ad=1;

x=0;

hold on

smintemp=10000; %指定s和x的最小值

xmintemp=10000;

for x=0:0.01:2*(3)^0.5 %指定x的循环步长为0.01m

s1=((1+x^2)^0.5)*4;

s2=2*((2*(3)^0.5-x)^2+1)^0.5;

s=s1+s2;

fprintf('s=%.4f\n',s)

plot(x,s, 'b.','markersize',3); %作s-x曲线

if s<=smintemp%if循环用于查找s的最小值和此时x的值smintemp=s;

xmintemp=x;

end

end

end

fprintf('The smallest cost is s=%.4f\n',smintemp) %输出s最小值,并给出当s最小时x的值

fprintf('Now x is x=%.4f\n',xmintemp)

(四)运行结果

①s-x曲线如下图所示

②造价s的取值如下图所示(仅显示最后输出s最小值部分)

(五)结果分析:

(1)s-x为一个先单调递减,后单调递增的函数。

(2)因此若取s=(s)min时,x=0.5400。

(3)(s)min=s(0.5400)=10.7267。

6,层次分析

(一)问题描述

一位四年级大学生正在从若干个招聘单位中挑选合适的工作岗位,他考虑的主要因素包括发展前景、经济收入、单位信誉、地理位置等。试建立模型给他提出决策建议。

(二)问题分析

分析与建模:利用层次分析法,求得每个因素所占权重,进而得到相应的综合评价公式,比较得出结论。

假设工作岗位有如下特征:

(三)程序代码:

A=[1,1,3/5,4/5;5/4,1,3/4,1;5/3,4/3,1,4/3;5/4,1,3/4,1];

x0=[1/4;1/4;1/4;1/4];

x=[0;0;0;0];

x1=x0;

y1=[6,7,9,8];

y2=[6,5,10,8];

y3=[7,6,8,7];

y4=[9,5,10,6];

result1=0;

result2=0;

result3=0;

result4=0;

while x~=x1

x=x1;

temp=A*x;

dup=0;

for i=1:1:4

dup= dup+temp(i);

end

x1=temp/dup;

end

for i=1:1:4

result1=result1+e(i)*y1(i);

result2=result2+e(i)*y2(i);

result3=result3+e(i)*y3(i);

result4=result4+e(i)*y4(i);

end

result=[ result1; result2; result3; result4]

