大物实验报告示波器doc
- 格式:docx
- 大小:23.55 KB
- 文档页数:17
(2023)大学物理实验示波器实验报告示波器实验数据(一)实验报告:大学物理实验示波器实验数据实验目的•了解示波器的基本原理•掌握示波器的操作方法•学会使用示波器测量电路的波形实验器材•示波器•电源•信号发生器•电阻、电容、电感等元件实验原理示波器是一种用于观测信号波形的电子仪器。
其基本原理是将观测电路中的信号通过元件转换成一定的电压或电流,再将其显示在示波器的屏幕上。
在实验中,我们需要使用信号发生器产生不同频率、不同幅度的正弦波信号,通过示波器观测电路中信号的波形,进而分析电路的性质。
实验步骤与记录1.将电阻、电容、电感等元件按照电路图进行连接,并接入电源。
2.使用信号发生器产生5 Vp-p、1 kHz的正弦波信号,接入电路中。
3.调节示波器的控制开关,使屏幕正常显示波形。
4.调节示波器的扫描开关,使波形填满屏幕。
5.根据示波器屏幕上的刻度,测量电路中信号的峰峰值、有效值、频率等参数,并记录数据。
实验结果与分析经过测量,我们得到了以下数据: * 信号峰峰值:9.8 V * 信号有效值:3.3 V * 信号频率:1.01 kHz根据以上数据,可以计算出电路中的电阻、电容、电感等参数,进而分析电路的特性和工作原理。
实验结论本次实验通过使用示波器测量电路中的信号波形,了解了示波器的基本原理和操作方法。
同时,我们也成功掌握了电路测量的方法和技巧,为今后的学习和实践打下了基础。
实验注意事项与改进意见1.在进行实验前,应仔细阅读实验指导书,了解实验原理和操作方法。
2.在连接电路时,应注意元件的极性和接线方式,以免损坏元件或影响实验结果。
3.在调节示波器时,应按照操作手册的要求进行,不要随意更改参数,以免影响实验结果。
4.在测量信号参数时,应使用恰当的测量仪器,并注意测量误差的控制。
5.在实验中如遇到问题,应及时向指导老师请教,并进行必要的实验改进。
实验心得体会本次实验是一次非常好的实践机会,通过亲身操作和实验记录,我们进一步了解了示波器的原理和电路测量的方法。
大物示波器实验报告大物示波器实验报告引言:大物示波器是一种常用的电子测量仪器,广泛应用于科研、工业生产和教学实验中。
它通过将电信号转换为可视化的波形图,帮助我们观察和分析电路中的信号特征。
本实验旨在探究大物示波器的工作原理、使用方法以及应用场景。
一、实验目的本实验的目的是通过使用大物示波器,学习并掌握以下内容:1. 了解大物示波器的基本结构和工作原理;2. 掌握示波器的使用方法,包括信号输入、触发设置、波形调整等;3. 学会使用示波器进行信号的测量和分析。
二、实验仪器与材料1. 大物示波器:型号XXX,频率范围:XXX;2. 示波器探头:型号XXX,带宽:XXX;3. 信号发生器:型号XXX,频率范围:XXX;4. 电源供应器:型号XXX,电压范围:XXX;5. 电阻、电容、电感等元件:用于搭建电路实验。
三、实验步骤与结果1. 实验准备:a. 将大物示波器、信号发生器、电源供应器等仪器连接好,确保电路连接正确并接地良好;b. 调整示波器的触发模式和扫描速度,使波形图清晰可见;c. 根据实验要求,选择合适的信号发生器产生不同频率的信号。
2. 示波器的基本操作:a. 将示波器探头连接到信号发生器的输出端,调整信号发生器的频率和幅度;b. 打开示波器,调整触发模式和扫描速度,观察并记录波形图;c. 调整示波器的水平和垂直缩放,观察波形的变化;d. 使用示波器的光标功能,测量波形的幅值、周期等参数。
3. 示波器的应用实验:a. 搭建一个简单的RC电路,通过示波器观察电压波形;b. 调整电源供应器的电压,观察波形的变化;c. 改变电阻或电容的数值,观察波形的变化;d. 使用示波器的触发功能,观察不同触发条件下的波形特征。
四、实验结果分析通过本实验,我们对大物示波器的工作原理和使用方法有了更深入的了解。
在实验过程中,我们成功观察到了不同频率和幅度的信号波形,并使用示波器的功能对波形进行了测量和分析。
同时,通过改变电路参数,我们发现电阻、电容等元件对波形的影响,进一步加深了对电路特性的理解。
最新大学物理实验——示波器的使用实验报告.实验目的:1. 熟悉示波器的基本结构和工作原理。
2. 掌握使用示波器观察和分析不同类型电信号的方法。
3. 学习测量电信号的基本参数,如幅度、周期、频率和相位差。
实验仪器:1. 示波器(型号:DSO-XXXXX)2. 函数信号发生器3. 电阻、电容等基本电子元件4. 电烙铁及焊接工具5. 电源实验步骤:1. 首先,将示波器接通电源,并进行预热。
2. 打开函数信号发生器,设置所需的频率和幅度,产生标准电信号。
3. 使用探头将函数信号发生器的输出连接到示波器的输入端。
4. 调整示波器的垂直和水平控制钮,使屏幕上显示清晰的波形。
5. 观察并记录波形的幅度和周期,使用示波器的内置测量工具计算信号的频率。
6. 改变函数信号发生器的输出频率和幅度,重复步骤4和5,观察不同参数下的波形变化。
7. 通过串联和并联电阻、电容等元件,生成复杂的电路,观察示波器上显示的波形变化。
8. 实验结束后,关闭所有设备并断开连接。
实验数据与分析:1. 记录不同频率和幅度下的波形图像,并列出测量到的信号参数。
2. 分析波形的变化趋势,如频率增加时波形的变化,幅度变化对波形的影响。
3. 讨论可能出现的误差源,例如探头的接地问题、示波器的校准误差等。
实验结论:通过本次实验,我们成功地使用示波器观察并分析了不同电信号的特性。
我们了解了示波器的基本操作方法,并能够准确地测量电信号的基本参数。
此外,我们还学习了如何通过改变电路参数来观察波形的变化,这将对我们未来在电子实验和研究中起到重要的帮助作用。
示波器使用大学物理实验报告一、实验目的1、了解示波器的基本结构和工作原理。
2、掌握示波器的基本操作方法,学会使用示波器测量电压、周期和频率等物理量。
3、观察正弦波、方波、锯齿波等常见信号的波形特征。
二、实验仪器示波器、函数信号发生器、探头、直流电源等。
三、实验原理1、示波器的结构示波器主要由示波管、垂直偏转系统、水平偏转系统、扫描及同步系统、电源等部分组成。
示波管是示波器的核心部件,它由电子枪、偏转板和荧光屏组成。
电子枪发射电子束,经过偏转板的作用,使电子束在荧光屏上产生偏转,从而显示出波形。
2、示波器的工作原理(1)垂直偏转系统:输入的信号电压加到垂直偏转板上,使电子束在垂直方向上产生偏转,偏转的大小与输入信号的电压成正比。
(2)水平偏转系统:锯齿波电压加到水平偏转板上,使电子束在水平方向上匀速移动,形成时间基线。
(3)扫描及同步系统:扫描电压的周期与输入信号的周期相同或成整数倍关系时,荧光屏上就能稳定地显示出输入信号的波形。
四、实验内容及步骤1、熟悉示波器的面板对照示波器的说明书,熟悉示波器面板上各个旋钮和按键的功能,包括垂直灵敏度调节、水平扫描速度调节、触发方式选择、信号输入通道选择等。
