数学人教版六年级下册反比例的意义
- 格式:docx
- 大小:14.31 KB
- 文档页数:3
六年级数学下册比例讲义知识点1.正比例和反比例的意义【知识点归纳】1.正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系.如果用字母x和y表示这两种相关联的量,用k表示它们的比值(一定),正比例关系可以用式子表示为:=k(一定).2.反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.如果用字母x和y表示这两种相关联的量,用k表示它们的乘积(一定),反比例的关系可以表示为:xy=k(一定).【命题方向】常考题型:例1:y﹣x=0,y与x()A、成正比例B、成反比例C、不成比例D、无法确定例2:长方形的面积一定,长和宽()A、成正比例B、成反比例C、不成比例知识点2.辨识成正比例的量与成反比例的量【知识点归纳】1.成正比例的量:(1)“变化方向”相同,一种量扩大或缩小,另一种量也扩大或缩小.(2)相对应的两个数的比值(商)一定.(3)关系式:=k(一定).2.成反比例的量:(1)“变化方向”相反,一种量扩大或缩小,另一种量反而缩小或扩大.(2)相对应的两个数的乘积一定.(3)关系式:xy=k(一定).3.判断方法:关键是看着两种相关量中相对应的两个数是商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例.【命题方向】常考题型:例:下列x和y成反比例关系的是()A、y=3+xB、x+y=C、x=yD、y=典型例题例1.长方形的面积一定,长和宽()A.成正比例B.成反比例C.不成比例例2.下列式子中(a、b都不为0),a和b成反比例的是()A.9×a=2×b B.a×﹣4÷b=0C.a=D.a×7=例3.下列关系式中x、y 都不为0,则x与y不是成反比例关系的是()A.x=B.y=3÷x C.x=×πD.x=例4.成反比例的两个量在变化时的规律是它们的()不变.A.积B.商C.和例6.如图的图象表示一辆汽车在高速公路上行驶的路程与耗油量的关系.①这辆汽车行驶的路程和耗油量成比例.②根据图象判断,行驶150千米需耗油升.(1)若长方形的宽是8厘米,长是厘米;若长是8厘米,宽是厘米.(2)这些长方形的宽与长成比例.如果用y表示长,x表示宽,则y=.(3)这样的长方形中,当周长是70厘米时,它的长和宽各是多少?(列式解答)例8.一种服装布料每米售价为60元,购买2米、3米、…各需要多少元?(3)购买布匹的长度和需要的钱数有什么关系?(4)根据图象判断,购买2.5米布匹需要多少钱?例9.右面的图象表示小军骑车的路程和时间的关系.)小军骑车行驶的路程和时间成比例,这是因为:.千米大约需要分钟.甲地到乙地K1214:2622:268时640千米(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)量没变,数量和总价之间成比例.(3)从图中可以看出,如果买9本笔记本,需要元钱?达标检测1.如果x=y,那么与y成()比例.A.正B.反C.不成D.无法确定2.买同样的书,花钱的总价与()成正比例.A.书的本数B.书的页数C.书的单价D.不能确定3.下面关系式,()中X与Y不成正比例.A.X×=3B.5X=6Y C.4÷X=Y D.X=Y4.如果a:b=7:8,那么a和b()A.成正比例B.成反比例C.不成比例5.下面构成正比例的是()A.总页数一定,每天看的页数与天数B.长方形周长一定,长和宽C.x=y,x与y6.被除数一定,除数和商成比例.7.速度一定,时间和路程成正比例.(判断对错)8.如果A÷B=C,当A一定时,B 和C成比例.当B一定时,A和C成比例.9.按要求回答问题.a、b是相关联的两个量,并且a=,请补充下表,并且判断a与b成什么比例关系.成比例关系.10.根据下面的3张表,按要求回答问题.表1中的两种量,表2中的两种量,表3中的两种量.A.成正比例B.成反比例C.不成正比例,也不成反比例(2)根据成正比例的量的数据,在下图中描出所对应的点,再连起来.根据图象判断,装订6本练习本要用张纸,175张纸能装订本.课后作业【巩固练习】1.下列两种量的关系成正比例关系的是()A.圆的半径和圆的面积B.写字总数一定,写一个字所用时问和写字总时间C.写字总数一定,每分钟写字个数和写字总时间D.两个互相咬合的齿轮,齿轮的齿数和转数2.成正比例的两种量中,一种量扩大,另一种量()A.