(四)运行结果

e1 =

0.3899

0.3899

0.1524

0.0679

s =

7.7460

7.8469

8.6274

(五)结果分析

由运行结果可看出z的综合分最高,故应选择z单位。

数学模型实验报告

数学模型实验报告 实验内容1. 实验目的:学习使用lingo和MATLAB解决数学模型问题 实验原理: 实验环境:MATLAB7.0 实验结论: 源程序 第4章:实验目的,学会使用lingo解决数学模型中线性规划问题1.习题第一题 实验原理: 源程序: 运行结果: 、 管 路 敷 设 技 术 通 过 管 线 不 仅 可 以 解 决 吊 顶 层 配 置 不 规 范 高 中 资 料 试 卷 问 题 , 而 且 可 保 障 各 类 管 路 习 题 到 位 。 在 管 路 敷 设 过 程 中 , 要 加 强 看 护 关 于 管 路 高 中 资 料 试 卷 连 接 管 口 处 理 高 中 资 料 试 卷 弯 扁 度 固 定 盒 位 置 保 护 层 防 腐 跨 接 地 线 弯 曲 半 径 标 等 , 要 求 技 术 交 底 。 管 线 敷 设 技 术 中 包 含 线 槽 、 管 架 等 多 项 方 式 , 为 解 决 高 中 语 文 电 气 课 件 中 管 壁 薄 、 接 口 不 严 等 问 题 , 合 理 利 用 管 线 敷 设 技 术 。 线 缆 敷 设 原 则 : 在 分 线 盒 处 , 当 不 同 电 压 回 路 交 叉 时 , 应 采 用 金 属 隔 板 进 行 隔 开 处 理 ; 同 一 线 槽 内 强 电 回 路 须 同 时 切 断 习 题 电 源 , 线 缆 敷 设 完 毕 , 要 进 行 检 查 和 检 测 处 理 。 、 电 气 课 件 中 调 试 对 全 部 高 中 资 料 试 卷 电 气 设 备 , 在 安 装 过 程 中 以 及 安 装 结 束 后 进 行 高 中 资 料 试 卷 调 整 试 验 ; 通 电 检 查 所 有 设 备 高 中 资 料 试 卷 相 互 作 用 与 相 互 关 系 , 根 据 生 产 工 艺 高 中 资 料 试 卷 要 求 , 对 电 气 设 备 进 行 空 载 与 带 负 荷 下 高 中 资 料 试 卷 调 控 试 验 ; 对 设 备 进 行 调 整 使 其 在 正 常 工 况 下 与 过 度 工 作 下 都 可 以 正 常 工 作 ; 对 于 继 电 保 护 进 行 整 核 对 定 值 , 审 核 与 校 对 图 纸 , 编 写 复 杂 设 备 与 装 置 高 中 资 料 试 卷 调 试 方 案 , 编 写 重 要 设 备 高 中 资 料 试 卷 试 验 方 案 以 及 系 统 启 动 方 案 ; 对 整 套 启 动 过 程 中 高 中 资 料 试 卷 电 气 设 备 进 行 调 试 工 作 并 且 进 行 过 关 运 行 高 中 资 料 试 卷 技 术 指 导 。 对 于 调 试 过 程 中 高 中 资 料 试 卷 技 术 问 题 , 作 为 调 试 人 员 , 需 要 在 事 前 掌 握 图 纸 资 料 、 设 备 制 造 厂 家 出 具 高 中 资 料 试 卷 试 验 报 告 与 相 关 技 术 资 料 , 并 且 了 解 现 场 设 备 高 中 资 料 试 卷 布 置 情 况 与 有 关 高 中 资 料 试 卷 电 气 系 统 接 线 等 情 况 , 然 后 根 据 规 范 与 规 程 规 定 , 制 定 设 备 调 试 高 中 资 料 试 卷 方 案 。 、 电 气 设 备 调 试 高 中 资 料 试 卷 技 术 电 力 保 护 装 置 调 试 技 术 , 电 力 保 护 高 中 资 料 试 卷 配 置 技 术 是 指 机 组 在 进 行 继 电 保 护 高 中 资 料 试 卷 总 体 配 置 时 , 需 要 在 最 大 限 度 内 来 确 保 机 组 高 中 资 料 试 卷 安 全 , 并 且 尽 可 能 地 缩 小 故 障 高 中 资 料 试 卷 破 坏 范 围 , 或 者 对 某 些 异 常 高 中 资 料 试 卷 工 况 进 行 自 动 处 理 , 尤 其 要 避 免 错 误 高 中 资 料 试 卷 保 护 装 置 动 作 , 并 且 拒 绝 动 作 , 来 避 免 不 必 要 高 中 资 料 试 卷 突 然 停 机 。 因 此 , 电 力 高 中 资 料 试 卷 保 护 装 置 调 试 技 术 , 要 求 电 力 保 护 装 置 做 到 准 确 灵 活 。 对 于 差 动 保 护 装 置 高 中 资 料 试 卷 调 试 技 术 是 指 发 电 机 一 变 压 器 组 在 发 生 内 部 故 障 时 , 需 要 进 行 外 部 电 源 高 中 资 料 试 卷 切 除 从 而 采 用 高 中 资 料 试 卷 主 要 保 护 装 置 。

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

西南交通大学限修课数学实验题目及答案四

实验课题四曲面图与统计图 第一大题:编程作下列曲面绘图: 用平面曲线r=2+cos(t)+sin(t),t∈(0,π)绘制旋转曲面 t=0:0.02*pi:pi; r=2+cos(t)+sin(t); cylinder(r,30) title('旋转曲面'); shading interp 用直角坐标绘制双曲抛物面曲面网线图,z2=xy (-3

axis off 用直角坐标绘制修饰过的光滑曲面曲面:z 4=sin(x )-cos(y ) x 与y 的取值在(-π,π) [x,y]=meshgrid(-pi:0.02*pi:pi); z4=sin(x)-cos(y); surf(x,y,z4); title('picture 4'); shading interp axis off 用连续函数绘图方法绘制曲面)2 s in (6522x y x z ++=,x ∈[-2pi,2pi], y ∈[-2pi,2pi],并作图形修饰。 ezsurf(@(x,y)(x^2+y^2+6*sin(2*x)),[-2*pi 2*pi -2*pi 2*pi]) title('picture 5'); shading interp axis off 第二大题:按要求作下列问题的统计图: x21是1—10的10维自然数构成的向量,y21是随机产生的10维整数向量,画出条形图。(提示bar(x,y)) x21=1:10; y21=randn(10,1); bar(x21,y21) 随机生成50维向量y22,画出分5组的数据直方图。(提示hist(y,n))