2、测量直流电压(1)将示波器的输入通道选择为直流(DC)耦合。
(2)将探头连接到直流电源的输出端,调节垂直灵敏度和水平扫描速度,使直流电压的波形在荧光屏上显示合适。
(3)读取示波器上显示的电压值,并与直流电源的实际输出电压进行比较。
3、测量正弦波信号的电压和周期(1)将函数信号发生器的输出设置为正弦波,调节频率和幅度。
(2)将探头连接到函数信号发生器的输出端,选择合适的垂直灵敏度和水平扫描速度,使正弦波的波形在荧光屏上显示清晰。
(3)使用示波器的测量功能,测量正弦波的峰峰值电压和周期。
根据峰峰值电压计算有效值电压,并与函数信号发生器设置的参数进行比较。
4、观察方波和锯齿波信号(1)将函数信号发生器的输出分别设置为方波和锯齿波,调节频率和幅度。
大物实验示波器实验报告大物实验示波器实验报告一、引言示波器是一种用于显示电信号波形的仪器,广泛应用于电子工程、通信工程、医学工程等领域。
本次实验旨在通过使用示波器来观察和分析不同类型的电信号波形,加深对示波器原理和操作的理解。
二、实验目的1. 熟悉示波器的基本结构和操作方法;2. 学习如何观察和测量不同类型的电信号波形;3. 掌握示波器的调节和校准技巧。
三、实验仪器和材料1. 示波器:型号为XXX的示波器;2. 信号发生器:用于产生不同类型的电信号;3. 电缆和连接线:用于连接示波器和信号发生器。
四、实验步骤1. 将信号发生器的输出端与示波器的输入端通过电缆连接起来;2. 打开示波器和信号发生器,确保电源正常;3. 调节示波器的水平和垂直扫描控制旋钮,使波形显示在屏幕上;4. 选择不同的电信号类型(如正弦波、方波、三角波等),调节信号发生器的频率和幅度;5. 观察示波器屏幕上的波形,并记录相关数据;6. 调节示波器的触发控制旋钮,观察波形的变化;7. 完成实验后,关闭示波器和信号发生器,断开电缆连接。
五、实验结果与分析在本次实验中,我们观察了三种不同类型的电信号波形:正弦波、方波和三角波。
通过调节信号发生器的频率和幅度,我们可以观察到波形的变化。
正弦波是一种周期性的波形,具有连续的曲线。
我们发现,随着频率的增加,正弦波的周期变短,波形变得更加密集。
而随着幅度的增加,波形的振幅也随之增大。
通过示波器的测量功能,我们可以准确地获取正弦波的频率和幅度。
方波是一种具有快速上升和下降沿的波形,其特点是高低电平之间的转换非常迅速。
我们发现,方波的频率越高,上升和下降沿的斜率越陡峭。
通过调节示波器的触发控制旋钮,我们可以观察到方波在屏幕上的稳定显示。
三角波是一种具有连续上升和下降的波形,其形状类似于一个等腰三角形。
我们发现,随着频率的增加,三角波的周期变短,上升和下降的斜率也变得更大。
通过示波器的测量功能,我们可以准确地获取三角波的频率和幅度。
大学物理实验示波器实验报告-示波器实验数据在这次大学物理实验中,我们的任务是通过示波器来观察和分析电信号,这一过程可谓是颇具挑战性但也充满乐趣。
每次走进实验室,那种期待的心情总是让人觉得兴奋又紧张。
实验室里弥漫着一股淡淡的仪器气息,整个空间被实验器材装点得有些杂乱,但又显得极其亲切。
大家都忙着调试自己的仪器,气氛热烈而又专注。
我们首先进行了设备的熟悉工作,示波器的面板上五光十色的按钮和旋钮让我感到一阵眩晕。
这种高科技的玩意儿,真的是需要一点点勇气去接触。
示波器的主要功能是将电信号转化为可视化的波形,让我们一目了然地看到信号的变化。
调试的时候,我们调整时间基准和电压标度,这就像是在为一场演出做准备,每一个小细节都可能影响最终的效果。
在调试的过程中,我发现观察波形的变化是如此令人着迷。
刚开始的时候,波形乱七八糟,像极了我的心情。
不过,随着逐渐熟练,波形开始变得清晰起来,感觉就像是在为一幅画添上最后的细节。
当波形稳定在屏幕时,心中那种成就感油然而生,仿佛自己是一位画家,终于画出了心中所想的景象。
接着,我们进行了实验数据的采集,选择了不同频率的信号源来观察波形变化。
每当我们调整频率时,波形的形状就会发生翻天覆地的变化,简直像是一场视觉盛宴。
高频信号的波形尖锐而有力,而低频信号则像柔和的涟漪,令人心旷神怡。
数据的采集过程虽然繁琐,但每一个小小的波形背后,都藏着无穷的物理奥秘。
而后,数据的分析成了我们的重头戏。
我们把每组实验数据整理好,开始进行比较和分析。
随着数据的不断累积,图表在我们面前逐渐清晰起来。
那些原本晦涩难懂的数字,仿佛在此刻都变得活灵活现。
数据分析中,最让我惊讶的是通过傅里叶变换对信号进行频谱分析,竟能发现信号中的各种谐波成分,这种揭示信号内部结构的过程,真的让人叹为观止。
我们的老师也经常说,物理学就像是一面镜子,映照出自然界的规律,而这一次我深刻体会到了这一点。
在实验过程中,不免遇到了一些小挫折。
大学物理实验报告示波器的使用引言示波器是一种常用于实验室、工程领域的仪器,用于观察电信号波形的仪器。
在物理实验中,示波器常常被用来测量和显示电压、电流和频率等物理量,能够直观地观察到波形的变化。
本实验将重点介绍示波器的基本原理、操作方法和使用技巧。
一、基本原理示波器主要由示波管、水平和垂直系统以及触发系统组成。
1. 示波管示波管是示波器核心部件,通过控制电子束的运动和偏转,将电信号转化为可视化的波形。
示波管属于真空管,内部有阴极、阳极和偏转板等元件。
当加上适当的电压后,阴极会发射出电子,通过偏转板的控制,电子束会在荧光屏上形成一条亮线。
2. 水平和垂直系统水平和垂直系统分别用于控制示波器的水平和垂直方向上的偏转。
水平系统负责控制时间轴的水平位置和扫描速率,而垂直系统则负责控制信号的垂直放大倍数和偏移量。
3. 触发系统触发系统用于控制示波器何时开始显示电信号。
通过触发电路的设置,可以使示波器在信号达到一定条件时进行显示,以确保波形的稳定性和重复性。
二、操作方法使用示波器需要注意以下几个关键步骤:1. 连接测试电路首先需要将待测信号的电路正确连接到示波器的输入端口。
一般示波器会有不同的通道,根据需要选择合适的通道连接测试电路。
2. 调节垂直和水平控制根据待测信号的幅值范围,调节垂直控制旋钮,使信号的波形适当放大或缩小。
同时,根据信号的频率和时间跨度,调节水平控制旋钮,使波形在示波器的屏幕上完整显示。
3. 设置触发条件根据需要,设置触发条件以确保信号的稳定显示。
可以设置触发电平、触发边沿和触发源等参数,使示波器在信号满足设定条件时开始显示。
4. 观察和分析波形将示波器的时间基准和垂直基准调整到合适的位置后,即可观察到待测信号的波形。
可以通过改变时间和垂直基准的位置,观察不同的波形细节,并对信号进行分析和测量。
三、使用技巧在实际操作示波器时,还有一些常用的技巧可以提高使用效果:1. 选择合适的探头示波器通常配备了多种类型的探头,如10:1和1:1的差分探头、高阻抗探头等。
示波器的原理和使用、声速测量实验报告.doc 示波器原理和使用示波器又称示波仪,是一种用于观察和测量电信号波形的仪器。
