线性方程组和矩阵的概念及运算 (1)
- 格式:pdf
- 大小:424.80 KB
- 文档页数:32
矩阵的基本概念与运算矩阵是线性代数中的重要概念之一,在数学和计算机科学中广泛运用。
它是由数个数按矩形排列而成的矩形阵列,可以表示向量、方程组以及线性变换等。
一、矩阵的基本概念矩阵由m行n列的数按一定顺序排列而成,通常用大写字母表示。
例如,一个3行2列的矩阵可以表示为:A = [a11, a12;a21, a22;a31, a32]其中的aij表示矩阵A中第i行第j列的元素。
矩阵的行数m和列数n分别称为其维度,m×n为矩阵的规模。
二、矩阵的运算1. 矩阵的加法若矩阵A和B的维度相等(均为m行n列),则它们可以相加。
矩阵相加的结果为一个新的维度相同的矩阵C,其元素由对应位置的矩阵A和B的元素相加得到。
即:C = A + B = [a11 + b11, a12 + b12;a21 + b21, a22 + b22;a31 + b31, a32 + b32]2. 矩阵的减法矩阵的减法与加法类似,只需将相应位置上的元素相减即可。
例如:C = A - B = [a11 - b11, a12 - b12;a21 - b21, a22 - b22;a31 - b31, a32 - b32]3. 矩阵的数乘矩阵的数乘指的是将矩阵的每个元素乘以一个常数k。
结果仍为同一维度的矩阵。
记为:C = kA = [ka11, ka12;ka21, ka22;ka31, ka32]4. 矩阵的乘法矩阵的乘法是指将一个m行n列的矩阵A与一个n行p列的矩阵B相乘得到一个m行p列的矩阵C。
矩阵乘法的运算规则如下:C = AB = [c11, c12, ..., c1p;c21, c22, ..., c2p;...cm1, cm2, ..., cmp]其中,cij表示矩阵C中第i行第j列的元素,计算公式为:cij = a1i * b1j + a2i * b2j + ... + ani * bnj5. 矩阵的转置矩阵的转置是指将矩阵的行与列对调。
矩阵与线性方程组的关系在线性代数中,矩阵和线性方程组是两个重要的概念。
矩阵是一个具有矩形排列的数的集合,而线性方程组是一组方程,其中的每个方程都是关于未知数的线性表达式。
本文将探讨矩阵与线性方程组之间的关系及其应用。
一、矩阵的定义与基本操作矩阵是由数域上的元素按照一定规律排列而成的矩形阵列。
一个矩阵通常用大写字母表示,例如A。
矩阵的行数和列数分别表示为m和n,可以记作A(m*n)。
矩阵中的每个元素用小写字母表示,并由其所在的行号和列号来指定。
例如A(i,j)表示矩阵A中位于第i行第j列的元素。
矩阵有一些基本的运算和操作,例如矩阵加法、矩阵数乘、矩阵乘法等。
矩阵加法的定义是,对于同型矩阵A和B,它们的和定义为相应位置元素相加得到的矩阵。
矩阵数乘的定义是,对于任意矩阵A和标量k,它们的乘积定义为将矩阵A的每个元素乘以标量k得到的矩阵。
矩阵乘法的定义是,对于矩阵A(m*p)和B(p*n),它们的乘积AB 定义为矩阵C(m*n),其中C(i,j)等于A的第i行和B的第j列对应元素的乘积之和。
二、线性方程组的定义与解法线性方程组是一个或多个关于未知数的线性方程组成的集合。
一个线性方程组通常用大括号包围,并用系数矩阵和常数向量来表示。
例如,以下是一个包含三个方程和三个未知数的线性方程组:{a11x1 + a12x2 + a13x3 = b1a21x1 + a22x2 + a23x3 = b2a31x1 + a32x2 + a33x3 = b3要解线性方程组,可以使用矩阵的逆运算或高斯消元法等方法。
其中,矩阵的逆运算是通过求解逆矩阵来得到线性方程组的解。
逆矩阵的定义是,对于一个矩阵A,如果存在一个矩阵B使得AB=BA=I,其中I是单位矩阵,则称B为A的逆矩阵。
三、矩阵与线性方程组的关系矩阵和线性方程组之间存在着密切的关系。
对于一个由m个方程和n个未知数组成的线性方程组,可以使用矩阵的形式来表示。