数学建模实验报告最优捕鱼策略

最优捕鱼策略 一.实验目的: 1、了解与熟练掌握常系数线性差分方程的解法; 2、通过最优捕鱼策略建模案例,使用MATLAB软件认识与掌握差分方程模型在实际生活方面的重要作用。 二.实验内容:(最优捕鱼策略) 生态学表明,对可再生资源的开发策略应在事先可持续收获的前提下追求最大经济效益。考虑具有4个年龄鱼:1龄鱼,…,4龄鱼的某种鱼。该鱼类在每年后4个月季节性集中产卵繁殖。而据规定,捕捞作业只允许在前8个月进行,每年投入的捕捞能力固定不变,单位时间捕捞量与个年龄鱼群条数的比例称为捕捞强度系数。使用只能捕捞3、4龄鱼的13mm网眼的拉网,其两个捕捞强度系数比为:1.渔业上称这种方式为固定力量捕捞。 该鱼群本身有如下数据: 1.各年龄组鱼的自然死亡率为(1/年),其平均质量分别为,,,(单位:g);2.1龄鱼和2龄鱼不产卵,产卵期间,平均每条4龄鱼产卵量为ⅹ105(个),3龄鱼为其一半; 3.卵孵化的成活率为ⅹ1011/(ⅹ1011 + n)(n为产卵总量); 有如下问题需要解决: 1)分析如何实现可持续捕获(即每年开始捕捞时各年龄组鱼群不变),并在此前提下得到最高收获量; 2)合同要求某渔业公司在5年合同期满后鱼群的生产能力不能受到太大的破坏,承包时各年龄组鱼群数量为122,,,(ⅹ109条),在固定努力量的捕捞方式下,问该公司应采取怎样的捕捞策略,才能使总收获量最高。 三. 模型建立 假设a、鱼群总量的增加虽然是离散的,但对大规模鱼群而言,我们可以假设鱼群总量的变化随时间是连续的;b、龄鱼到来年分别长一岁成为i + 1龄鱼,i = 1,2,3;c、4龄鱼在年末留存的数量占全部数量的比例相对很小,可假设全部死

数学建模实验报告

数学建模实验报告 实验一计算课本251页A矩阵的最大特征根和最大特征向量 1 实验目的 通过Wolfram Mathematica软件计算下列A矩阵的最大特征根和最大特征向量。 2 实验过程 本实验运用了Wolfram Mathematica软件计算,计算的代码如下:

3 实验结果分析 从代码的运行结果,可以得到最大特征根为5.07293,最大特征向量为 {{0.262281},{0.474395},{0.0544921},{0.0985336},{0.110298}},实验结果 与标准答案符合。

实验二求解食饵-捕食者模型方程的数值解 1实验目的 通过Wolfram Mathematica或MATLAB软件求解下列习题。 一个生物系统中有食饵和捕食者两种种群,设食饵的数量为x(t),捕食者为y(t),它们满足的方程组为x’(t)=(r-ay)x,y’(t)=-(d-bx)y,称该系统为食饵-捕食者模型。当r=1,d=0.5,a=0.1,b=0.02时,求满足初始条件x(0)=25,y(0)=2的方程的数值解。 2 实验过程 实验的代码如下 Wolfram Mathematica源代码: Clear[x,y] sol=NDSolve[{x'[t] (1-0.1y[t])x[t],y'[t] 0.02x[t]y[t]-0.5y[t],x[0 ] 25,y[0] 2},{x[t],y[t]},{t,0,100}] x[t_]=x[t]/.sol y[t_]=y[t]/.sol g1=Plot[x[t],{t,0,20},PlotStyle->RGBColor[1,0,0],PlotRange->{0,11 0}] g2=Plot[y[t],{t,0,20},PlotStyle->RGBColor[0,1,0],PlotRange->{0,40 }] g3=Plot[{x[t],y[t]},{t,0,20},PlotStyle→{RGBColor[1,0,0],RGBColor[ 0,1,0]},PlotRange->{0,110}] matlab源代码 function [ t,x ]=f ts=0:0.1:15; x0=[25,2]; [t,x]=ode45('shier',ts,x0); End function xdot=shier(t,x)

西南交通大学限修课数学实验题目及答案五

实验课题五线性代数 第一大题:创建矩阵: 1.1 用元素输入法创建矩阵 ??? ???? ??-=34063689 864275311A ?????? ? ? ?--=96 5 214760384 32532A A1=[1 3 5 7;2 4 6 8;9 8 6 3;-6 0 4 3] A2=[3 5 -2 3;4 8 3 0;6 7 4 -1;2 5 6 9] 1.2 创建符号元素矩阵 ???? ? ?=54 3 2 15432 13y y y y y x x x x x A ??? ? ??+=)cos(1)sin(42x x x x A A3=sym('[x1 x2 x3 x4 x5;y1 y2 y3 y4 y5]') A4=sym('[sin(x) x^2;1+x cos(x)]') 1.3 生成4阶随机整数矩阵B B=rand(4) 1.4 由向量t=[2 3 4 2 5 3]生成范德蒙矩阵F t=[2 3 4 2 5 3]; F=vander(t) 1.5 输入4阶幻方阵C C=magic(4) 1.6 用函数创建矩阵:4阶零矩阵Q ; 4阶单位矩阵E ; 4阶全壹矩阵N Q=zeros(4) E=eye(4) N=ones(4) 1.7 用前面题目中生成的矩阵构造8×12阶大矩阵: ???? ? ?=16A C N Q E B A A6=[B E Q;N C A1] 第二大题:向量计算:

2.1计算:a21是A1的列最大元素构成的向量,并列出所在位置。提示:[a21,i]=max(A1) a22是A1的列最小元素构成的向量,并列出所在位置. a23是A1的列平均值构成的向., a24是A1的列中值数构成的向量. a25是A1的列元素的标准差构成的向量. a26是A1的列元素和构成的向量. [a21,i]=max(A1) [a22,j]=min(A1) a23=mean(A1) a24=median(A1) a25=std(A1) a26=sum(A1) 2.2计算a27=A1+A2;a28=A1×A2 a27=A1+A2 a28=A1.*A2 2.3取矩阵A2的一、三行与二、三列的交叉元素做子矩阵A29. A29=A2([1,3],[2,3]) 第三大题:矩阵运算 3.1生成6阶随机整数矩阵A A=fix(15*rand(6)) 3.2作A31等于A的转置;作A32等于A的行列式;作A33等于A的秩。 A31=A' A32=det(A) A33=rank(A) 3.3判断A是否可逆.若A可逆,作A34等于A的逆,否则输出‘A不可逆’。 if det(A)==0 disp('A不可逆'); else A34=inv(A) end

数学建模与数学实验报告

数学建模与数学实验报告 指导教师__郑克龙___ 成绩____________ 组员1:班级______________ 姓名______________ 学号_____________ 组员2:班级______________ 姓名______________ 学号______________ 实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。 >> x=-pi:0.01:pi; >> y=cos(tan(pi*x)); >> plot(x,y) -4 -3 -2 -1 1 2 3 4 -1-0.8-0.6-0.4-0.200.20.40.60.8 1 (2)用surf,mesh 命令绘制曲面2 2 2z x y =+,将其程序及图形粘贴在此。(注:图形注意拖放,不要太大)(20分) >> [x,y]=meshgrid([-2:0.1:2]); >> z=2*x.^2+y.^2; >> surf(x,y,z)

-2 2 >> mesh(x,y,z) -2 2 实验2. 1、某校60名学生的一次考试成绩如下:

93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55 1)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分) 1) >> a=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55]; >> pjz=mean(a) pjz = 80.1000 >> bzhc=std(a) bzhc = 9.7106 >> jc=max(a)-min(a) jc = 44 >> bar(a)

数据结构与算法分析专题实验-西安交大-赵仲孟

西安交通大学 数据结构与算法课程实验 实验名称:数据结构与算法课程专题实验 所属学院:电信学院 专业班级:计算机32班 小组成员: 指导老师:赵仲孟教授 实验一背包问题的求解 1.问题描述 假设有一个能装入总体积为T的背包和n件体积分别为w1,w2,…w n的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1+w2+…+w m=T,要求找出所有满足上述条件的解。 例如:当T=10,各件物品的体积{1,8,4,3,5,2}时,可找到下列4组解:

(1,4,3,2) (1,4,5) (8,2) (3,5,2)。 2.实现提示 可利用回溯法的设计思想来解决背包问题。首先,将物品排成一列,然后,顺序选取物品装入背包,若已选取第i件物品后未满,则继续选取第i+1件,若该件物品“太大”不能装入,则弃之,继续选取下一件,直至背包装满为止。 如果在剩余的物品中找不到合适的物品以填满背包,则说明“刚刚”装入的物品“不合适”,应将它取出“弃之一边”,继续再从“它之后”的物品中选取,如此重复,直到求得满足条件的解,或者无解。 由于回溯求解的规则是“后进先出”,自然要用到“栈”。 3.问题分析 1、设计基础 后进先出,用到栈结构。 2、分析设计课题的要求,要求编程实现以下功能: a.从n件物品中挑选若干件恰好装满背包 b. 要求找出所有满足上述条件的解,例如:当T=10,各件物品的体积{1,8,4, 3,5,2}时,可找到下列4组解:(1,4,3,2)、(1,4,5)、(8,2)、(3,5,2)3,要使物品价值最高,即p1*x1+p2*x1+...+pi*xi(其1<=i<=n,x取0或1,取1表示选取物品i) 取得最大值。在该问题中需要决定x1 .. xn的值。假设按i = 1,2,...,n 的次序来确定xi 的值。如果置x1 = 0,则问题转变为相对于其余物品(即物品2,3,.,n),背包容量仍为c 的背包问题。若置x1 = 1,问题就变为关于最大背包容量为c-w1 的问题。现设r={c,c-w1} 为剩余的背包容量。在第一次决策之后,剩下的问题便是考虑背包容量为r 时的决策。不管x1 是0或是1,[x2 ,.,xn ] 必须是第一次决策之后的一个最优方案。也就是说在此问题中,最优决策序列由最优决策子序列组成。这样就满足了动态规划的程序设计条件。 4.问题实现 代码1: #include"iostream" using namespace std; class Link{ public: int m; Link *next; Link(int a=0,Link *b=NULL){ m=a; next=b; } }; class LStack{ private: Link *top;