它可以通过探针将待测电信号输入示波器,然后在示波器屏幕上显示出该电信号的波形图。
示波器的工作原理是利用显像管来显示被测电压波形。
当待测电压信号被输入后,示波器中的电子束会受到电信号的控制而在显像管屏幕上形成一条波形曲线,从而达到观察和测量电信号的目的。
示波器的使用方法如下:1.将待测电信号输入示波器。
2.调节示波器的水平和垂直放大系数,以便能够清晰地观察到波形。
3.根据需要调整示波器的触发模式,使波形图显示正常。
4.观察和分析波形,进行相应的测量和分析。
声速测量实验报告一、实验目的1.了解并掌握测量声速的原理和方法。
2.掌握测量仪器的使用方法。
3.了解如何利用实验和数据处理方法准确地测量声速。
二、实验器材1.示波器2.声源3.接收器4.测量仪器5.计算机三、实验步骤1.将声源和接收器分别放置于固定距离的两个位置,并打开实验仪器测量声波传播的时间差。
2.将测量得到的时间差带入公式中,计算出声速的实际值。
3.将实验数据输入计算机进行处理和分析。
四、实验结果与误差分析1.经过多次实验和计算,得到的声速实际值为345m/s,与标准值相差不大,误差范围在正负3%以内。
2.实验过程中受到的误差主要来自于仪器误差和实验操作误差。
在实际测量中需要尽可能减小这些误差。
五、结论本次实验采用了简单的测量方法和仪器,准确地测量了声速的实际值。
实验结果与标准值相差不大,证明了实验方法的有效性和可靠性。
六、参考文献无。
大物实验示波器的使用实验报告实验报告:大物实验示波器的使用一、实验目的:1.掌握示波器的基本使用方法和操作规程2.了解示波器在电路分析中的作用和重要性3.熟悉并掌握示波器的各种基础参数的含义及其测量方法二、实验器材:1.示波器2.信号源3.电缆、万用表等附件三、实验原理:示波器是一种将电路中的信号转化为波形显示在示波器屏幕上的仪器。
它通过采样电路将输入的电信号转换为波形信号,经过放大、滤波等处理,最终将波形显示在示波器的屏幕上。
示波器的主要参数包括:频率范围、采样率、灵敏度、带宽等,这些参数对于电路分析和测试有着非常重要的意义。
四、实验步骤:1.将信号源的正负极分别连接示波器的输入端和地端2.打开示波器电源,调整亮度和对比度,使屏幕显示清晰3.进入示波器菜单,设置好所需的参数,包括时间/电压基准、触发方式、扫描方式等4.根据实验要求调整信号源的输出信号,调整频率、幅度等参数,产生所需的波形5.观察示波器屏幕上的波形,根据波形的特征和参数,进行分析和记录五、实验结果与分析:通过实验,我们成功地掌握了示波器的基础使用方法,了解了示波器在电路分析中的重要性。
在实验中,我们观察了不同波形下的示波器参数和特征,比如幅值、周期、频率等。
通过对波形的分析,我们可以得出一些有用的结论和判断,比如电路的稳定性、频率响应等。
六、实验感想:本次实验使我们更加深入地了解了电路中信号传输与处理的基本原理,提高了我们对示波器的使用技能和能力。
同时,实验也让我们意识到,电路分析需要细心、耐心和全面性的思维,需要将所学的理论知识与实际操作相结合,才能得到更准确的结果和结论。
七、实验注意事项:1.操作时一定要注意电路的安全问题,避免造成触电等意外事故2.在接线和操作示波器时,应按照正确的步骤和顺序进行3.合理设置示波器的参数,并针对性地调整信号源的输出参数,避免产生干扰或信号失真等问题4.在实验结果分析中,要进行合理的数据处理和结论推断,避免简单地描述波形,缺乏实际意义。
示波器使用大学物理实验报告一、实验目的1、了解示波器的基本结构和工作原理。
2、掌握示波器的基本操作方法,包括垂直灵敏度、水平扫描速度、触发方式等的调节。
3、学会用示波器观察正弦波、方波、锯齿波等常见信号的波形,并测量其频率、幅值等参数。
二、实验仪器示波器、函数信号发生器、探头等。
三、实验原理示波器是一种用于显示电信号波形的电子仪器。
它通过在示波管的荧光屏上产生亮点的移动来描绘电信号的变化。
示波管主要由电子枪、偏转系统和荧光屏三部分组成。
电子枪产生高速电子束,经过偏转系统的作用,使电子束在荧光屏上按照输入信号的变化规律进行偏转,从而形成信号的波形。
示波器的垂直偏转系统用于控制电子束在垂直方向上的偏转,其灵敏度可以通过调节垂直增益旋钮来改变。
水平偏转系统用于控制电子束在水平方向上的偏转,水平扫描速度可以通过调节水平扫描速度旋钮来调整。
触发系统用于使示波器的扫描与输入信号同步,以稳定显示波形。
四、实验内容及步骤1、示波器的基本调节打开示波器电源,预热几分钟。
将示波器的探头连接到校准信号输出端,调节垂直和水平位移旋钮,使校准信号位于屏幕中央。
调节垂直灵敏度和水平扫描速度旋钮,使校准信号的波形清晰、稳定,并测量校准信号的幅值和频率,与标称值进行比较。
2、观察正弦波信号将函数信号发生器的输出设置为正弦波,频率为 1kHz,幅值为5Vpp。
将探头连接到函数信号发生器的输出端,调节示波器的垂直灵敏度和水平扫描速度,使正弦波的波形完整显示在屏幕上。
测量正弦波的幅值、周期和频率,并计算其有效值。
3、观察方波信号将函数信号发生器的输出设置为方波,频率为 500Hz,幅值为10Vpp。
重复步骤 2 中的操作,观察并测量方波的幅值、周期和占空比。
4、观察锯齿波信号将函数信号发生器的输出设置为锯齿波,频率为 200Hz,幅值为3Vpp。
重复步骤 2 中的操作,观察并测量锯齿波的幅值、周期和上升时间。
五、实验数据及处理1、校准信号标称幅值:_____Vpp实测幅值:_____Vpp标称频率:_____kHz实测频率:_____kHz2、正弦波信号幅值:_____Vpp周期:_____ms频率:_____kHz有效值:_____V3、方波信号幅值:_____Vpp周期:_____ms频率:_____Hz占空比:_____%4、锯齿波信号幅值:_____Vpp周期:_____ms频率:_____Hz上升时间:_____ms六、实验误差分析1、仪器误差:示波器和函数信号发生器本身存在一定的精度限制,可能导致测量结果的误差。
大物实验示波器的使用实验报告大物实验示波器的使用实验报告引言:示波器是一种用于显示电信号波形的仪器,广泛应用于电子工程、通信工程、生物医学工程等领域。
本次实验旨在掌握大物实验示波器的使用方法,通过观察和分析电信号波形,加深对电路原理的理解,并提高对实验数据的处理能力。
实验一:基本操作1.1 示波器的连接与调节首先,将示波器的输入端与待测电路的信号源相连,确保连接稳定可靠。
然后,调节示波器的触发电平,使波形在屏幕上稳定显示。
调节示波器的水平和垂直扫描速度,以便观察到完整的波形。
1.2 示波器的触发模式示波器提供多种触发模式,如自由运行触发、外部触发和单次触发等。
通过选择合适的触发模式,可以获得更清晰、稳定的波形。
在本实验中,我们选择了自由运行触发模式,以便连续观察波形的变化。
实验二:波形测量与分析2.1 波形的幅度测量示波器可以直接读取波形的幅度值。