设系数矩阵为A(m*n),未知数向量为X(n*1),常数向量为B(m*1),则线性方程组可以表示为AX=B。
线性代数⽬录第⼀章 线性⽅程组与矩阵 1第⼀节 矩阵的概念及运算 1 ⼀、矩阵的定义 1 ⼆、矩阵的线性运算 3 三、矩阵的乘法 4 四、矩阵的转置 6习题1-1 7第⼆节 分块矩阵 8 ⼀、分块矩阵的概念 8 ⼆、分块矩阵的运算 10习题1-2 13第三节 线性⽅程组与矩阵的初等变换 14 ⼀、矩阵的初等变换 14 ⼆、求解线性⽅程组 18习题1-3 22第四节 初等矩阵与矩阵的逆矩阵 23 ⼀、⽅阵的逆矩阵 24 ⼆、初等矩阵 25 三、初等矩阵与逆矩阵的应⽤ 26习题1-4 29本章⼩结 31拓展阅读 32测试题⼀ 33第⼆章 ⽅阵的⾏列式 35第⼀节 ⾏列式的定义 35 ⼀、排列 35 ⼆、n 阶⾏列式 37 三、⼏类特殊的n 阶⾏列式的值 39习题2-1 41第⼆节 ⾏列式的性质 41 ⼀、⾏列式的性质 41 ⼆、⾏列式的计算举例 45 三、⽅阵可逆的充要条件 48习题2-2 50第三节 ⾏列式按⾏(列)展开 51 ⼀、余⼦式与代数余⼦式 52 ⼆、⾏列式按⾏(列)展开 52习题2-3 57第四节 矩阵求逆公式与克莱默法则 58 ⼀、伴随矩阵与矩阵的求逆公式 58 ⼆、克莱默法则 59习题2-4 62本章⼩结 63拓展阅读 64测试题⼆ 65第三章 向量空间与线性⽅程组解的结构 67第⼀节 向量组及其线性组合 67 ⼀、向量的概念及运算 67 ⼆、向量组及其线性组合 69 三、向量组的等价 71习题3-1 74第⼆节 向量组的线性相关性 74⼀、向量组的线性相关与线性⽆关 75⼆、向量组线性相关性的⼀些重要结论 77习题3-2 80第三节 向量组的秩与矩阵的秩 81 ⼀、向量组秩的概念 81 ⼆、矩阵秩的概念 82 三、矩阵秩的求法 83 四、向量组的秩与矩阵的秩的关系 85习题3-3 87第四节 线性⽅程组解的结构 88 ⼀、线性⽅程组有解的判定定理 88 ⼆、齐次线性⽅程组解的结构 90 三、⾮齐次线性⽅程组解的结构 94习题3-4 96第五节 向量空间 97 ⼀、向量空间及其⼦空间 97 ⼆、向量空间的基、维数与坐标 99 三、基变换与坐标变换 101习题3-5 103本章⼩结 105拓展阅读 106测试题三 107第四章 相似矩阵及⼆次型 109第⼀节 向量的内积、长度及正交性 109 ⼀、向量的内积、长度 109 ⼆、正交向量组 110 三、施密特正交化过程 112 四、正交矩阵 113习题4-1 115第⼆节 ⽅阵的特征值与特征向量 115 ⼀、⽅阵的特征值与特征向量的概念及其求法 116 ⼆、⽅阵的特征值与特征向量的性质 119习题4-2 121第三节 相似矩阵 122 ⼀、⽅阵相似的定义和性质 122 ⼆、⽅阵的相似对⾓化 123习题4-3 124第四节 实对称矩阵的相似对⾓化 125 ⼀、实对称矩阵的特征值和特征向量的性质 125 ⼆、实对称矩阵的相似对⾓化 126习题4-4 129第五节 ⼆次型及其标准形 129 ⼀、⼆次型及其标准形的定义 130 ⼆、⽤正交变换化⼆次型为标准形 131 三、⽤配⽅法化⼆次型为标准形 134习题4-5 135第六节 正定⼆次型与正定矩阵 136 ⼀、惯性定理 136 ⼆、正定⼆次型与正定阵 137习题4-6 138本章⼩结 139拓展阅读 140测试题四 141第五章 线性空间与线性变换 143第⼀节 线性空间的定义与性质 143 ⼀、线性空间的定义 143 ⼆、线性空间的性质 145 三、线性空间的⼦空间 146习题5-1 147第⼆节 维数、基与坐标 147 ⼀、线性空间的基、维数与坐标 147 ⼆、基变换与坐标变换 149习题5-2 150第三节 线性变换 151 ⼀、线性变换的定义 151 ⼆、线性变换的性质 153 三、线性变换的矩阵表⽰式 154习题5-3 158本章⼩结 161拓展阅读 162测试题五 163部分习题答案 165。
矩阵与线性方程组在数学中,矩阵与线性方程组有着密切的联系。