数学建模实验报告

matlab 试验报告 姓名 学号 班级 问题:.(插值) 在某海域测得一些点(x,y)处的水深z 由下表给出,船的吃水深度为5英尺,在矩形区域(75,200)*(-50,150)里的哪些地方船要避免进入。 问题的分析和假设: 分析:本题利用插值法求出水深小于5英尺的区域,利用题中所给的数据,可以求出通过空间各点的三维曲面。随后,求出水深小于5英尺的范围。 基本假设:1表中的统计数据均真实可靠。 2矩形区域外的海域不对矩形海域造成影响。 符号规定:x ―――表示海域的横向位置 y ―――表示海域的纵向位置 z ―――表示海域的深度 建模: 1.输入插值基点数据。 2.在矩形区域(75,200)×(-50,150)作二维插值,运用三次插值法。 3.作海底曲面图。 4.作出水深小于5的海域范围,即z=5的等高线。 x y z 129 140 103.5 88 185.5 195 105 7.5 141.5 23 147 22.5 137.5 85.5 4 8 6 8 6 8 8 x y z 157.5 107.5 77 81 162 162 117.5 -6.5 -81 3 56.5 -66.5 84 -33.5 9 9 8 8 9 4 9

求解的Matlab程序代码: x=[129 140 103.5 88 185.5 195 105.5 157.5 107.5 77 81 162 162 117.5]; y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5]; z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9]; cx=75:0.5:200; cy=-50:0.5:150; cz=griddata(x,y,z,cx,cy','cubic'); meshz(cx,cy,cz),rotate3d xlabel('X'),ylabel('Y'),zlabel('Z') %pause figure(2),contour(cx,cy,cz,[-5 -5]);grid hold on plot(x,y,'+') xlabel('X'),ylabel('Y') 计算结果与问题分析讨论: 运行结果: Figure1:海底曲面图:

西南交通大学限修课数学实验题目及答案六

西南交通大学限修课数学实验题目及答案六

实验课题六一元微积分 第一大题函数运算 1.用程序集m 文件中定义函数: 键盘输入自变量x ,由下列函数 求函数值:f 1 (12) f 1 (-32) function y=f1(x) if x>0 y=4*x^3+5*sqrt(x)-7 else y=x^2+sin(x) end end 2. 用函数m 文件定义函数f 2 ???<+≥+=06)5sin(0 3232x x x x x e f x 求f 2(-6) f 2(11) function y=f2(x) if x<0 y=sin(5*x)+6*x^3 else y=exp(2*x)+3*x ???≤+>-+=0 )sin(0 754123x x x x x x f

313-+=x x f end end 3.已知 求 其反函 数 syms x f3=(1+x)/(x-3); g=finverse(f3) %g =(3*x + 1)/(x - 1) 4.已知: 92847 653423234-++=+-+=x x x g x x x f

做函数运算:u1 = f 4+ g 4 ; u2 = f 4 – g 4 ; u3 = f 4 * g 4 ; u4 = f 4 / g 4 u5=)(4)(4x g x f ,u6=()()x g f 44 syms x f4=3*x^4+5*x^3-6*x^2+7 g4=8*x^3+2*x^2+x-9 u1=f4+g4 u2=f4-g4 u3=f4*g4 u4=f4/g4 u5=f4^g4 u6=compose(f4,g4) %u1 =3*x^4 + 13*x^3 - 4*x^2 + x - 2 %u2 =3*x^4 - 3*x^3 - 8*x^2 - x + 16 %u3 =(3*x^4 + 5*x^3 - 6*x^2 + 7)*(8*x^3 + 2*x^2 + x - 9) %u4 =(3*x^4 + 5*x^3 - 6*x^2 + 7)/(8*x^3 + 2*x^2 + x - 9) %u5 =(3*x^4 + 5*x^3 - 6*x^2 + 7)^(8*x^3 + 2*x^2 + x - 9) %u6 =5*(8*x^3 + 2*x^2 + x - 9)^3 - 6*(8*x^3 + 2*x^2 + x - 9)^2 + 3*(8*x^3 +

数学建模实验报告(1)

四川师范大学数学与软件科学学院 实验报告 课程名称:数学建模 指导教师:陈东 班级:_2008级2班_____________ 学号:__2008060244___________ 姓名:___邢颖________ 总成绩:______________

数学与软件科学学院 实验报告 学期:_2009__ 年至2010 _年____ 第_ 二___ 学期 2010 年 4 月 1 _日 课程名称:_数学建模__ 专业:数学与应用数学____ 2008__ _级_ 2 ___班 实验编号: 1 实验项目_Matlab 入门_ 指导教师 陈东 姓名: 邢颖 ____ 学号: 2008060244 一、实验目的及要求 实验目的: 实验要求: 二、实验内容 (1)用起泡法对10个数由小到大排序. 即将相邻两个数比较,将小的调到前头. (2)有一个 4*5 矩阵,编程求出其最大值及其所处的位置. (3)编程求 (4)一球从100米高度自由落下,每次落地后反跳回原高度的一半,再落下. 求它在第10次落地时,共经过多少米?第10次反弹有多高? (5)有一函数 ,写一程序,输入自变量的值,输出函数值. 三、实验步骤(该部分不够填写.请填写附页) (2) x=[1 6 2 7 6;4 6 1 3 2;1 2 3 4 7;8 1 4 6 3]; t=x(1,1); for i=1:4 for j=1:5 if x(i,j)>t t=x(i,j); a=[i,j]; end ∑=20 1! n n y xy x y x f 2sin ),(2 ++=