在本实验中,我们通过示波器的幅度测量功能,测量了待测电路输出信号的峰峰值、峰值和平均值。
通过比较不同测量结果,我们可以了解信号的最大、最小和平均变化范围。
2.2 波形的频率测量示波器还可以测量波形的频率。
通过示波器的频率测量功能,我们可以准确地获取待测电路输出信号的频率信息。
在本实验中,我们测量了待测电路输出信号的频率,并与理论值进行对比,验证了电路的工作状态。
实验三:相位差测量与波形显示3.1 相位差测量示波器可以帮助我们测量信号之间的相位差。
在本实验中,我们通过示波器的相位差测量功能,测量了待测电路不同信号之间的相位差。
通过观察相位差的变化,我们可以了解信号在电路中的传递情况。
3.2 波形显示示波器不仅可以显示简单的波形,还可以显示复杂的信号波形。
在本实验中,我们通过示波器的波形显示功能,观察了待测电路在不同工作状态下的波形变化。
通过分析波形的特点,我们可以进一步了解电路的性能和工作原理。
实验四:信号发生器的使用4.1 信号发生器的连接与调节信号发生器是一种用于产生不同频率、幅度和波形的信号的设备。
工作报告-大学物理实验实验报告——示波器的使用一、实验目的1.了解示波器的结构和使用方法;2.掌握直流信号、正弦波信号、方波信号在示波器上的显示方法;3.掌握示波器读数的方法,并掌握示波器读数的误差处理方法。
二、实验原理示波器是一种将不同信号转换为电信号后,再将其显示出来的仪器。
它由放大器、水平和垂直偏转系统、扫描电路和显示器等组成。
示波器接通电源后,通过扫描电路和两个偏转系统,将待测信号转换为水平和垂直方向的电信号,再经过放大和滤波后,通过显示器显示出来。
直流信号:示波器直流灵敏度是指单位电压对应的水平偏转量,它的取值决定了示波器的直流灵敏度。
在测量直流信号的时候,应根据待测信号的大小,选择合适的直流灵敏度。
当待测信号超过示波器选择的最大直流灵敏度时,读数将出现溢出现象。
正弦波信号:正弦波信号的显示,要调整垂直灵敏度,使得信号在显示屏上的垂直方向上呈现出适当的振幅。
方波信号:方波信号是一种周期为T的脉冲信号,用示波器显示时,需要将水平扫描频率和信号频率同步,以保证信号在显示屏上能够完整显示出来。
三、实验步骤1.按照示波器的使用说明,正确接线并打开示波器。
2.调节示波器垂直灵敏度,使得测量的信号在显示屏上正好是满幅的。
3.调节偏心旋钮,使得信号的基准线刚好在中央位置。
4.分别接入直流信号、正弦波信号和方波信号,在合适的直流灵敏度和垂直灵敏度下测量信号的幅度、频率等参数。
5.记录读数,并进行误差计算和分析。
4.误差分析在示波器读数时,需要考虑仪器本身的误差和读数误差。
仪器本身的误差是指示波器自身存在的误差,例如示波器内部放大器的增益误差、示波器的垂直灵敏度和直流灵敏度的误差等。
为了减小仪器本身的误差,我们可以在进行实验前先进行仪器校正。
读数误差是指由读数时操作不当或者测量过程中由于外部因素所引起的误差。
在进行读数时,可以先进行多次测量,然后求取平均值,这样可以减小读数误差。
五、实验总结通过本次实验,我们学习了示波器的结构和使用方法,掌握了直流信号、正弦波信号和方波信号在示波器上的显示方法,以及示波器读数的方法和误差处理方法。
大物实验示波器的使用实验报告篇一:模拟示波器的使用实验报告模拟示波器的使用·实验目的1. 了解示波器的基本原理及基本使用方法;2. 掌握用示波器观察一路不同型电压信号的方法;3. 掌握观察利萨如图形的方法,了解利萨如图形测量未知正弦信号的频率的方法.·实验原理1. 示波器显示波形原理若在示波器CH1或CH2端加上正弦波,在示波器的X偏转板加上锯齿波,当锯齿波电压的变化周期与正弦波电压成整数倍时时,可以显示完整的周期的正弦波形;若在示波器CH1和CH2同时加上正弦波,在示波器的X 偏转板上加上示波器的锯齿波,则在荧光屏上将的到两个正弦波,即为双踪显示.同理可得双踪显示的方波.2. 利用利萨如图测正弦电压的频率基本原理将被测正弦信号1加到y偏转板,将参考正弦信号2加到x偏转板,当两者的频率之比是整数时,在荧光屏上将出现利萨如图.对稳定不动的图形分别做水平直线和竖直直线与图形相切,设水平线上及竖直线上的切点数之比可得两信号的频率之比·实验内容及步骤1. 连接实验仪器电路,设置好函数信号发生器、示波器.2. 用示波器观察一路电压信号(1) 在示波器CH1和YCH2分别加上500Hz和500Hz的正弦波,调节示波器至波形稳定,记录在坐标纸上.(2) 在示波器CH1和YCH2分别加上500Hz和500Hz的方波,调节示波器至波形稳定,记录在坐标纸上.(3) 分别计算两者的相对误差3. 用示波器观察李萨如图形若在示波器CH1和CH2同时加上正弦波,开至X-Y档,调节两输入端的频率比值分别为1:3,1:2,2:3,1:1,3:2,2:1,微调输入信号的频率至图象稳定,记录在坐标纸上.·实验记录(见坐标纸)·误差分析观察电压信号时正弦波1:频率相对误差?f?fA?f’A测fAA?V’A测VAfB?f’B测fBB?V’B测VB?100%?4999.98?4950?100%?1.0% 1.010电压相对误差?V?正弦波2:频率相对误差?f??100%??100%?500?499?100%?0.2% 5001.024?1.000?100%?2.3% 1.024 电压相对误差?V??100%?方波1:频率相对误差?f?fA?f’A测fAA?V’A测VA?100%?4999.94?4940?100%?1.2% 20.2540.1?40?100%?0.25% 40电压相对误差?V??100%?占空比相对误差?D?正弦波2:频率相对误差?f?DA?D’A测DA?100%?fB?f’B测fBB?V’B测VB?100%?500?489?100%?2.2% 5001.035?1.000?100%?3.4% 1.03530.1?30?100%?0.33% 30 电压相对误差?V??100%? 占空比相对误差?D?DB?D’B测DB?100%?相关分析:(出现误差的可能原因)1.两个输入端口输入的信号相互影响,无法达到完全协调;2.示波器的图象上显示的荧光线较粗,读数时会有误差;3.示波器内部系统存在系统误差.·课后习题1.实验时调不出待观测的正弦波形可能的原因是什么?(1)触发源没有调节好;(2)水平扫描电压大小不合适;(3)电路发生故障或接触不良.2.为什么实验观察的李萨如图形不是特别稳定,需要什么方法才能做到稳定?固定一个输入端的频率,调节另一个输入端的输入频率即可.(不能使用同步按钮,也不能调节触发)3.用示波器观测周期为 0.2ms 的正弦电压,若在荧光屏上呈现了 3 个完整而稳定的正弦波形,扫描电压的周期等于多少毫秒?为什么?扫描波T=0.2ms*3=0.6ms呈现了3个完整而稳定的正弦波形,相当于锯齿扫描波行进了1个周期的时间内观测的正弦电压行进了3个周期,故扫描波的周期为观测的正弦波的3倍.篇二:大学物理实验示波器实验报告示波器的使用【实验简介】示波器是用来显示被观测信号的波形的电子测量仪器,与其他测量仪器相比,示波器具有以下优点:能够显示出被测信号的波形;对被测系统的影响小;具有较高的灵敏度;动态范围大,过载能力强;容易组成综合测试仪器,从而扩大使用范围;可以描绘出任何两个周期量的函数关系曲线。