矩阵是线性代数中的基本工具之一,通过矩阵的运算可以解决线性方程组,或者将其转化为更简单的形式。
本文将介绍矩阵的定义、性质以及其与线性方程组的关系,并通过实例来说明其应用。
一、矩阵的定义和基本运算矩阵由数个数值排列成的矩形阵列组成,其中每个数值称为矩阵的元素,用小写字母表示。
一个m×n的矩阵具有m行和n列。
矩阵可以用方括号或圆括号来表示,如A=[a_ij]或A=(a_ij),其中a_ij表示矩阵中第i行第j列的元素。
矩阵的运算包括加法、减法、数乘和乘法。
矩阵的加法和减法只能在行数和列数相同的矩阵之间进行,即如果A和B是m×n的矩阵,则A±B也是m×n的矩阵。
数乘是指将一个矩阵的每个元素乘以一个常数,即如果A是m×n的矩阵,k是一个常数,则kA也是m×n的矩阵。
矩阵的乘法是指将一个矩阵的行与另一个矩阵的列相乘再相加得到一个新的矩阵,即若A是m×n的矩阵,B是n×p的矩阵,则AB是m×p的矩阵。
二、矩阵的性质矩阵有许多重要的性质,包括可逆矩阵、特征值与特征向量、转置矩阵等。
其中,可逆矩阵是指存在一个同阶的矩阵与之相乘等于单位矩阵的矩阵,记作A^{-1}。
特征值与特征向量是指当一个n×n的矩阵A与一个非零向量x满足Ax=λx时,λ称为A的特征值,x称为A的对应于特征值λ的特征向量。
转置矩阵是指将一个矩阵的行和列互换得到的新的矩阵,记作A^T。
三、矩阵与线性方程组的关系线性方程组是指由一组线性方程组成的方程组,其中未知数的最高次数为1。
线性方程组可以用矩阵形式表示,即Ax=b,其中A是一个m×n的矩阵,x是一个n×1的矩阵,b是一个m×1的矩阵。
这个方程组的解可以通过求解矩阵方程Ax=b来得到。
通过矩阵的运算,我们可以将线性方程组转化为更简单的形式进行求解。
第一章 矩阵1 矩阵的概念特殊矩阵:行矩阵、列矩阵、对角矩阵、上三角阵、下三角矩阵、单位矩阵、对称矩阵、反对称矩阵。
2 矩阵的运算:(1)矩阵的线性运算及其运算规律-矩阵的加法(减法)和数乘。
(2)矩阵的乘法:能够进行乘法运算必须具备的条件,运算方法,左乘与右乘的区别。
乘法的运算规律(应用较为普遍的是矩阵乘法满足结合律) (3)矩阵的转置:(AB)T =B T A T(4)矩阵的逆:AB=BA=I →A -1=B 矩阵的逆唯一 运算规律: (A -1) -1= A ;(λA) -1= λ-1A -1;(AB) -1=B -1A -1;(A T ) -1=(A -1) T 矩阵逆的计算方法:待定系数法、初等变换法、伴随矩阵法。
3 分块矩阵及其运算第二章 线性方程组与矩阵初等变换 1 线性方程组与矩阵的一一对应关系2 高斯消元法:线性方程组的三种变换→阶梯形方程组。
3 利用矩阵初等变换解线性方程组:三种初等变换→行阶梯形矩阵→行最简形矩阵4 非齐次线性方程组解的三种情形的讨论⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++++0000000000000000000011,221,2222111,111211r r rn r r rr nr r nr r d d c c c d c c c c d c c c c c(1)无解(2)唯一解(3)无数解 5矩阵等价的概念 6 初等矩阵的概念7 初等矩阵与矩阵初等变换的关系8 逆矩阵定理:设A 是n 阶矩阵,那么下列各命题等价: (1)A 是可逆矩阵;(2)齐次线性方程组Ax =0只有零解; (3)A 可以经过有限次初等行变换化为In ; (4)A 可表示为有限个初等矩阵的乘积。
9 利用矩阵初等变换求矩阵的逆 A 可以经过一系列初等行变换化为I ; I 经过这同一系列初等行变换化为A -1P s …P 2P 1 (A | I n )=(I n |A -1)第三章 行列式1 n 阶行列式的定义(1)全排列及其奇偶性:逆序数的概念,对换,相邻对换。
矩阵的概念和运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、经济学等各个领域中。
