勾股定理单元复习教案
- 格式:doc
- 大小:173.12 KB
- 文档页数:6
八年级数学下《勾股定理》总复习教案范文一、知识回顾1. 直角三角形直角三角形是指其中一个角为90度的三角形。
直角三角形的特点是有一个边的长度被称为斜边,其他两条边的长度我们分别称为直角边。
2. 勾股定理勾股定理是直角三角形中一条重要的定理,表达式为"直角边的平方和等于斜边的平方",可以用以下公式表示:c² = a² + b²其中,c表示斜边的长度,a和b分别表示两条直角边的长度。
3. 应用举例勾股定理在解决直角三角形的边长和角度问题时非常有用。
例如,可以用勾股定理计算直角三角形各边长,或者求解角度等。
二、教学目标通过本次教学,学生应能够:1. 理解勾股定理的概念和原理;2. 运用勾股定理解决直角三角形相关问题;3. 掌握勾股定理的证明方法。
三、教学重点与难点1. 教学重点:勾股定理的概念、运用和证明;2. 教学难点:勾股定理的证明方法。
四、教学准备1. 教学工具:黑板、彩色粉笔、直角三角形的示意图;2. 教学资源:相关教学PPT,教材、练习册。
五、教学过程【导入】1. 上课前提问几个问题,激发学生对勾股定理的兴趣:- 什么是直角三角形?- 直角三角形有哪些特点?- 有没有谁能举一个实际生活中的例子来说明直角三角形的应用?【知识讲解】2. 通过PPT等教学资源向学生讲解勾股定理的概念和原理:- 解释直角三角形、斜边、直角边等相关概念;- 呈现勾股定理的表达式,并解释其含义;- 举例说明勾股定理的应用。
【知识运用】3. 给学生分发练习册,并指导学生进行练习:- 通过练习册的课后习题,让学生运用勾股定理计算直角三角形的边长;- 针对较为简单的题目,可以鼓励学生口算或心算,提高计算速度;- 对于较难的题目,可以引导学生采用勾股定理解题的思路和方法。
【知识拓展】4. 引导学生思考勾股定理的证明方法:- 提示学生回想过去学过的相关几何知识,如相似三角形、平行四边形等;- 引导学生从图形特征入手,寻找直观的证明思路;- 鼓励学生进行探索性学习,尝试自己找到勾股定理的证明方法。
京师蜀都学堂创新教材系列勾股定理(总复习)专题第讲时间:2014年月日老师:电话:一、兴趣导入(Topic-in):专题简析:1、勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2、勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,即三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(C为斜边最长,c>a,c>b )注释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系。
(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角形。
(3)理解勾股定理的一些变式: c2=a2+b2,a2=c2-b2, b2=c2-a23、图形解释:4、勾股数:满足a2+b2=c2的三个正整数成为勾股数.例如:(3,4,5),(6,8,10),(5,12,13),(7,24,25)注释:勾股数的每一项的整数倍的组合也是勾股数,例如(3,4,5)的二倍(6,8,10)同样也为勾股数。
二、知识讲解及例题分析(Teaching):例1 已知两边求第三边:1.在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边①若a=5,b=12,则c=________;②若c=41,a=40,则b=________;③若∠A=45°,a=1.则b=________,c=________ ,a:b:c= .2. 在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为_____________.3. 已知直角三角形的两边长为3、2,则另一条边长是________________.4.如图,在△ABC中,AB=AC,∠BAC的角平分线交BC边于点D,AB=5,BC=6,则AD= 。
5. 如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?总结:在应用勾股定理进行计算时,一定要分清哪条是直角边哪条是斜边。
勾股定理是初中数学中的经典定理,它被认为是数学中最有名的定理之一。
在今天的教学中,勾股定理仍然深受关注、深受喜爱。
本文将介绍一篇关于复习数学中的勾股定理教案,帮助学生更好地掌握勾股定理。
一、教学目标1、了解勾股定理的定义和基本形式2、够应用勾股定理解决一些实际问题3、培养学生的推理和证明能力二、教学过程1、引入勾股定理老师可以用一些实际的例子引导学生认识勾股定理。
如:在修建四合院时,如何确定房子需要多少木板、砖瓦等建材。
在引入勾股定理的同时,也可以引入直角三角形的概念。
通过明确直角三角形的定义,让学生了解直角三角形的特征,进而理解勾股定理的产生过程。