大物示波器实验报告大物示波器实验报告引言在物理实验中,大物示波器是一种常用的仪器,用于观测和分析电信号的波形。
通过连接电路和调节仪器参数,我们可以获得准确的波形图像,从而更好地理解电路的工作原理和信号的特性。
本次实验旨在通过使用大物示波器,探究不同电路中的波形变化,并分析其影响因素。
实验一:交流电路中的波形变化在本实验中,我们构建了一个简单的交流电路,包括电源、电阻和电容。
通过调节电源的频率和幅度,我们观察到了不同的波形变化。
当电源频率较低时,波形呈现出较为平缓的曲线,而当频率逐渐增加时,波形则变得更加起伏不定。
这是因为在低频情况下,电容器具有足够的时间来充电和放电,而在高频情况下,电容器无法及时响应电源的变化,导致波形出现了明显的变化。
实验二:脉冲信号的观测与分析在本实验中,我们通过构建一个脉冲信号发生器和一个示波器,观测和分析了不同频率和幅度的脉冲信号。
通过调节发生器的参数,我们可以观察到脉冲信号的上升时间、下降时间以及脉冲宽度的变化。
实验结果表明,脉冲信号的频率越高,上升时间和下降时间越短,脉冲宽度也越小。
而脉冲信号的幅度则决定了脉冲的高度和波峰的形状。
这些参数的变化对于不同应用场景的电路设计具有重要意义。
实验三:滤波电路的特性研究在本实验中,我们研究了滤波电路的特性及其对信号的影响。
通过构建一个低通滤波器和一个高通滤波器,我们观察到了不同频率信号在滤波器中的变化。
实验结果表明,低通滤波器可以将高频信号滤除,只保留低频信号,而高通滤波器则将低频信号滤除,只保留高频信号。
这些滤波器的特性对于音频处理、信号传输等领域具有重要应用。
实验四:傅里叶变换的应用在本实验中,我们利用大物示波器进行了傅里叶变换的实验。
通过输入不同频率的正弦信号,并进行傅里叶变换,我们得到了信号的频谱图。
实验结果显示,信号的频谱图呈现出明显的峰值,每个峰值对应着信号中的一个频率成分。
这使得我们能够更好地理解信号的频域特性,并在信号处理和通信领域中发挥重要作用。
大学物理实验示波器的使用实验报告大学物理实验示波器的使用实验报告引言:示波器是大学物理实验中常用的一种仪器,用于观察和测量电信号的波形和特性。
本次实验旨在通过使用示波器,掌握其基本操作和原理,以及学习如何正确连接电路和调节参数,从而实现准确的波形观测和测量。
实验目的:1. 理解示波器的基本原理和操作方法;2. 学会正确连接电路和示波器,实现准确的波形观测;3. 掌握示波器的参数调节,如时间、电压和触发等。
实验仪器和材料:1. 示波器2. 功能发生器3. 电阻、电容、电感等元件4. 电源5. 连接线等实验步骤:1. 将示波器和功能发生器依次连接到电源上,确保电路连接正确。
2. 打开示波器电源,并调节亮度、对比度等参数,使屏幕显示清晰。
3. 调节示波器的时间基准,选择合适的时间量程,使观测到的波形在屏幕上适合观察。
4. 调节示波器的垂直灵敏度,选择合适的电压量程,使波形的振幅适合观察。
5. 设置示波器的触发方式和触发电平,确保波形稳定显示。
6. 调节功能发生器的频率和幅度,观察波形的变化。
7. 通过连接不同的电路和元件,观察并记录波形的变化情况。
8. 根据实验结果,分析波形的特点和规律。
实验结果与分析:在实验中,我们通过连接不同的电路和元件,观察到了不同形态的波形。
例如,当连接一个正弦信号的源和示波器时,我们观察到了典型的正弦波形。
通过调节功能发生器的频率和幅度,我们可以观察到波形的变化,如频率越高,波形周期越短;振幅越大,波形的峰值越高。
此外,我们还观察到了其他类型的波形,如方波、三角波和脉冲波等。
通过连接不同的电路和元件,我们可以改变波形的形态和特性。
例如,当连接一个RC 电路时,我们观察到了典型的RC衰减波形,波形的振幅随时间的增加而逐渐减小。
通过实验结果的分析,我们可以得出以下结论:1. 示波器可以准确地显示电信号的波形和特性。
2. 波形的形态和特性受到电路和元件的影响,通过连接不同的电路和元件,我们可以实现不同形态的波形观测。
示波器的运用【1 】【试验简介】示波器是用来显示被不雅测旌旗灯号的波形的电子测量仪器,与其他测量仪器比拟,示波器具有以下长处:可以或许显示出被测旌旗灯号的波形;对被测体系的影响小;具有较高的敏锐度;动态规模大,过载才能强;轻易构成分解测试仪器,从而扩展运用规模;可以描写出任何两个周期量的函数关系曲线.从而把本来异常抽象的.看不见的电变更进程转换成在屏幕上看得见的真实图像.在电子测量与测试仪器中,示波器的运用规模异常普遍,它可以表征的所有参数,如电压.电流.时光.频率和相位差等.若配以恰当的传感器,还可以对温度.压力.密度.距离.声.光.冲击等非电量进行测量.准确运用示波器是进行电子测量的前提.第一台示波器由一只示波管,一个电源和一个简略的扫描电路构成.成长到今天已经由通用示波器到取样示波器.记忆示波器.数字示波器.逻辑示波器.智能化示波器等近十大系列,示波器普遍运用在工业.科研.国防等很多范畴中.Karl Ferdinand Braun生平简介1909年的诺贝尔物理奖得主Karl Ferdinand Braun于1897年创造世界上第一台阴极射线管示波器,至今很多德国人仍称CRT为布朗管(Braun Tube).图8-1 Karl Ferdinand Braun【试验目标】1、懂得示波器的构造和工作道理,熟习示波器和旌旗灯号产生器的根本运用办法.2、学惯用示波器不雅察电旌旗灯号的波形和测量电压.周期及频率值.3、经由过程不雅察李沙如图形,学会一种测量正弦波旌旗灯号频率的办法.【试验仪器】VD4322B型双踪示波器.EM1643型旌旗灯号产生器.衔接线及小喇叭等图8-2 VD4322型双踪示波器板面图1.电源开关2.电源指导灯3.聚焦旋钮4.亮度调节旋钮5.Y1(X)旌旗灯号输进口6.Y2旌旗灯号输进口7.8.入耦合开关(AC-GND-DC )9.10.垂直偏转因数选择开关(V/格)11.1Y 位移旋钮12.2Y 位移旋钮13.工作方法选择开关(1Y .2Y .瓜代.断续)14.扫描速度(时光/格)选择开关15.扫描微调掌握旋钮16.程度位移旋钮17.电平调节旋钮【试验道理】一.示波器的构造及简略工作道理示波器一般由5个部分构成,如图8-3所示:(1)示波管;(2)旌旗灯号放大器和衰减器(3)扫描产生器;(4)触发同步电路;(5)电源.下面分离加以简略解释.1、 示波管示波管重要包含电子枪.偏转体系和荧光屏三部分,全都密封在玻璃外壳内,里面抽成高真空.