随着扩大B.随着缩小C.不变从表中我发现了,车费和人数比例关系.4.如果下表中的X与Y成正比例,那么表中的括号应填,如果X与Y成反比例,表中的括号应5.已知6x=4y,x和y成比例,已知=,x和y成比例.6.如果a=(c≠0),那么一定时,和成反比例;一定时,和c成正比例.表中每天看的页数和所用天数的规律是;每题要看的页数和看的天数成比,如果每天看30页,则要天;如果用了15天,则每天看页.8.一辆汽车2时行驶160千米,照这样的速度,行驶80千米、240千米、320千米…所需的时间分别填入(1)所描的点连线,你发现:(2)这些数量中不变.(3)路程和时间成比例.(4)估计4.5时行驶千米.因为一定,随着变化而变化.增加,随着增加;减少,随着减少,并且和的一定,与成比例.(2)把上表中的数据在下面的方格纸上表示出来.(3)连接各点,你发现什么?(4)表中的数量和时间有什么关系?(5)估计一下,2.5小时大约做多少个零件?5.5小时呢?。
正比例和反比例的课堂讲义教材导入:1.两种相关联的量:一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
总价和数量是成正比例的量,总价与数量成正比例关系。
2.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
高度和底面积是成反比例的量,高度与底面积成反比例关系。
(一)正比例的意义例1 一列火车行驶的时间和所行的路程如下表:填空:1、表中有和两种量,当时间是1小时,路程是当时间是2小时,路程是,这说明时间这种量变化了,路程这种量也。
2、观察表格:我们从左往右观察,时间扩大2倍,对应的路程也倍,时间扩大3倍,对应的路程也倍……从右往左观察,时间缩小8倍,对应的路程也;时间缩小7倍,对应的路程也……通过观察,我们发现路程是随着的变化而变化的。
时间扩大路程也扩大,时间缩小路程也。
它们扩大、缩小的规律是。
3、比值60,实际上是火车的:将这些式子所表示的意义写成一个关系式:路程=速度(—定)。
时间4、小结:通过刚才的观察和分析.我们知道路程和时间是两种 的量。
(两种相关联的量。
)路程和时间这两种量的变化规律是 。
(路程和时间的比的比值(速度)总是一定的。
)【规律方法】理解成正比例的意义。
判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。
不要省去任何一步。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy= K (一定)。
【变式训练1】【难度分级】 A1、下面各题中哪两种量成正比例?为什么? ①笔记本单价一定,数量和总价。
②汽车行驶速度一定,行驶的路程和时间。
③工作效率一定,工作时间和工作总量。
六年级数学下册正比例和反比例知识点一、内容概要正比例和反比例是六年级数学下册的重要知识点,简单来说正比例表示两个量成正比关系,当一个量增加时,另一个量也会增加,反之亦然。
好比速度和时间是常见的正比例例子,当速度加快时,需要的时间就会减少。
反比例则是当两个量中的其中一个增加时,另一个会减少。
像是你在爬山过程中体力消耗与海拔高度的关系,海拔越高体力消耗越大,反之越省力就是反比例的例子。
掌握这些知识可以帮助我们更好地理解生活中的各种现象,接下来我们将详细解析这两个概念的应用和解题方法。
1. 回顾数学基础知识,为学习正比例和反比例做铺垫亲爱的小朋友们,转眼间我们已经进入了六年级的数学之旅,那么今天我们来一起回顾一下前面学过的数学知识,为接下来要学习的正比例和反比例知识点做好铺垫吧!数学的世界总是充满了神奇的奥秘,让我们一步步走进这个奇妙的世界。
我们知道数学是生活中的一把钥匙,它能帮助我们解决很多有趣的问题。
在学习正比例和反比例之前,我们要先打好基础。
回顾一下我们之前学过的关于数量和数量之间的关系的知识,比如当我们买文具时,文具的数量和总价之间就有一种特殊的关系。
买一支笔和买十支笔的价格是不一样的,这就是数量和价格之间的关系。
这就是我们接下来要学习的正比例和反比例的基础,你们准备好了吗?接下来我们要更深入地去探索这种关系的奥秘!2. 简述正比例和反比例的概念及其在实际生活中的应用反比例呢?它与正比例相反,当一个量变大时,另一个量就会变小。
比如说你在调节电视机的音量和亮度时,通常音量越大,电视屏幕的亮度就越低,因为电视的音量和亮度就是一对反比例关系。
