勾股定理单元整体教学设计教案
- 格式:docx
- 大小:79.36 KB
- 文档页数:14
勾股定理教学设计(通用8篇)勾股定理教学设计(通用8篇)作为一名教学工作者,有必要进行细致的教学设计准备工作,借助教学设计可以提高教学效率和教学质量。
如何把教学设计做到重点突出呢?以下是小编整理的勾股定理教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
勾股定理教学设计篇1一、教学任务分析勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。
学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。
《20xx版数学课程标准》对勾股定理教学内容的要求是:1、在研究图形性质和运动等过程中,进一步发展空间观念;2、在多种形式的数学活动中,发展合情推理能力;3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、本节课的教学目标是:1、能正确运用勾股定理及其逆定理解决简单的实际问题。
2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、教学重点和难点:应用勾股定理及其逆定理解决实际问题是重点。
把实际问题化归成数学模型是难点。
二、教学设想根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。
勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
第十八章 勾股定理. 勾股定理(一)一、教学目标.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
.培养在实际生活中发现问题总结规律的意识和能力。
.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
二、重点、难点.重点:勾股定理的内容及证明。
.难点:勾股定理的证明。
三、例题的意图分析例(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
例使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。
进一步让学生确信勾股定理的正确性。
四、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。
这个事实可以说明勾股定理的重大意义。
尤其是在两千年前,是非常了不起的成就。
让学生画一个直角边为和的直角△,用刻度尺量出的长。
以上这个事实是我国古代多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是,长的直角边(股)的长是,那么斜边(弦)的长是。
再画一个两直角边为和的直角△,用刻度尺量的长。
你是否发现与的关系,和的关系,即,,那么就有勾股弦。
对于任意的直角三角形也有这个性质吗? 五、例习题分析例(补充)已知:在△中,∠°,∠、∠、∠的对边为、、。
求证:+。
分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:△小正大正 ×21+(-),化简可证。
勾股定理教案范本勾股定理教案教学方法优秀6篇初中数学《勾股定理》教学设计篇一一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。
学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。
具体内容是运用勾股定理及其逆定理解决简单的实际问题。
当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念。
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。
四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。
2.课前准备教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了七个环节。
第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。
17.1勾股定理(1)一、教学目标:1.体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法,掌握勾股定理并会用它解决身边与实际生活相关的数学问题。
2.在学生经历观察、归纳、猜想、探索勾股定理过程中,发展合情推理能力,体会数形结合思想,并在探索过程中,发展学生的归纳、概括能力。
3.通过探索直角三角形的三边之间关系,培养学生积极参与、合作交流的意识,体验获得成功的喜悦,通过介绍勾股定理在中国古代的研究情况,提高学生民族自豪感,激发学生热爱祖国、奋发学习的热情。