本文将介绍矩阵的基本概念和运算,以及其在实际问题中的应用。
一、矩阵的定义和表示矩阵是由m行n列的数量排列在一个矩形阵列中的数或者符号所组成的矩形数表。
一般用大写字母表示矩阵,例如A、B、C等。
矩阵可以表示为:A = [a_ij],其中1 ≤ i ≤ m,1 ≤ j ≤ n其中a_ij表示矩阵A中第i行第j列的元素。
二、矩阵的基本运算1. 矩阵的加法矩阵的加法满足相同位置元素相加的规则,即相同位置的元素相加得到新矩阵的对应位置元素。
例如:A = [a_ij],B = [b_ij],C = [c_ij]A +B = [a_ij + b_ij] = C2. 矩阵的数乘矩阵的数乘指将一个数与矩阵中的每个元素相乘,得到新矩阵。
例如:A = [a_ij],k为实数kA = [ka_ij]3. 矩阵的乘法矩阵的乘法是指两个矩阵相乘得到新矩阵的运算。
矩阵的乘法满足“行乘列”规则,即第一个矩阵的行元素与第二个矩阵的列元素相乘并求和得到新矩阵的对应位置元素。
例如:A = [a_ij],B = [b_ij],C = [c_ij]AB = C,其中c_ij = ∑(a_ik * b_kj)4. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到新矩阵。
若A为m行n 列的矩阵,其转置矩阵记作A^T,则A^T为n行m列的矩阵,且A的第i行第j列的元素等于A^T的第j行第i列的元素。
三、矩阵的应用1. 线性方程组矩阵可以用来表示线性方程组,通过矩阵的运算可以更方便地求解线性方程组的解。
例如:Ax = b其中A为系数矩阵,x为未知数向量,b为常数向量。
通过矩阵的运算,可以求解出未知数向量x。
2. 矩阵的特征值和特征向量矩阵的特征值和特征向量是线性代数中的重要概念,用于描述矩阵在向量空间中的变换性质。
特征向量是指在矩阵变换下保持方向不变的非零向量,特征值是指对应于特征向量的标量。
第五章矩阵辞海:将mn个元素排成m行n列的矩形称为m行n列矩阵。
当m=n时称为n 阶方阵。
矩阵可按某些规则进行加法、乘法以及数与矩阵相乘等运算。
矩阵的概念最初是由解线性方程组产生。
我国古代用筹算法解线性方程组时就是用筹码排成矩阵来进行的。
矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。
百度“矩阵”,找到约约60,100,000条结果;Google“matrix”,找到约467,000,000 条结果.背景知识:矩阵的历史⏹矩阵的概念是在解线性方程组中产生的。
如我国《九章算术》(公元前1世纪)用筹算解线性方程组时,就是把算筹排列成矩阵形式来进行的。
⏹1850年由西尔维斯特(Sylvester)(英)首先提出矩阵的概念。
⏹1857年卡莱(A.Cayley)(英)建立了矩阵运算规则。
⏹矩阵由最初作为一种工具经过近两个世纪的发展,现在已成为独立的一门数学分支——矩阵论。
而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。
⏹矩阵及其理论现已广泛地应用于自然科学、工程技术、社会科学等许多领域。
如在观测、导航、机器人的位移、化学分子结构的稳定性分析、密码通讯、模糊识别、图像处理等方面都有广泛应用。
5.0矩阵的概念一、教学内容1、矩阵的概念2、矩阵相等3、几种特殊矩阵二、教学目的了解矩阵的产生背景,掌握矩阵的概念,理解矩阵相等的涵义,认识几种特殊矩阵三、重点难点矩阵相等一、引例我们先看几个例子例1:设有线性方程组:⎪⎪⎩⎪⎪⎨⎧=++-=+-+=++--=--+7739183332154321432143214321x x x x x x x x x x x x x x x x这个方程组未知量系数及常数项按方程组中的顺序组成一个4行5列的数表如下:⎪⎪⎪⎪⎪⎭⎫⎝⎛------71317391118331211151 这个数表决定了给定方程组是否有解?以及如果有解,解是什么等问题,因此对这个数表的研究就很有必要。