2、教学内容在讲解勾股定理的内容时,要结合图形直观地表达,让学生对勾股定理有深刻的印象。
特别是勾股定理在解决实际问题时的应用,让学生对勾股定理产生感性认识。
3、教学练习在教学练习环节中,老师要注意区分练习难度和练习类型。
在初学阶段,学生可通过简单直观的图形练习勾股定理的应用。
在练习过程中,老师可利用学生之间的竞赛形式,提升学生的兴趣和学习效果。
4、教学总结在教学总结中,老师可以通过提问、复习等方式对本节课的内容进行总结,强化学生对勾股定理的理解和记忆。
三、教学重点勾股定理及其应用四、教学难点勾股定理的证明五、教学方法1、直观性教学2、启发性教学3、练习性教学六、教学工具1、直尺2、圆规3、笔、纸七、教学建议教学建议基于不同教学阶段而定。
在初学阶段,教师要注重学生对勾股定理概念的认知,强化其学习兴趣;在中等难度阶段,考虑到勾股定理的具体应用,教师要关注学生对实例应用的掌握程度;在高难度阶段,老师可引导学生进行证明和思考,提升学生对勾股定理的理解深度。
八、结语勾股定理是初中数学中的重要定理。
老师要注重勾股定理与实际生活的联系,提高学生学习的主动性和兴趣性。
在教学中,注重实践是非常重要的,通过实例化教学,学生能够更为快速地理解勾股定理应用及实际意义。
希望这篇教案能够帮助初学者更好地掌握勾股定理。
勾股定理复习教案教案标题:勾股定理复习教案教案目标:1. 复习和巩固学生对勾股定理的理解和应用能力。
2. 引导学生进行勾股定理的证明和推导。
3. 培养学生的逻辑思维和问题解决能力。
教学资源:1. 教科书、教学投影仪、白板和标记笔。
2. 勾股定理的示例题目和练习题目。
3. 学生练习册和作业本。
教学步骤:引入阶段:1. 使用教学投影仪展示一个直角三角形,并提醒学生勾股定理的概念和公式。
2. 引导学生回忆勾股定理的应用场景和实际意义,例如在建筑、测量和导航中的应用。
复习阶段:1. 提供一些勾股定理的示例题目,要求学生使用勾股定理计算未知边长或角度。
2. 分组讨论和解答示例题目,鼓励学生之间的合作和讨论。
3. 教师对示例题目进行点评和解答,强调解题的思路和方法。
证明与推导阶段:1. 提出一个勾股定理的证明问题,例如:如何证明勾股定理成立?2. 引导学生提供自己的证明思路和方法,鼓励学生进行推理和逻辑分析。
3. 教师给出勾股定理的几种证明方法,例如几何证明、代数证明和图像证明,并解释其原理和思想。
4. 学生进行小组讨论和展示,分享他们的证明思路和方法。
拓展与应用阶段:1. 提供一些拓展题目,要求学生应用勾股定理解决实际问题,如测量斜坡的高度或计算航空器的航程。
2. 学生独立或小组完成拓展题目,并相互检查和讨论答案。
3. 教师对拓展题目进行点评和解答,鼓励学生思考不同解题方法和策略的优劣。
总结阶段:1. 教师对整堂课进行总结,强调勾股定理的重要性和应用价值。
2. 学生回答教师提出的总结问题,巩固对勾股定理的理解和应用。
3. 鼓励学生提出问题和疑惑,教师进行解答和指导。
作业布置:1. 布置一些练习题目,要求学生独立完成,并在下节课前交作业。
2. 强调学生在解题过程中要运用勾股定理,并注重解题思路和步骤的清晰性。
评估方式:1. 教师观察学生在课堂上的参与和表现,包括问题的提出、讨论和解答。
2. 批改学生的作业,评估他们对勾股定理的理解和应用能力。
年级数学科辅导讲义(第讲)学生姓名:授课教师:授课时间:专题勾股定理章节复习目标掌握勾股定理及其逆定理重难点勾股定理的应用常考点勾股定理的计算、勾股定理的应用勾股定理知识梳理1.勾股定理:直角三角形的两直角边的平方和等于斜边的平方。
若直角三角形的两条直角边为a、b,斜边为c,则a²+b²=c²。
2.勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a²+b²=c²,那么这个三角形是直角三角形。
3.满足a²+b²=c²的三个正整数,称为勾股数。
若a,b,c是一组勾股数,则ak,bk,ck(k为正整数)也必然是一组勾股数。
常用的几组勾股数有3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41等。
4.勾股定理的应用:①圆柱形物体表面上的两点间的最短距离;②长方体或正方体表面上两点间的最短距离问题。
5.直角三角形的判别:①定义,判断一个三角形中有一个角是直角;②根据勾股定理的逆定理,三角形一边的平方等于另外两边的平方和,则该三角形是直角三角形。
6.拓展:特殊角的直角三角形相关性质定理。
精讲点拨考点1. 勾股定理【例1】在Rt△ABC中,已知两边长为3、4,则第三边的长为变式1 在Rt△ABC中,已知两边长为5、12,则第三边的长为变式2 等边三角形的边长为6,则它的高是________变式3 在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C所对的边,(1)已知c=4,b=3,求a;(2)若a:b=3:4,c=10cm,求a、b。