end end (3)程序1: x(1)=1; s=1; for n=2:20 x(n)=x(n-1)*n; s=s+x(n); end s 程序2; s=0,m=1; for n=2:20; m=m*n; s=s+m; end s 结果:s = 2.5613e+018 (4)程序 s=100 h=s/2 for n=2:10 s=s+2*h h=h/2 end s,h 结果:s = 299.6094 h = 0.0977 (5)程序: function f=fun1(x,y) f=x^2+sin(x*y)+2*y

1数学数模实验报告

1数学数模实验报告

福建农林大学计算机与信息学院 (数学类课程) 实验报告 课程名称:数学模型 姓名:苏志东 系:数学 专业:数学与应用数学 年级:2014级 学号: 指导教师:姜永 职称:副教授 2016年6月12日

实验项目列表

福建农林大学计算机与信息学院数学类实验报告(一) 系: 数学 专业: 数学与应用数学 年级: 2014级 姓名: 学号: 3 实验课程: 数学模型 实验室号: 明南附203 实验设备号: 实验时间: 2016/6/6 指导教师签字: 成绩: 1.实验项目名称: 数学规划模型建立及其软件求解 2.实验目的和要求: 了解数学规划的的基本理论和方法,并用于建立实 际问题的数学规划模型;会用LINGO 软件解数学规划问题并对结果加以分析应用。 3.实验使用的主要仪器设备和软件: 联想启天M430E 电脑; LINGO12.0或以上版本。 4.实验的基本理论和方法: 一般地,数学规划模型可表述成如下形式: )(in x f z M x = .,...,2,1,0)(s.t.m i x g i =≤ 其中)(x f 表示目标函数,),...,2,1(0)(m i x g i =≤为约束条件。 LINGO 用于解决二次规划、线性规划以及非线性规划问题,同时可以求解线性或非线性方程(组)。LINGO 的最大特色在于通过高运行速度解决优化模型中的决策变量的整数取值问题。 线性优化求解程序通常使用单纯性算法,可以使用LINGO 的内点算法解决大规模规划问题。非线性规划可通过迭代求解一系列线性规划求解。 5.实验内容与步骤:

数学建模迭代实验报告(新)

非 线 性 迭 代 实 验 报 告 一、实验背景与实验目的 迭代是数学研究中的一个非常重要的工具,通过函数或向量函数由初始结点生成迭代结点列,也可通过函数或向量函数由初值(向量)生成迭代数列或向量列。 蛛网图也是一个有用的数学工具,可以帮助理解通过一元函数由初值生成的迭代数列的敛散性,也帮助理解平衡点(两平面曲线交点)的稳定性。 本实验在Mathematica 平台上首先利用蛛网图和迭代数列研究不动点的类型;其次通过蛛网图和迭代数列研究Logistic 映射,探索周期点的性质、认识混沌现象;第三通过迭代数列或向量列求解方程(组)而寻求有效的求解方法;最后,利用结点迭代探索分形的性质。 二、实验材料 2.1迭代序列与不动点 给定实数域上光滑的实值函数)(x f 以及初值0x ,定义数列 )(1n n x f x =+, ,2,1,0=n (2.2.1) }{n x 称为)(x f 的一个迭代序列。 函数的迭代是数学研究中的一个非常重要的思想工具,利用迭代序列可以研究函数)(x f 的不动点。 对函数的迭代过程,我们可以用几何图象来直观地显示它——“蜘蛛网”。运行下列Mathematica 程序: Clear[f] f[x_] := (25*x - 85)/(x + 3); (实验时需改变函数) Solve[f[x]==x , x] (求出函数的不动点) g1=Plot[f[x], {x, -10, 20}, PlotStyle -> RGBColor[1, 0, 0], DisplayFunction -> Identity]; g2=Plot[x, {x, -10, 10}, PlotStyle -> RGBColor[0, 1, 0], DisplayFunction -> Identity]; x0=5.5; r = {}; r0=Graphics[{RGBColor[0, 0, 1], Line[{{x0, 0}, {x0, x0}}]}]; For[i = 1, i <= 100, i++, r=Append[r, Graphics[{RGBColor[0, 0, 1], Line[{{x0, x0}, {x0, f[x0]}, {f[x0], f[x0]}}] }]]; x0=f[x0] ]; Show[g1, g2, r, r0, PlotRange -> {-1, 20}, (PlotRange 控制图形上下范围) DisplayFunction -> $DisplayFunction] x[0]=x0; x[i_]:=f[x[i-1]]; (定义序列) t=Table[x[i],{i,1,10}]//N ListPlot[t] (散点图) 观察蜘蛛网通过改变初值,你能得出什么结论? 如果只需迭代n 次产生相应的序列,用下列Mathematica 程序: Iterate[f_,x0_,n_Integer]:= Module[{ t={},temp= x0},AppendTo[t,temp]; For[i=1,i <= n, i++,temp= f[temp]; AppendTo[t,temp]]; t ] f[x_]:= (x+ 2/x)/2; Iterate[f,0.7,10]