二、教学重点、难点:重点:探索和验证勾股定理过程; 难点:通过面积计算探索勾股定理。
三、教学方法及教学手段:采用探究发现式的教学方法,通过计算面积为学生设计一个数学实验的平台,结合多媒体课件的演示,培养学生动手实践能力和合作交流的意识。
四、教学过程:1.创设情境,导入课题多媒体演示勾股树图片,激发学生求知欲,成功导入本节课题。
2.自主探索,合作交流 活动一:动脑想一想小明用一边长为cm 1的正方形纸片,沿对角线折叠,你知道折痕有多长吗?①这个问题你是怎样想的?请说出你的想法。
②若把折叠后的直角三角形纸片放在如图所示的格点图中(每个小正方形边长为cm 1),你能知道斜边的长吗?③观察图形,并填空:⑴正方形P 的面积为2cm , 正方形Q 的面积为2cm , 正方形R 的面积为2cm 。
⑵你能发现图中正方形P 、Q 、R 的面积之间有什么关系?从中你发现了什么?活动二:动手做一做其它一般的直角三角形,是否也有类似的性质呢?(你打算用什么方法来研究?共同讨论方法后再确立研究方向) (图中每一小方格表示21cm )⑴正方形P 的面积为2cm ,正方形Q 的面积为2cm , 正方形R 的面积为2cm 。
⑵正方形P 、Q 、R 的面积之间的关系 是什么?⑶你会用直角三角形的边长表示正方形P 、Q 、R 的面积吗?你能发现直角三角形三边长度之间存在什么关系吗?与你的同伴进行交流。
八年级数学《勾股定理》教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!八年级数学《勾股定理》教案8篇本文将为大家介绍八年级数学《勾股定理》教案8篇。
第一章勾股定理1.探索勾股定理(一)一、学生起点分析八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”。
此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强。
二、教学任务分析本节课是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第一节第1课时。
勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。
三、教学目标分析●知识与技能目标用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用。
●数学思考让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
●解决问题进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系。
●情感与态度在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
四、教法学法1.教学方法:引导—探究—发现法。
2.学习方法:自主探究与合作交流相结合。
五、教学过程设计本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业。
第一环节:创设情境,引入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理。
勾股定理教案(共五则范文)第一篇:勾股定理教案勾股定理(课时一)教学目标知识与技能:通过观察猜想得出勾股定理的结论。
过程与方法:通过观察、归纳、猜想、探索的过程,发展学生的合情推理能力,体会数形结合的思想。
情感态度与价值观:通过对勾股定理历史的了解,感受数学文化,激发学生的爱国热情。
教学重、难点重点:探索三角形两条直角边的平方和等于斜边的平方的结论,从而发现勾股定理。
难点:勾股定理的证明。
教学过程1、创设问题情境、引入新课问题1:我国古代,人们将直角三角形中的短的直角边叫做钩、长的直角边叫做股、斜边叫做弦。
根据我国古算书《周髀算经》记载,约在公元前1100年人们已经知道钩是三、股是四,那么弦就是五,你知道是为什么吗?(设计意图:问题设置具有一定的挑战性,为的是激发学生探究的欲望。
在学生感到困惑时教师指出:通过本章的学习可以解开困惑。
)2、探索交流、开展新科活动1 问题2:毕得格拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500年前,一次他去朋友家做客,发现朋友家的用砖铺成的地面反映了直角三角形三边的某种关系。
我们来观察一下图中的地面,看看能发现些什么?问题3:你能发现下图中等腰直角三角形A、B、C有什么性质吗?问题4:等腰三角形都有上述性质吗?观察下图,回答问题。
(1)观察图1 正方形A中含有个小方格,即A的面积是个单位面积。
正方形B中含有个小方格,即B的面积是个单位面积。
正方形C中含有个小方格,即C的面积是个单位面积。
(2)在图2、图3中,正方形A、B、C中个含有多少个小方格?它们的面积各是多少?你如何得到上述结果的?与同伴交流。