考点2. 勾股定理的证明【例2】如图:由四个全等直角三角形拼成如下大的正方形,求证:222a b c +=变式 如图:由四个全等直角三角形拼成如下大的正方形,求证:222a b c +=考点3 勾股定理的应用【例3】 如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以107千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域. (1)A 市是否会受到台风的影响?写出你的结论并给予说明; (2)如果A 市受这次台风影响,那么受台风影响的时间有多长?变式1 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?变式2 一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A沿墙下滑4m ,那么梯子底端B 也外移4m 吗?考点4. 直角三角形的判定【例4】三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a:b:c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c) D . a:b:c =13∶5∶12 变式1 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形.变式2 已知,△ABC 中,17AB cm =,16BC cm =,BC 边上的中线15AD cm =,试说明△ABC是等腰三角形.变式3 如图,在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=41BC , 求证:AF ⊥EF .考点5. 勾股定理及其逆定理相关面积计算【例5】一个零件的形状如图,已知∠A=900,按规定这个零件中∠DBC 应为直角,工人师傅量得零件各边尺寸:AD = 4,AB = 3, BC = 12 , DC=13,问这个零件是否符合要求,并求四边形ABCD 的面积.变式1 如图示,有块绿地ABCD ,AD=12m ,CD=9m ,AB=39m ,BC=36m ,∠ADC=90°,求这块绿地的面积。
勾股定理的教案复习与应用勾股定理是数学中的重要定理之一,是三角形中最基本的定理之一。
它表述了在一个直角三角形中,直角边的平方和等于斜边的平方。
勾股定理在数学、物理、工程、建筑等领域应用广泛,它在解决实际问题,如测量距离、计算角度等方面起着重要作用。
本文将从复习勾股定理的教案和勾股定理的应用两个方面来详细阐述勾股定理。
一、勾股定理的教案复习1.基本概念的复习在复习勾股定理时首先需要复习直角三角形的基本概念。
学生需要掌握直角三角形的构造,包括直角、斜边和直角边这三个基本概念,此外学生还要学会如何测量三角形的各边和角度。
2.勾股定理的引入在学生理解直角三角形的概念和测量方法后,可以引入勾股定理。
引入时可以通过具体的生活案例向学生展示勾股定理的实际应用。
例如,学生可以测量相邻两点的距离,搭建直角三角形等等。
在引入过程中,可以结合数学公式让学生理解和感悟勾股定理。
3.勾股定理的证明在学生掌握勾股定理的应用后,可以进一步学习勾股定理的证明。
学生需要理解勾股定理的全面性和普遍性,理解证明过程。
这有助于学生更好的掌握勾股定理的知识。
二、勾股定理的应用1.测量距离和高度勾股定理可以用于测量两点之间的距离和高度。
例如,在建筑工程中,勾股定理可以用来测量房屋的高度和角度,在物理实验中,勾股定理可以用来测量物体的高度和距离,这对于探索空间的深度和广度具有重要意义。
2.计算角度勾股定理还可以用来计算角度,如计算摆动的角度、太阳的高度、电视天线的角度等。
通过勾股定理可以精确的计算角度,方便人们进行实际的工作和生活。
3.解决实际问题勾股定理还可以用于解决实际问题,如航空导航中通过勾股定理可以计算飞机飞行相对于地面的高度和距离,帮助飞行员更加准确的控制飞行;在数学竞赛和物理竞赛中,勾股定理也是经常出现的题目类型。
通过勾股定理,可以更好的理解和解决实际问题。
总体来说,勾股定理是数学中的基础定理之一,它具有广泛的应用领域。
在理解勾股定理的基本概念和证明过程后,学生可以通过实际运用来掌握勾股定理,同时也可以通过勾股定理来解决实际问题,拓宽生活和工作的广度和深度。