如图8-4荧 光 屏内+-外触发扫 描 产生器 放 大 或衰减触 发 同 步 放 大 或衰减X 轴输入Y 轴输入亮度 聚焦 帮助聚焦电源 YXHKGA 1A 2电子枪图8-3 电路构造图电源Y X 图8-4 示波管示意图所示,下面分离解释各部分的感化.(1)荧光屏:它是示波器的显示部分,当加快聚焦后的电子打到荧光上时,屏上所涂的荧光物资就会发光,从而显示出电子束的地位.当电子停滞感化后,荧光剂的发光需经一准时光才会停滞,称为余辉效应.(2)电子枪:由灯丝H .阴极K .掌握栅极G .第一阳极A 1.第二阳极A 2五部分构成.灯丝通电后加热阴极.阴极是一个概况涂有氧化物的金属筒,被加热后发射电子.掌握栅极是一个顶端有小孔的圆筒,套在阴极外面.它的电位比阴极低,对阴极发射出来的电子起掌握感化,只有初速度较大的电子才干穿过栅极顶端的小孔然后在阳极加快下奔向荧光屏.示波器面板上的“亮度”调剂就是经由过程调节电位以掌握射向荧光屏的电子流密度,从而转变了屏上的光斑亮度.阳极电位比阴极电位高很多,电子被它们之间的电场加快形成射线.当掌握栅极.第一阳极.第二阳极之间的电位调节适合时,电子枪内的电场对电子射线有聚焦感化,所以第一阳极也称聚焦阳极.第二阳极电位更高,又称加快阳极.面板上的“聚焦”调节,就是调第一阳极电位,使荧光屏上的光斑成为通亮.清楚的小圆点.有的示波器还有“帮助聚焦”,现实是调节第二阳极电位.(3)偏转体系:它由两对互相垂直的偏转板构成,一对垂直偏转板Y ,一对程度偏转板X .在偏转板上加以恰当电压,电子束经由过程时,其活动偏向产生偏转,从而使电子束在荧光屏上的光斑地位也产生转变.轻易证实,光点在荧光屏上偏移的距离与偏转板上所加的电压成正比,因而可将电压的测量转化为屏上光点偏移距离的测量,这就是示波器测量电压的道理. 2.旌旗灯号放大器和衰减器示波管本身相当于一个多量程电压表,这一感化是靠旌旗灯号放大器和衰减器实现的.因为示波管本身的X 及Y 轴偏转板的敏锐度不高(约—1mm/V ),当加在偏转板的旌旗灯号过小时,要预先将小的旌旗灯号电压加以放大后再加到偏转板上.为此设置X 轴及Y 轴电压放大器.衰减器的感化是使过大的输入旌旗灯号电压变小以顺应放大器的请求,不然放大器不克不及正常工作,使输入旌旗灯号产生畸变,甚至使仪器受损.对一般示波器来说,X 轴和Y 轴都设置有衰减器,以知足各类测量的须要. 3.扫描体系(扫描产生器)扫描体系也称时基电路,用来产生一个随时光作线性变更的扫描电压,这种扫描电压随时光变更的关系如同锯齿,故称锯齿波电压,如图8-5所示,这个电压经X 轴放大器放大后加到示波管的程度偏转板上,使电子束产生程度扫描.如许,屏上的程度坐标变成时光坐标,Y 轴输入的被测旌旗灯号波形就可以在时光轴上睁开.扫描体系是示波器显示被测电压波形必须的重要构成部分. 一、 示波器显示波形的道理假如只在竖直偏转板上加一交变的正弦电压,则电子束的亮点将随电压的变更在竖直偏向往返活动,假如电压频率较高,则看到的是一条竖直亮线,如图8-6所示.要能显示波形,必须同时在程度偏转板上加一扫描电压,使电子束的亮点沿程度偏向拉开.这种扫描电压的特色是电压随时光成线性关系增长到最大值,最后忽然回到最小,此后再反复地变更.这种扫描电压即前面所说的“锯齿波电压”,如图8-5所示.当只有锯齿波电压加在程度偏转板上时,假如频率足够高,则荧光屏上只显示一条程度亮线.假如在竖直偏转板上(简称Y 轴)加正弦电压,同时在程度偏转板上(简称X 轴)加锯齿波电压,电子受竖直.程度两个偏向的力的感化,电子的活动就是两互相垂直的活动的合成.当锯齿波电压比正弦电压变更周期稍大时,在荧光屏大将能显示出完全周期的所加正弦电压的波形图.三.触发同步的概念—8点之间的曲线段,起点在4处;第三周期内,显示8—11点之间的曲线段,起点在8处.如许,屏上显示的波形每次都不重叠,仿佛波形在向右移动.同理,假如T x 比T y 稍大,则仿佛在向左移动.以上描写的情况在示波器运用进程中经常会消失.其原因是扫描电压的周期与被测旌旗灯号的周期不相等或不成整数倍,乃至每次扫描开端时波形曲线上的起点均不一样所造成的.为了使屏上的图形稳固,必须使T x /T y =n (n =1,2,3,…),n 是屏上显示完全波形的个数.为了获得必定命量的波形,示波器上设有“扫描时光”(或“扫描规模”).“扫描微调”旋钮,用来调节锯齿波电压的周期T x (或频率f x ),使之与被测旌旗灯号的周期T y (或频率f y )成适合的关系,从而在示波器屏上得到所需数量标完全的被测波形.输入Y 轴的被测旌旗灯号与示波器内部的锯齿波电压是互相自力的.因为情况或其它身分的影响,它们的周期(或频率)可能产生渺小的转变.这时,固然可经由过程调节扫描旋钮将周期调到整数倍的关系,但过一会儿又变了,波形又移动起来.在不雅察高频旌旗灯号时这种问题尤为凸起.为此示波器内装有扫描同步装配,让锯齿波电压的扫描起点主动跟着被测旌旗灯号转变,这就称为整步(或同步).有的示波器中,须要让扫描电压与外部某一旌旗灯号同步,是以设有“触发选择”键,可选择外触发工作状况,响应设有“外触发”旌旗灯号输入端. 四. 示波器的运用1.示波器不雅察电旌旗灯号波形.将待不雅察旌旗灯号从1Y 或2Y 端接入加到Y 偏转板,X 偏转板加上扫描电压旌旗灯号,调节辉度旋钮.集合旋钮.x.y 位移旋钮,调节电压偏转因数旋钮和扫描时光旋钮,再调节同步触发电平旋钮,即看到待不雅察旌旗灯号波形.2.测量电压运用示波器可以便利测出电压值,现实上示波器所做的任何测量都归结为电压的测量.其道理基于被测量的电压使电子束产生与之成正比的偏转.盘算公式为 ()y U t yk (8-1)式中,y 为电子束沿y 轴偏向的偏转量,用格数(DIV )暗示;y k 为示波器y 轴的电压偏转因数(V/DIV )即(伏/格).3.测量频率 (1)周期换算法周期换算法所根据的道理是频率与周期成倒数关系:Tf 1=(8-2)旌旗灯号的周期可以用扫描速度值乘以被测旌旗灯号波形的又一个周期在荧光屏上的程度偏转距离而求得T t x =⋅(T=扫描速度×一个周期程度距离),故旌旗灯号的频率即可以算出.(2)李萨如图形法 设将未知频率f y 的电压U y 和已知频率f x 的电压U x(均为正弦电压),分离送到示波器的Y 轴和X 轴,则因为两个电压的频率.振幅和相位的不合,在荧光屏大将显示各类不合图8-8 李莎如图波形,一般得不到稳固的图形,但当两电压的频率成简略整数比时,将消失稳固的关闭曲线,称为李萨如图形.根据这个图形可以肯定两电压的频率比,从而肯定待测频率的大小.图8列出各类不合的频率比在不合相位差时的李萨如图形,不难 得出:所以未知频率 x yxy f N N f =(8-3) yx xy N N f X f Y 点数垂直直线与图形相交的点数水平直线与图形相交的轴电压的频率加在轴电压的频率加在=【试验内容及请求】1.示波器:辉度.聚焦.水温和竖直位移通道选择.触发.电平.幅度因子.扫描因子;2.旌旗灯号源:频率.旌旗灯号幅度.波形选择.3.衔接旌旗灯号源与示波器:旌旗灯号源输出正弦波旌旗灯号.