(2)请将上述结果填入下表,你能发现正方形A、B、C的面积关系吗?(设计意图:通过学生观察计算,发现对于等腰直角三角形而言,满足两直角边的平方和等于斜边的平方。
通过探究、发现,体会数形结合思想。
)命题一如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2活动2 问题5:等腰三角形有上述性质,其他的三角形也有这个性质吗?如下图,每个小方格的面积均为1,请分别计算出下图中A、B、C、A‘、B‘、C’的面积,看看能得出什么结论?(问题6:给出一个边长为0.5、1.2、1.3,这种含小数的直角三角形,也满足上述结论吗?(设计意图:进一步让学生体会观察、猜想、归纳这一数学结论的发现过程,提高学生的分析问题、解决问题的能力。
勾股定理优秀教学设计模板(通⽤5篇)勾股定理优秀教学设计模板(通⽤5篇) 在教学⼯作者实际的教学活动中,时常需要⽤到教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学⽅案的设想和计划。
那么⼤家知道规范的教学设计是怎么写的吗?以下是⼩编为⼤家收集的勾股定理优秀教学设计模板(通⽤5篇),希望能够帮助到⼤家。
勾股定理优秀教学设计1 ⼀、教案背景概述: 教材分析:勾股定理是直⾓三⾓形的重要性质,它把三⾓形有⼀个直⾓的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。
它可以解决许多直⾓三⾓形中的计算问题,它是直⾓三⾓形特有的性质,是初中数学教学内容重点之⼀。
本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。
学⽣分析: 1、考虑到三⾓尺学⽣天天在⽤,较为熟悉,但真正能仔细研究过三⾓尺的同学并不多,通过这样的情景设计,能⾮常简单地将学⽣的注意⼒引向本节课的本质。
2、以与勾股定理有关的⼈⽂历史知识为背景展开对直⾓三⾓形三边关系的讨论,能激发学⽣的学习兴趣。
设计理念:本教案以学⽣⼿中舞动的三⾓尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学⽣对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富⽂化内涵,体验勾股定理的探索和运⽤过程,激发学⽣学习数学的兴趣,特别是通过向学⽣介绍我国古代在勾股定理研究和运⽤⽅⾯的成就,激发学⽣热爱祖国,热爱祖国悠久⽂化的思想感情,培养他们的民族⾃豪感和探究创新的精神。
教学⽬标: 1、经历⽤⾯积割、补法探索勾股定理的过程,培养学⽣主动探究意识,发展合理推理能⼒,体现数形结合思想。
2、经历⽤多种割、补图形的⽅法验证勾股定理的过程,发展⽤数学的眼光观察现实世界和有条理地思考能⼒以及语⾔表达能⼒等,感受勾股定理的⽂化价值。
3、培养学⽣学习数学的兴趣和爱国热情。
(完整版)勾股定理单元整体教学设计教案勾股定理单元整体教学设计教学流程⼆次备课(⼀)预习反馈1、已知三⾓形的三边为 9 ,12 ,15 ,则这个三⾓形的最⼤⾓是度;2、△ABC的三边长为 9 ,40 ,41 ,则△ABC的⾯积为3、若⼀个三⾓形的三边之⽐为5∶12∶13,且周长为60cm,则它的⾯积为.4、长度分别为3 , 4 , 5 , 12 ,13 的五根⽊棒能搭成(⾸尾连接)直⾓三⾓形的个数为( )A 1个B 2个C 3个D 4个(⼆)情景导⼊1、勾股定理及逆定理分别是什么?2、勾股定理是直⾓三⾓形的定理;它的逆定理是直⾓三⾓形的定理.勾股定理和它的逆定理是黄⾦搭档,经常综合应⽤来解决⼀些难度较⼤的题⽬。
(三)合作探究1、探究:下⾯以a,b,c为边长的三⾓形是不是直⾓三⾓形?如果是那么哪⼀个⾓是直⾓?(1) a=25 b=20 c=15 ____ _________ ;(2) a=13 b=14 c=15 ____ _____ ;(3) a=1 b=2 c= ____ _________;(4) a:b: c=3:4:5 _____ __________ .2、借助三⾓板画出如下⽅位⾓所确定的射线:①南偏东30°;②西南⽅向;③北偏西60°.①②③3、例题:例1:“远航”号、“海天”号轮船同时离开港⼝,各⾃沿⼀固定⽅向航⾏,“远航”号每⼩时航⾏16海⾥,“海天”号每⼩时航⾏12海⾥,它们离开港⼝⼀个半⼩时后相距30海⾥.如果知道“远航”号沿东北⽅向航⾏,能知道“海天”号沿哪个⽅向航⾏吗?例2:⼀个零件的形状如图所⽰,按规定这个零件中∠A和∠DBC都应为直⾓.⼯⼈师傅量出了这个零件各边的尺⼨,那么这个零件符合要求吗?。