勾股定理复习(一)教学目标1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边.2.勾股定理的应用.3.会运用勾股定理的逆定理,判断直角三角形.重点:掌握勾股定理及其逆定理.难点:理解勾股定理及其逆定理的应用.教学过程一、复习回顾在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定理以及它的应用.其知识结构如下:1.勾股定理:(1)直角三角形两直角边的______和等于_______的平方.就是说,对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有:————————————.这就是勾股定理.(2)勾股定理揭示了直角三角形___之间的数量关系,是解决有关线段计算问题的重要依据.22222222,,b a c a c b b c a +=-=-=,2222,a c b b c a -=-=.2.勾股定理逆定理“若三角形的两条边的平方和等于第三边的平方,则这个三角形为________.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a 2+b 2=c 2),先构造一个直角边为a,b 的直角三角形,由勾股定理证明第三边为c,进而通过“SSS ”证明两个三角形全等,证明定理成立.3.勾股定理的作用:(1)已知直角三角形的两边,求第三边;(2)在数轴上作出表示(n 为正整数)的点.勾股定理的逆定理是用来判定一个三角形是否是直角三角形的.勾股定理的逆定理也可用来证明两直线是否垂直,勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.(3)三角形的三边分别为a 、b 、c ,其中c 为最大边,若222c b a =+,则三角形是直角三角形;若222c b a >+,则三角形是锐角三角形;若2<+c b a 22,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的最大边.二、课堂展示例1:如果一个直角三角形的两条边长分别是6cm 和8cm ,那么这个三角形的周长和面积分别是多少?例2:如图,在四边形ABCD 中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD ⊥BD .三、随堂练习1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .321,421,521C .3,4,5D .4,721,821 2.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍B .2倍C .3倍D .4倍3.三个正方形的面积如图1,正方形A 的面积为( )A . 6B . 36C . 64D . 8 图1 A100644.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( )A .6cmB .8.5cmC .1330cm D .1360cm 5.在△ABC 中,三条边的长分别为a ,b ,c ,a =n 2-1,b =2n ,c =n 2+1(n >1,且n 为整数),这个三角形是直角三角形吗?若是,哪个角是直角四、课后练习1.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )A .50cmB .100cmC .140cmD .80cm2.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为 ( )A .8cmB .10cmC .12cmD .14cm3.在△ABC 中,∠C =90°,若 a =5,b =12,则 c =___4.等腰△ABC 的面积为12cm 2,底上的高AD =3cm ,则它的周长为___.5.等边△ABC 的高为3cm ,以AB 为边的正方形面积为___.6.一个三角形的三边的比为5∶12∶13,它的周长为60cm ,则它的面积是__。
勾股定理复习课教案一、教学目标1. 知识与技能:(1)理解并掌握勾股定理的内容及证明方法;(2)能够运用勾股定理解决实际问题。
2. 过程与方法:(1)通过复习勾股定理,提高学生的数学思维能力;(2)培养学生运用勾股定理解决几何问题的能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养学生的自主学习能力;(2)培养学生团队协作、交流分享的良好学习习惯。
二、教学内容1. 勾股定理的定义及表述;2. 勾股定理的证明方法;3. 运用勾股定理解决实际问题。
三、教学重点与难点1. 教学重点:(1)勾股定理的表述及证明方法;(2)运用勾股定理解决实际问题。
2. 教学难点:(1)勾股定理的证明方法;(2)灵活运用勾股定理解决复杂几何问题。
四、教学方法1. 采用问题驱动法,引导学生主动思考、探索;2. 通过案例分析,培养学生运用勾股定理解决实际问题的能力;3. 组织小组讨论,促进学生之间的交流与合作。
五、教学过程1. 导入新课:(1)复习已学过的勾股定理相关知识;(2)提问:什么是勾股定理?它能解决哪些问题?2. 知识梳理:(1)讲解勾股定理的定义及表述;(2)介绍勾股定理的证明方法。
3. 案例分析:(1)展示几个运用勾股定理解决实际问题的案例;(2)让学生尝试独立解决类似问题。
4. 小组讨论:(1)组织学生进行小组讨论,分享解题心得;(2)引导学生相互借鉴、共同提高。
5. 练习巩固:(1)布置适量练习题,让学生独立完成;(2)针对学生易错点进行讲解和辅导。