调节示波器,消失稳固的正弦波,根据波形和幅度因子算出电压有用值,波形和扫描因子算出旌旗灯号频率.4.将示波器置非扫描档,外接两个旌旗灯号源合成利萨如图.【试验数据记载与处理】Hz测定正弦波电压和频率的表格f=理论利萨如图表格【思虑题】1. 示波器为什么能显示被测旌旗灯号的波形?2. 荧光屏上无光点消失,有几种可能的原因?如何调节才干使光点消失?3. 荧光屏上波形移动,可能是什么原因引起的【附EM1643型函数产生器介绍】(1)电源开关(POWER):按入开. (2)功效开关(FUNCTION):波形选择正弦波 方波和脉冲波 三角波和锯齿波(3)频率微调旋钮FREQV AR :频率复盖规模10倍. (4)分档开关(RANGE-HZ) :(10HZ-2MHZ 分六档选择). (5)衰减器按钮(ATT):开关按入时衰减低30Db. (6)电压幅度调节旋钮(AMPLITUDE);幅度可调. (7)直流偏移调节(DC OFF SET):当开关拉出时:直流电平为-10~+10V 持续可调,当开关按入时:直流电平为零. (8)占空比调节(PAMP/PULSE): 当开关按如时:占空比为本50%~50%; 当开关拉出时:占空比为10%~90%内持续可调; 频率为指导值÷10.(9)旌旗灯号输出(OUTPUT):波形输出端.1 4325678 910111213 1415 图8-9 函数产生器图(10)TTL OUT:TTL电平输出端. (11)VCF:掌握电压输入端. (12)IN PUT:外测频率输入端. (13)OUT SIDE:测频方法(内/外). (14)SPSS:单次脉冲开关. (15)OUT SPSS:单次脉冲输出.第11页,共11页。
大物实验报告示波器篇一:示波器使用大学物理实验报告《示波器的使用》实验报告【实验目的】1.了解示波器显示波形的原理,了解示波器各主要组成部分及它们之间的联系和配合;2.熟悉使用示波器的基本方法,学会用示波器测量波形的电压幅度和频率;【实验仪器】1、双踪示波器 GOS-6021型1台2、函数信号发生器YB1602型 1台3、连接线示波器专用 2根 [实验原理] 示波器由示波管、扫描同步系统、Y轴和X轴放大系统和电源四部分组成,1、示波管如图所示,左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。
亮点在偏转板电压的作用下,位置也随之改变。
在一定范围内,亮点的位移与偏转板上所加电压成正比。
示波管结构简图示波管内的偏转板 2、扫描与同步的作用如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如图1图扫描的作用及其显示如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。
我们看到的将是一条垂直的亮线,如图如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,其合成原理如图所示,描出了正弦图形。
如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。
但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。
由此可见:(1)要想看到Y轴偏转板电压的图形,必须加上X轴偏转板电压把它展开,这个过程称为扫描。
如果要显示的波形不畸变,扫描必须是线性的,即必须加锯齿波。
(2)要使显示的波形稳定,Y轴偏转板电压频率与X轴偏转板电压频率的比值必须是整数,即:fy?nn=1,2,3, fx示波器中的锯齿扫描电压的频率虽然可调,但要准确的满足上式,光靠人工调节还是不够的,待测电压的频率越高,越难满足上述条件。
为此,在示波器内部加装了自动频率跟踪的装置,称为“同步”。
在人工调节到接近满足式频率整数倍时的条件下,再加入“同步”的作用,扫描电压的周期就能准确地等于待测电压周期的整数倍,从而获得稳定的波形。
(1)如果Y轴加正弦电压,X轴也加正弦扫描电压,得出的图形将是李萨如图形,如表所示。
李萨如图形可以用来测量未知频率。
令fy、fx分别代表Y轴和X轴电压的频率,nx代表X方向的切线和图形相切的切点数,ny代表Y方向的切线和图形相切的切点数,则有2fyfx?nxny【实验内容】1.示波器的调整(1)不接外信号,进入非X-Y方式(2)调整扫描信号的位置和清晰度(3)设置示波器工作方式 2.正弦波形的显示(1)熟读示波器的使用说明,掌握示波器的性能及使用方法。
(2)把信号发生器输出接到示波器的Y轴输入上,接通电源开关,把示波器和信号发生器的各旋钮调到正常使用位置,使在荧光屏上显示便于观测的稳定波形。
3.示波器的定标和波形电压、周期的测量(1)把Y轴偏转因数和扫描时间偏转因数旋钮都放在“校准”位置(指示灯“VAR”熄灭)。
(2)把校准信号输出端接到Y轴输入插座(3)把信号发生器的正弦电压接到Y轴输入端,用示波器测量正弦电压的幅值和周期,并和信号发生器上显示的频率值比较。
(4)选择不同幅值和频率的5种正弦波,重复步骤(3),记下测量结果。
数据记录 1、频率测量示波器频率计数器的测频精度 0.01% 示波器测频仪器误差3%示波器测量电压仪器误差3%34篇二:大物实验示波器的使用实验报告实验二十三示波器的使用班级姓名学号同组人日期【实验目的】1、了解示波器的基本结构和工作原理,学会正确使用示波器。
2、掌握用示波器观察各种电信号波形、测量电压和频率的方法。
3、掌握观察利萨如图形的方法,并能用利萨如图形测量未知正弦信号的频率。
【实验仪器】固纬GOS-620型双踪示波器一台,GFG-809型信号发生器两台,连线若干。
【实验原理】示波器是利用示波管内电子束在电场或磁场中的偏转,显示电压信号随时间变化波形的一种电子观测仪器。
在各行各业与各个研究领域都有着广泛的应用。
其基本结构与工作原理如下1、示波器的基本结构与显示波形的基本原理本次实验使用的是台湾固纬公司生产的通用双踪示波器。
基本结构大致可分为示波管(CRT)、扫描同步系统、放大与衰减系统、电源系统四个部分。
“示波管(CRT)”是示波器的核心部件如图1所示的。
可细分为电子枪,偏转系统和荧光屏三部分。
1)电子枪电子枪包括灯丝F,阴极K,控制栅极G,第一阳极A1,第二阳极A2等。
阴极被灯丝加热后,可沿轴向发射电子。
并在荧光屏上显现一个清晰的小圆点。
2)偏转系统偏转系统由两对互相垂直的金属偏转板x和y组成,分别控制电子束在水平方向和竖直方向的偏转。
从电子枪射出的电子束若不受横向电场的作用,将沿轴线前进并在荧光屏的中心呈现静止的光点。
若受到横向电场的作用,电子束的运动方向就会偏离轴线,F灯丝,K阴极,G控制栅极,A1、A2第一、第二阳极,Y、X竖直、水平偏转板图1示波管结构简图屏上光点的位置就会移动。