勾股定理单元整体教学设计例 2:一个零件的形状如图所示,按规定这个零件中∠ A 和∠ DBC 都应为直角.工人师傅量出了这个零件各边的尺寸,那么这个零件符合要求吗?教学流程 (一) 预习反馈二次备课1、已知三角形的三边为 9 ,12 ,15 , 则这个三角形的最大角是 度;2、△ ABC 的三边长为 9 ,40 ,41 , 则△ ABC 的面积为3、若一个三角形的三边之比为 5∶ 12∶13,且周长为 60cm ,则它的面积为.4、长度分别为 3 , 4 , 5 , 12 ,13 的五根木棒能搭成 (首尾连接 )直角三角形的个数为 ( )A 1 个B 2 个C 3个D 4 个(二)情景导入1、勾股定理及逆定理分别是什么 ?2、勾股定理是直角三角形的 定理; 它的逆定理是直角三角形的定理 .勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的 题目。
(三)合作探究1、探究:下面以 a,b,c 为边长的三角形是不是直角三角形?如果是那么哪 一个角是直角? (1) a=25 b=20 c=15 (2) a=13 b=14 c=15(3) ____________________________ a=1 b=2 c= ___________________________ (4) ___________________________ a :b: c=3:4:5 _________________________2、借助三角板画出如下方位角所确定的射线:3、例题:例 1 :“远航 ”号、“海天 ”号轮船同时离开港口, 各自沿一固定方向航行, “远 航”号每小时航行 16 海里, “海天”号每小时航行 12 海里,它们离开港口一 个半小时后相距 30 海里.如果知道 “远航 ”号沿东北方向航行,能知道 “海 天”号沿哪个方向航行吗?① ② ③。
勾股定理单元整体教学设计教案勾股定理单元整体教学设计题目勾股定理总课时8学校方山初级中学执教者刘伟平年级八年级学科数学设计来源集体备课教学时间2017年3月 13日—3 月24日教材分析勾股定理是教科书八年级下册第十八章的内容。
勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
学情分析针对八年级学生的知识结构、心理特征及学生的实际情况,可选择引导探索法,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
教学目标(一)知识与技能1、体验勾股定理的探索过程,会运用勾股定理解决简单的问题。
2、会运用勾股定理的逆定理判定直角三角形。
3、通过具体的例子,了解定理的含义;了解逆命题、逆定理概念;知道原命题成立其逆命题不一定成立。
(二)过程与方法1、让学生经历用面积法探索勾股定理的过程,体会数形结合的思想,渗透观察、归纳、猜想、验证的数学方法,体验从特殊到一般的逻辑推理过程。
(三)情感态度与价值观1、通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
2、让学生体验自己努力得到结论的成就感,体验数学充满了探索和创造,感受数学之美,探究之趣。
重点勾股定理、逆定理及运用难点勾股定理及逆定理的探索过程课前准备1、多媒体课件2、网络资源课题:17.2.1勾股定理的逆定理(第5课时)课型新授课备课时间2017-3-18 使用教师姓名使用时间主备刘伟平审核教师参与教师姓名刘伟平孙小娟教学目标:1.掌握直角三角形的判别条件;2.熟记一些勾股数;3.掌握勾股定理的逆定理的探究方法.重点:探究勾股定理的逆定理,理解并掌握互逆命题、原命题、逆命题的有关概念及关系.难点:勾股定理的逆定理的证明.教学流程二次备课(一)导入新课复习: (1)总结直角三角形有哪些性质;(2)一个三角形满足什么条件时才能是直角三角形?前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b与斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人是如何做的?(二)讲授新课一、合作探究(10分钟)【探究一】:把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个最大的角便是什么角:.理由是: . 【探究二】:用尺规画△ABC,使其三边长分别为2.5cm,6cm,6.5cm.观察你画出的三角形是直角三角形吗?换成三边长分别为4cm,7.5cm,8.5cm,再试一试.由此你能猜想到什么呢?【结论】如果一个三角形的三条边长a、b、c满足,那么这个三角形是直角三角形。
我们把这个定理叫做勾股定理的逆定理【探究三】命题1 两条直线平行,内错角相等此命题的题设是:,结论是:。
命题2 内错角相等,两条直线平行此命题的题设是:,结论是:。
【结论】命题1和命题2的题设和结论相反,把这样的两个命题叫做,把其中一个叫做原命题,另一个叫做它的。
请你再举出两个对类似的命题:________ ____.【探究四】原命题是真命题,它的逆命题一定是真命题吗?请举例说明.5、判断由a、b、c组成的三角形是否是直角三角形:(1)a =15,b =8,c =17 (2)a =13,b =14,c =15(3)a =41,b =4,c =5 (4)a =45,b =1,c =43(5)a =0.5,b =1.2,c =1.3 (6) a =21,b =23,c =226、我们把像3、4、5这样,能够成为直角三角形三条边长的三个正整数,称为勾股数。