(2)引导学生反思自己在解题过程中的优点和不足。
7. 课后作业:(1)布置课后作业,巩固所学知识;(2)鼓励学生开展课外探究,拓宽知识面。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组合作表现,评价学生的学习态度和团队协作能力。
2. 练习完成情况评价:检查学生练习题的完成质量,评价学生对勾股定理的理解和运用能力。
3. 课后作业评价:对学生的课后作业进行批改,了解学生对课堂内容的掌握情况,针对学生的错误进行个别辅导。
第17章勾股定理全章复习教学目标:1.会用勾股定理解决简单问题。
2.会用勾股定理的逆定理判定直角三角形。
3.会用勾股定理解决综合问题和实际问题。
教学重点:回顾并思考勾股定理及逆定理教学难点:勾股定理及逆定理在生活中的广泛应用。
教学过程:(一)知识结构图:见PPT(二)基础知识:1.勾股定理如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a2 + b2 = c2几何语言:在Rt △ABC 中, ∠C=90°∴a2+b2=c2练习:1.求出下列直角三角形中未知的边.2.已知:直角三角形的三边长分别是 3,4,X,则X=3. 三角形ABC 中,AB=10,AC=17,BC 边上的高线AD=8,求BC8A 15B 30° 2C B A 2 45° A CB2 .勾股定理的逆定理如果三角形的三边长a ,b ,c 满足a2 +b2=c2 ,那么这个三角形是直角三角形 几何语言: 在△ABC 中,∵a2+b2=c2∴ △ABC 是直角三角形,∠C=90°互逆定理 如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互逆定理, 其中一个叫做另一个的逆定理.基础练习二:1.在已知下列三组长度的线段中,不能构成直角三角形的是 ( )A 5,12,13B 2,3,3C 4,7,5D 1, 2 , 52.若△ABC 中 ,AB=5 ,BC=12 ,AC=13 ,求AC 边上的高.三、典例分析:例1、如图,四边形ABCD 中,AB =3,BC=4,CD=12,AD=13, ∠B=90°,求四边形ABCD 的面积变式 有一块田地的形状和尺寸如图所示,试求它的面积。
121334归纳: 转化思想例2、下图是学校的旗杆,小明发现旗杆上的绳子垂到地面还多1米,如图(1),当他把绳子的下端拉开5米后,发现下端刚好接触地面,如图(2),你能帮他D BA C归纳: 方程思想 例3、如图,矩形纸片ABCD 的边AB=10cm,BC=6cm,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在DC 边上的点G 处,求BE 的长。
年级数学科辅导讲义(第讲)学生姓名:授课教师:授课时间:
勾股定理
知识梳理
1.勾股定理:直角三角形的两直角边的平方和等于斜边的平方。
若直角三角形的两条直角边为a、b,斜边为c,则a²+b²=c²。
2.勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a²+b²=c²,那么这个三角形是直角三角形。
3.满足a²+b²=c²的三个正整数,称为勾股数。
若a,b,c是一组勾股数,则ak,bk,ck(k为正整数)也必然是一组勾股数。
常用的几组勾股数有3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41等。
4.勾股定理的应用:
①圆柱形物体表面上的两点间的最短距离;
②长方体或正方体表面上两点间的最短距离问题。
5.直角三角形的判别:
①定义,判断一个三角形中有一个角是直角;
②根据勾股定理的逆定理,三角形一边的平方等于另外两边的平方和,则该三角形是直角三角形。
6.拓展:特殊角的直角三角形相关性质定理。
精讲点拨
考点1. 勾股定理
【例1】在Rt△ABC中,已知两边长为3、4,则第三边的长为
变式1 在Rt△ABC中,已知两边长为5、12,则第三边的长为
变式2 等边三角形的边长为6,则它的高是________
变式3 在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C所对的边,
(1)已知c=4,b=3,求a;(2)若a:b=3:4,c=10cm,求a、b。
考点2. 勾股定理的证明
【例2】如图:由四个全等直角三角形拼成如下大的正方形,求证:2
2
2
a b c +=
变式 如图:由四个全等直角三角形拼成如下大的正方形,求证:2
2
2
a b c +=
考点3 勾股定理的应用
【例3】 如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以107千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域. (1)A 市是否会受到台风的影响?写出你的结论并给予说明; (2)如果A 市受这次台风影响,那么受台风影响的时间有多长?