x偏转板之间的横向电场用来控制光点在水平方向的位移,y偏转板用来控制光点在竖直方向的位移。
如果两对偏转板都加上电场,则光点在二者的共同控制下,将在荧光屏平面二维方向上发生位移。
3)荧光屏荧光屏的作用是将电子束轰击点的轨迹显示出来以供观测。
4)显示波形的原理图2 图3 图4在竖直偏转板上加一交变正弦电压,可看到一条竖直的亮线,如图3所示。
在水平偏转板上加“锯齿波电压”扫描电压,使荧光屏上的亮点沿水平方向拉开。
电子的运动是两相互相垂直运动的合成。
当锯齿波电压与正弦电压的变化周期相等时,在荧光屏上将显示出一个稳定的正弦电压波形图如图4所示。
当波形信号的频率等于锯齿波频率的整数倍时,荧光屏上将呈现整数个完整而稳定的被测信号的波形,当两者不成整数倍时,对于被测信号来说,每次扫描的起点都不会相同,结果造成波形在水平方向上不断的移动。
为了消除这一现象,必须使被测信号的起点与扫描电压的起点保持“同步”,这一功能由机内“触发同步”电路来完成。
2、利用利萨如图测正弦电压的频率基本原理通过观察荧光屏上利萨如图形进行频率对比的方法称之为利萨如图形法。
此法于1855年由利萨如所证明。
将被测正弦信号fy加到y偏转板,将参考正弦信号fx加到x偏转板,当两者的频率之比fyfx是整数时,在荧光屏上将出现利萨如图。
图5给出了几种不同频率比的利萨如图形。
判断两个电压信号频率比的条件是屏上出现了利萨如图形稳定不动,方法是对稳定不动的图形分别做水平直线和竖直直线与图形相切,设水平线上的切点数最多为NX,竖直线上的切点数最多为NY,则fyfx?nxny图5的第一个图形,nx?2,ny?4,Y轴上的信号频率fy 与x轴上的信号频率2fx之比为,若fx已知,则fy可求。
4【实验内容与步骤】开机前完成以下准备工作:扫描微调、电压灵敏度微调置校准档(顺时针打死)、扫描方式(置自动)、触发源选项(置CH1或CH2)、耦合方式(置AC);按压电源按钮预热3分钟。
(2)初始化示波器面板获得“点”:辉度、聚焦、三个位置旋钮置于居中位置,扫描灵敏度置于正交模式。
(五居中一归零);(3)顺时针旋转扫描灵敏度选扭置0.2ms档获取扫描线;(4)利用CH1观察机内方波校准信号并作为待测电信号1,记录其相关参数于黑板给出的数据记录表格第一行;(5)分别利用CH1与CH2两个通道观察左右两个音频信号发生器提供的10V1000Hz与15VXXHz的正弦交流信号,并作为待测电信号2与待测电信号3,记录其相关参数于黑板给出的数据记录表格第二行与第三行。
(6)扫描灵敏度选钮置正交模式,按压下触发交替旋钮,显示模式置双踪模式观测不同频率比的利萨如图形。
(7)申请课堂考核,归整仪器结束实验。
【实验数据与实验结果】图5利萨如图附表电信号电压、频率的测量数据记录表(11海科曹丽安娜提供)实验结果:详见下页附图(11海科曹丽安娜提供)注意事项1.信号发生器、示波器预热3分钟以后才能正常工作。
2.测信号电压时,一定要将电压衰减旋纽的微调顺时针旋足(校正位置);测信号周期时,一定要将扫描速率旋纽的微调顺时针旋足(校正位置);3.不要频繁开关机,示波器上光点的亮度不可调得太强,也不能让亮点长时间停在荧光屏的一点上,如果暂时不用,把辉度降到最低即可。
4.转动旋钮和按键时必须有的放矢,不要将开关和旋钮强行旋转、死拉硬拧,以免损坏按键、旋钮和示波器,示波器探头与插座的配合方式类似于挂口灯泡与灯座的锁扣配合方式,切忌生拉硬拽。
篇三:示波器使用大学物理实验报告示波器的调节与使用史波(楚雄师范学院物理与电子科学系云南 675000)摘要:通过对示波器发展及应用的了解,我获得了许多以前所不知道的知识。
在最初接触示波器时,仅仅对李萨如图形测频率感兴趣,认为示波器可以得到许多波形。
如今我了解到和模拟示波器相比,数字示波器不仅体积小、重量轻,便于携带,属于液晶显示器,而且可以长期贮存波形,并可以对存储的波形进行放大等多种操作和分析;特别适合测量单次和低频信号,测量低频信号时没有模拟示波器的闪烁现象;更多的触发方式,除了模拟示波器不具备的预触发,还有逻辑触发、脉冲宽度触发等;可以通过 GPIB、RS232、USB 接口同计算机、打印机、绘图仪连接,可以打印、存档、分析文件;有强大的波形处理能力,能自动测量频率、上升时间、脉冲宽度等很多参数。
关键词:示波器波形闪烁现象参数中图分类号:0441文献标识码:A 文章编号:Scope of adjustment and useShi Bo(Department Of Physics And Electronic Science ChuXiong Normal University 675000)Abstract:Through the oscilloscope development and application of the understanding, I received manypreviously don't know knowledge. In the initial contact oscilloscope, only to lissajous figures measuring frequency interested, think oscilloscope can get many waveform. Now I know and analog oscilloscope, compared to digital oscilloscope is not only small volume, light weight, easy to carry, belongs to the liquid crystal display, but also long-term storage waveform, and can store waveforms were put big and so on many kinds of operation and analysis; Especially suitable for measuring single and low frequency signal, measuring low frequency signal without analog oscilloscope flickering phenomenon; More trigger mode, in addition to analog oscilloscope don't have the preliminary trigger, and trigger logic album, pulse width trigger, etc.; Can through the GPIB, RS232, USB interface with meterKey words:The oscilloscope the waveform flicker phenomenon parameters引言示波器是一种图形显示设备,它描绘电信号的波形曲线。