再如开车的时候,车速越慢反而里程消耗越多;一个钟表转得越慢它行走的总圈数就越大等生活中都可以发现反比例的例子。
明白正比例和反比例的概念后,我们就可以更好地理解和解决生活中的很多问题啦!二、正比例知识点我们知道生活中有很多事物之间是有关系的,比如你吃的零食越多,肚子就越容易饱。
2021-2022学年六年级数学下册典型例题系列之第四单元正比例和反比例部分(解析版)编者的话:《2021-2022学年六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是第四单元正比例和反比例部分。
本部分内容主要以正比例和反比例的认识、判断及图表应用为主,而利用正比例和反比例解决生活实际问题则编辑在《比例的应用部分》中。
本部分内容偏理解,建议根据学生情况选择性进行讲解,一共划分为九个考点,欢迎使用。
【考点一】认识正比例。
【方法点拨】 一、正比例的意义两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系,用字母表示为k xy(一定) 二、判断两种量是否成正比例关系的方法先找变量(找两种相关联的量),再看定量(看两种相关联的量中相对应的两个数的比值是否一定),最后作出判断。
三、正比例关系图象的特点正比例关系图象是一条从(0,0)出发的无限延伸的射线,从图象中可以直观地看到两种量的变化规律,不用计算就可以根据一种量的值直接找到对应的另一种量的值。
【典型例题】科学小组在同一时间、同一地点进行观察实验,测得竹竿的高与竿影的长如下表。
(1)说一说竿影的长与竹竿的高的变化关系。
解析:竹竿的高增加1m ,竿影的长随之增加0.4m 。
(2)写出竿影的长与竹竿的高的比,你有什么发现?解析:竿影的长/竹竿的高=0.4,不管竹竿的高怎么变化,竿影的长和竹竿的高的比值是不变的。
((3)竹竿的高与竿影的长是不是成正比例?说明理由。
解析:竹竿的高与竿影的长成正比例,因为它们的比值一定。
六年级下册数学教案4.2《反比例的意义》人教新课标作为一名经验丰富的教师,我深知教案的重要性。
因此,我根据教学内容、教学目标、教学难点与重点、教具与学具准备、教学过程、板书设计、作业设计以及课后反思与拓展延伸等方面,详细制定了本节课的教学方案。
一、教学内容本节课的教学内容为六年级下册数学教案4.2《反比例的意义》人教新课标。
我们将学习反比例的概念,理解反比例的性质,以及如何判断两种相关联的量成反比例。
二、教学目标1. 让学生掌握反比例的概念,理解反比例的性质。
2. 培养学生运用反比例解决实际问题的能力。
3. 提高学生的数学思维能力和团队协作能力。
三、教学难点与重点1. 教学难点:理解反比例的意义,判断两种相关联的量是否成反比例。
2. 教学重点:掌握反比例的性质,能运用反比例解决实际问题。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体课件。
2. 学具:课本、练习本、铅笔、直尺。
五、教学过程1. 实践情景引入:讲述一个生活中的实例,如:一辆汽车以每小时60公里的速度行驶,行驶120公里需要多少时间?引导学生思考两种相关联的量,如何判断它们是否成反比例。
2. 反比例的概念:讲解反比例的定义,即两种相关联的量,一种量增加,另一种量减少,它们的乘积保持不变。
引导学生通过实例理解反比例的概念。
3. 反比例的性质:讲解反比例的性质,如:当一种量增加时,另一种量减少的比例相同;当一种量减少时,另一种量增加的比例相同。
引导学生通过实际例子感受反比例的性质。
4. 判断两种相关联的量是否成反比例:讲解如何判断两种相关联的量是否成反比例,即观察它们的乘积是否保持不变。
引导学生运用这一方法判断实际问题中的反比例关系。
5. 例题讲解:出示一道典型例题,如:一种商品的原价是100元,打八折后,售价是多少?引导学生运用反比例解决实际问题。
6. 随堂练习:出示一些随堂练习题,让学生独立完成,检验他们是否掌握了反比例的应用。
7. 板书设计:设计简洁清晰的板书,突出反比例的概念和性质,方便学生复习巩固。
《反比例的意义》教学设计教学内容:《反比例的意义》是六年制小学数学第十二册第二单元中的内容。
是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
学生分析:在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
教学目标1、知识与技能目标:使学生认识成反比例的量,理解反比例的意义,并学会判断两种相关联的量是否成反比例。