变式1 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?
变式2 一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A 沿墙下滑4m ,那么梯子底端B 也外移4m 吗?
考点4. 直角三角形的判定
【例4】三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )
A .a:b:c=8∶16∶17
B . a 2-b 2=c 2
C .a 2
=(b+c)(b-c) D . a:b:c =13∶5∶12
变式1 三角形的三边长为ab c b a 2)(2
2+=+,则这个三角形是( )
A. 等边三角形
B. 钝角三角形
C. 直角三角形
D. 锐角三角形.
变式2 已知,△ABC 中,17AB cm =,16BC cm =,BC 边上的中线15AD cm =,试说明△ABC
是等腰三角形.
变式3 如图,在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=4
1
BC , 求证:AF ⊥EF .
考点5. 勾股定理及其逆定理相关面积计算
【例5】一个零件的形状如图,已知∠A=900
,按规定这个零件中∠DBC 应为直角,工人师傅量得零件各边尺寸:AD = 4,AB = 3, BC = 12 , DC=13,问这个零件是否符合要求,并求四边形ABCD 的面积. D
C
B
A
变式1 如图示,有块绿地ABCD ,AD=12m ,CD=9m ,AB=39m ,BC=36m ,∠ADC=90°,求这块绿地的面积。
变式2 求知中学有一块四边形的空地ABCD ,如下图所示,学校计划在空地上种植草皮,经测量 ∠A=90°,AB=3m ,BC=12m ,CD=13m ,DA=4m ,若每平方米草皮需要200元,问学校需要投 入多少资金买草皮?
考点6. 折叠问题
【例6】折叠长方形ABCD 的一边AD ,使点D 落在BC 边的F 点处,若AB=8cm ,BC=10cm 。
求EC 的长.
变式1 如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。
现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,恰与AE 重合,则CD 等于( ) A .2㎝
B .3㎝
C .4㎝
D .5㎝
变式2 如图,在矩形ABCD 中,,6=AB 将矩形ABCD 折叠,使点B 与点D 重合,C 落在C '处,若
21::=BE AE ,则折痕EF 的长为 。
变式1 图 变式2 图 m BF = 2.4 厘
= 4.00 厘米
E
C A
D
B
F
C
B
A
章节练习
一、选择题
1. 下列各组能组成直角三角形的是 ( )
A. 4、5、6
B. 2、3、4
C. 11、12、13
D. 8、15、17 2. 若等腰三角形的腰长为10,底边长为12,则底边上的高为( )
A. 6
B. 7
C. 8
D. 9
3. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ) A .90° B .60° C .45° D .30°
4. 直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是( )
A. 6厘米
B. 8厘米
C.
13
80厘米 D. 1360厘米
5. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) 3题 图
A. 5
B. 25
C. 7
D. 25或7
二、填空题
6. 在△ABC 中,∠C =90°,若 c =17,b =15,则a = .
7. 如图,中间三角形是直角三角形,64、400分别为所在正方形的面积,则图中字母A 所代表的正方形面积是
8. 有以下几组数据 ①3、4、5 ;②17、15、8;③10、6、14;④12、5、13;⑤300、160、340;⑥0.3, 0.4,0.5.其中可以构成勾股数有
9. 如图某楼梯的长为5米,高3,计划在楼梯表面铺地毯,地毯的长度至少需要________米。
10. 在长方形纸片ABCD 中,AD =4cm ,AB =10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,则DE = cm.
9题 图 10题 图 A E B C
D
F
C ′
5米
3米
三、解答题:
11. 一同学先向东直线走了150米,由于其它原因,他接着向南直线走了80米,这时该同学距离他出发的地点有多远?(要求作图分析)
12. “中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?
17. 一块地如图所示,已知AB=4米,BC=3米,DC=12米,AD=13米,∠B=90°,求这块地的面积。
(提示:做辅助线AC)
A
D B
C。