常见勾股数还有: ; ; 等 二、 合作、交流:1.勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么,这个三角形是直角三角形.证明:2、例题 如图,∠C =90°,AC =3,BC =4,AD =12,BD =13,试判断△ABD 的形状,并说明理由.(三)重难点精讲【例1】说出下列命题的逆命题,这些命题的逆命题成立吗?(1)同旁内角互补,两条直线平行; (2)如果两个实数的平方相等,那么这两个实数相等;(3)线段垂直平分线上的点到线段两端点的距离相等;分析:(1)每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用;(2)理顺它们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.(四)归纳小结:引导学生总结本课知识点(五)随堂小测: 1、各组数中,以 为边的三角形不是CBDA cb a ,,直角三角形的是( )A 、B 、C 、D 、 2、三角形的三边 满足 ,则此三角形是( )。
A 、锐角三角形B 、直角三角形C 、钝角三角形D 、等边三角形3、已知是△ABC 的三边,且满足,则此三角形是 。
4.“两直线平行,内错角相等。
”的逆定理是 。
作业设计:习题17.2:基础题:1、2、4题;选做题:5题. 板书设计17.2.1勾股定理的逆定理 定理例题:教后札记3,2,1===c b a 25,24,7===c b a 10,8,6===c b a 5,4,3===c b a c b a ,,()05432=-+-+-c b a cb a ,,()abc b a 222=-+课题:17.2.2勾股定理的逆定理(第6课时)课型新授课备课时间2017-3-18 使用教师姓名使用时间主备刘伟平审核教师参与教师姓名刘伟平孙小娟教学目标:1. 进一步掌握勾股定理的逆定理,并会应用勾股定理的逆定理判断一个三角形是否是直角三角形;2.进一步加深性质定理与判定定理之间关系的认识;3.灵活应用勾股定理及逆定理解决实际问题.重点:灵活运用勾股定理及逆定理解决实际问题.难点:灵活运用勾股定理及逆定理解决实际问题.教学流程二次备课(一)预习反馈1、已知三角形的三边为 9 ,12 ,15 ,则这个三角形的最大角是度;2、△ABC的三边长为 9 ,40 ,41 ,则△ABC 的面积为3、若一个三角形的三边之比为5∶12∶13,且周长为60cm,则它的面积为.4、长度分别为 3 , 4 , 5 , 12 ,13 的五根木棒能搭成(首尾连接)直角三角形的个数为( )A 1个B 2个C 3个D 4个(二)情景导入1、勾股定理及逆定理分别是什么?2、勾股定理是直角三角形的定理;它的逆定理是直角三角形的定理. 勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的题目。
(三)合作探究1、探究:下面以a,b,c为边长的三角形是不是直角三角形?如果是那么哪一个角是直角?(1) a=25 b=20 c=15 ____ _________ ;(2) a=13 b=14 c=15 ____ _____ ;(3) a=1 b=2 c= ____ _________;(4) a:b: c=3:4:5 _____ __________ .2、借助三角板画出如下方位角所确定的射线:①南偏东30°;②西南方向;③北偏西60°.①②③3、例题:例1:“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?例2:一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量出了这个零件各边的尺寸,那么这个零件符合要求吗?分析:这是一个利用直角三角形的判定条件解决实际问题的例子.解:在△ABD中,AB2+AD2=9+16=25=BD2,所以△ABD是直角三角形,∠A是直角.在△BCD中,BD2+BC2=25+144=169=132=CD2,所以△BCD是直角三角形,∠DBC是直角.因此这个零件符合要求.(四)归纳小结:引导学生总结本课知识点(五)随堂小测:1、如图,有一块地,已知,AD=4m,CD=3m,∠ADC=90°,AB=13m,BC=12m。
求这块地的面积为__________2、若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是()A、等腰三角形;B、直角三角形;C、等腰三角形或直角三角形;D、等腰直角三角形。
3、小强在操场上向东走80 m后,又走了60 m,再走100 m回到原地.小强在操场上向东走了80 m后,又走60 m的方向是________.作业设计:习题17.2:基础题:3、6题;选做题:7题.教后札记板书设计17.2.2勾股定理的逆定理定理例题:。