matlab数学实验报告5

数学实验报告 制作成员班级学号 2011年6月12日

培养容器温度变化率模型 一、实验目的 利用matlab软件估测培养容器温度变化率 二、实验问题 现在大棚技术越来越好,能够将温度控制在一定温度范围内。为利用这种优势,实验室现在需要培植某种适于在8.16℃到10.74℃下能够快速长大的甜菜品种。为达到实验所需温度,又尽可能地节约成本,研究所决定使用如下方式控制培养容器的温度:1,每天加热一次或两次,每次约两小时; 2,当温度降至8.16℃时,加热装置开始工作;当温度达到10.74℃时,加热装置停止工作。 已知实验的时间是冬天,实验室为了其它实验的需要已经将实验室的温度大致稳定在0℃。下表记录的是该培养容器某一天的温度 时间(h)温度(℃)时间(h)温度(℃)09.68 1.849.31 0.929.45 2.959.13 3.878.981 4.989.65 4.988.811 5.909.41 5.908.691 6.839.18 7.008.5217.938.92 7.938.3919.048.66 8.978.2219.968.43 9.89加热装置工作20.848.22 10.93加热装置工作22.02加热装置工作10.9510.8222.96加热装置工作12.0310.5023.8810.59 12.9510.2124.9910.35 13.889.9425.9110.18 三、建立数学模型 1,分析:由物理学中的傅利叶传热定律知温度变化率只取决于温度

差,与温度本身无关。因为培养容器最低温度和最高温度分别是:8.16℃和10.74℃;即最低温度差和最高温度差分别是:8.16℃和10.74℃。而且,16.8/74.10≈1.1467,约为1,故可以忽略温度对温度变化率的影响2, 将温度变化率看成是时间的连续函数,为计算简单,不妨将温度变化率定义成单位时间温度变化的多少,即温度对时间连续变化的绝对值(温度是下降的),得到结果后再乘以一系数即可。 四、问题求解和程序设计流程1)温度变化率的估计方法 根据上表的数据,利用matlab 做出温度-时间散点图如下: 下面计算温度变化率与时间的关系。由图选择将数据分三段,然后对每一段数据做如下处理:设某段数据为{(0x ,0y ),(1x ,1y ),(2x , 2y ),…,(n x ,n y )},相邻数据中点的平均温度变化率采取公式: 温度变化率=(左端点的温度-右端点的温度)/区间长度算得即:v( 2 1i i x x ++)=(1+-i i y y )/(i i x x - +1). 每段首尾点的温度变化率采用下面的公式计算:v(0x )=(30y -41y +2y )/(2x -0x )v(n x )=(3n y -41+n y +2+n y )/(n x -2-n x )

数模实验报告

数学建模与实验实验报告 姓名:李明波 院系:仪器科学与工程学院 学号:22013108 老师:王峰

数学建模与实验实验报告 实验一 实验题目 (1)已知某平原地区的一条公路经过如下坐标所示的点,请采用样条插值绘出这条公路(不考虑 (2)对于上表给出的数据,估计公路长度。 实验过程 (1)第一问代码如下: X=[0,30,50,70,80,90,120,148,170,180,202,212,230,248,268,271,280,290,300,312,320,340,3 60,372,382,390,416,430,478]; Y=[80,64,47,42,48,66,80,120,121,138,160,182,200,208,212,210,200,196,188,186,200,184,1 88,200,202,240,246,280,296]; %给出坐标点 xx=0:1:478;%选取0~478内的点 yy=spline(X,Y,xx);%样条插值法找出曲线 plot(X,Y, 'p ',xx,yy, 'g ');%绘出曲线图 x=[440,420,380,360,340,320,314,280,240,200]; y=[308,334,328,334,346,356,360,392,390,400]; hold on xy=440:-1:200; yx=spline(x,y,xy); plot(x,y, 'p ',xy,yx, 'g '); 运行上述代码得到结果如下:

上图为所绘公路图 (2)代码如下: X=[0 30 50 70 80 90 120 148 170 180 202 212 230 248 268 271 280 290 300 312 320 340 360 372 382 390 416 430 478 440 420 380 360 340 320 314 280 240 200]; Y=[80 64 47 42 48 66 80 120 121 138 160 182 200 208 212 210 200 196 188 186 200 184 188 200 202 240 246 280 296 308 334 328 334 346 356 360 392 390 400]; for k=1:length(X)-1 len(k)=sqrt((X(k+1)-X(k))^2+(Y(k+1)-Y(k))^2); end; Len=sum(len);Len 运行得到结果如下: 即公路长为967.46米。