进一步培养学生观察、学析、综合和概括等能力。
初步渗透函数思想。
2、过程与方法:为学生营造一个经历知识产生过程的情境。
3、情感与态度目标:使学生在自主探索与合作交流中体验成功的乐趣,进一步增强学好数学的信心。
教学重点:理解反比例的意义。
教学难点:两种相关联的量的变化规律。
教学准备:学生准备:复习正比例关系,预习本节内容。
教师准备:投影片3 张,每张有例题一个。
教学过程设计一、谈话引入,激发兴趣。
1、谈话:请回想一下,如何判断两个量是否成正比例的关系。
(1 )、两种相关联的量,一个量变化,另一个也随之变化;(2)、这两个量的比值一定。
2、导入:在实际生活中,存在着许多相关联的量,这些相关联的量之间有的是成正比例关系,有的成其他形式的关系,让我们一起来探究下面的问题。
二、创设情景引新:(出示:十二个小方块)师:同学们,这十二个小方块有几种排法?(生答后,老师板书下表的排列过程)每行数1234612行数126432 1师:请你观察上表中每行个数与行数成正比例关系吗?为什么?生:……师:这两种量这间有关系吗?有什么关系?这就是我们今天要研究的内容。
(出示课题:反比例的意义)三、合作自学探知1、学习例2。
⑴出示例2。
师:请同学们在小组内互相交流,并围绕这三个问题进行讨论,再选出一位组员作代表进行汇报。
A、表中有哪两种量?B、水的高度是怎样随着杯子底面积的大小边变化而变化的C、两个相对应的杯子的底面积与水的高度的乘积各是多少学生讨论 ...生反馈:……你有什么发现?生:底面积越大,水的高度越低,底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。
《反比例》教学设计
六年级数学汪安梅
教学内容:反比例(教材第47页例2、练习九8、9、10、11题)
教学目标:
1.让学生凭借生活经验通过猜测、验证、计算等数学活动,理解反比例意义的量,能够正确判断两种相关联的量是不是成反比例。
2.提高学生观察概括的能力和学习方法的迁移能力。
3.经历反比例意义的探究过程,体验观察、比较和归纳的学习方法,并通过一系列的富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
教学重点:理解反比例的意义。
教学难点:会判断两种相关联的量是不是成反比例
教学准备:课件
教学过程:
一、复习引入
1、判断下面两种量是否成正比例?并说明理由。
(1)订《小学生天地》的份数和总钱数。
(2)圆的半径和直径。
(3)长方形的面积一定,长和宽。
2、问题引入
在长方形面积一定的情况下,长和宽是两种相关联的量吗?像长和宽这样,也是两个相关联的量,也是一种量变化,另一种量也随着变化,但比值不相等,而是乘积相等,大家猜一猜这是成什么比例?这就是我们今天要学的内容——反比例。
二、自主探究
1、自主探究,尝试探疑:
(1)猜想:把相同体积的水倒入底面积不同的杯子里,高度会怎样变化?学生猜后验证并出示例2:
(2)观察上表,回答下面四个问题
①表中有哪两种量?它们是不是相关联吗?
②水的高度是怎样随着杯子底面积的变化而变化的?水的高度和底面积的变化有什么规律?
③这个积表示什么意思?你能有式子表示他们之间的关系吗?
④什么叫成反比例的量?什么叫反比例关系?用字母如何表示?
2、合作交流,解惑答疑:小组成员分工交流以上四个问题,重点交流第4个问题.
3、展示互动,点播释疑:
(1)、你能举出生活中成反比例的例子吗?
(2)、判断下面两种量是否成反比例(教材第48页做一做)
(3)比一比:成正比例的量与成正比例的量有什么不同?(从三个要素和图像来区别)
三、学以致用:
1.填空:小明每天上学的路程是1.5公里,当路程一定时,小明上学走得越快,上学所需的时间就越(),因为速度和时间这两个量中相对应的两个数的()一定,所以小明的速度和所走的时间是成()比例的量,它们的关系叫做()关系。
2、x和y成反比例关系,并且xy=48填表:
3、判断下面的量是否成反比例关系:
(1)平行四边形的高一定,它的底和面积。
(2)被除数一定,商和除数。
(3)长方形的周长一定,长和宽。
(4)、铺地面积一定,每块砖的面积和铺地砖的块数。
(5)、圆柱的侧面积一定,底面周长与高。
4.全课小结:这节课你有什么收获?还有什么要提醒大家的?
5、.布置作业: 练习九、第10、 11、题。
板书设计:
反比例
用x、y表示两种相关联的量,k表示积
Xy=k(一定)
x和y成反比例。