数模模数转换实验报告材料

数模模数转换实验报告 一、实验目的 1、了解数模和模数转换电路的接口方法及相应程序设计方法。 2、了解数模和模数转换电路芯片的性能和工作时序。 二、实验条件 1、DOS操作系统平台 2、数模转换芯片DAC0832和模数转换器ADC0809芯片。 三、实验原理 1、数模转换: (1)微机处理的数据都是数字信号,而实际的执行电路很多都是模拟的。因此微机的处理结果又常常需要转换为模拟信号去驱动相应的执行单元,实现对被控对象的控制。这种把数字量转换为模拟量的设备称为数模转换器(DAC),简称D/A。 (2)实验中所用的数模转换芯片是DAC0832,它是由输入寄存器、DAC 寄存器和D/A 转换器组成的CMOS 器件。其特点是片包含两个独立的8 位寄存器,因而具有二次缓冲功能,可以将被转换的数据预先存在DAC 寄存器中,同时又采集下一组数据,这就可以根据需要快速修改DAC0832 的输出。 2、模数转换: (1)在工程实时控制中,经常要把检测到的连续变化的模拟信号,如温度、压力、速度等转换为离散的数字量,才能输入计算机进行处理。实现模拟量到数字量转换的设备就是模数转换器(ADC),简称A/D。

(2)模数转换芯片的工作过程大体分为三个阶段:首先要启动模数转换过程。其次,由于转换过程需要时间,不能立即得到结果,所以需要等待一段时间。一般模数转换芯片会有一条专门的信号线表示转换是否结束。微机可以将这条信号线作为中断请求信号,用中断的方式得到转换结束的消息,也可以对这条信号线进行查询,还可以采用固定延时进行等待(因为这类芯片转换时间是固定的,事先可以知道)。最后,当判断转换已经结束的时候,微机就可以从模数转换芯片中读出转换结果。 (3)实验采用的是8 路8 位模数转换器ADC0809 芯片。ADC0809 采用逐次比较的方式进行A/D 转换,其主要原理为:将一待转换的模拟信号与一个推测信号进行比较,根据推测信号是大于还是小于输入信号来决定增大还是减少该推测信号,以便向模拟输入逼近。推测信号由D/A 转换器的输出获得,当推测信号与模拟信号相等时,向D/A 转换器输入的数字就是对应模拟信号的数字量。ADC0809 的转换时间为64 个时钟周期(时钟频率500K 时为128S)。分辨率为 8 位,转换精度为±LSB/2,单电源+5V 供电时输入模拟电压围为04.98V。 四、实验容 1、把DAC0832 的片选接偏移为10H 的地址,使用debug 命令来测试 DAC0832 的输出,通过设置不同的输出值,使用万用表测量Ua 和Ub 的模拟电压,检验DAC0832 的功能。选取典型(最低、最高和半量程等)的二进制值进行检验,记录测得的结果。实验结果记录如下: 输入 00 0.001 4.959 08 0.145 4.636

西安交通大学数学实验报告(用MATLAB绘制二维、三维图形)(MATLAB循环结构、选择结构)

实验报告(三) 完成人:L.W.Yohann 注:本次实验主要学习了用MATLAB循环结构、选择结构进行编程,在学习完成后小组对65页的上机练习题进行了 程序编辑和运行。 1.使用for循环求和. 解:在编辑窗口输入: clear;clc; n=20;s=0; for i=1:n s=s+((i^2+3*i)/(2*i+1)); fprintf('i=%.0f,s=%.5f\n',i,s) end 并保存,命名为lab1; 在命令窗口中输入lab1,得: i=1,s=1.33333 i=2,s=3.33333 i=3,s=5.90476 i=4,s=9.01587 i=5,s=12.65224 i=6,s=16.80608 i=7,s=21.47275 i=8,s=26.64922 i=9,s=32.33343 i=10,s=38.52391 i=11,s=45.21956 i=12,s=52.41956 i=13,s=60.12326 i=14,s=68.33016 i=15,s=77.03984 i=16,s=86.25196 i=17,s=95.96624 i=18,s=106.18246 i=19,s=116.90041

i=20,s=128.11992 2.编写程序,通过键盘输入一组数,找出其中的最大数和最 小数. 3.解:在编辑窗口输入: a=input('请输入一组数x(用中括号括起来):'); n=length(a); m=a(1);M=a(1); for i=2:n if a(i)M M=a(I); end end M 并保存,命名为lab2; 在命令窗口中输入lab2,得: 请输入一组数x(用中括号括起来):[2 6 5 2 3 5 6 2 2 5 5 2 4 9 5] 输入后按回车,得: m = 2 M = 9 3.编写程序,通过键盘输入一个常数,判别其为奇数还是偶数 解:在编辑窗口输入: x=input('请输入x的值:'); if mod(x,2)==0

相关主题
文本预览
相关文档 最新文档