微观经济学实验三:估计柯布-道格拉斯生产函数PPT课件
- 格式:ppt
- 大小:516.00 KB
- 文档页数:10
柯布道格拉斯生产函数柯布道格拉斯生产函数是经济学家柯布道格拉斯提出的一种描述生产关系的数学模型。
它是一种生产函数,描述了生产过程中输入要素和产出之间的关系。
柯布道格拉斯生产函数被广泛应用于经济学研究中,可以帮助我们理解和分析不同要素对产出的影响。
柯布道格拉斯生产函数的基本形式为:Y = A * (K^α) * (L^β) * (M^γ)其中,Y表示产出,K表示资本输入,L表示劳动输入,M表示其他要素输入,A表示全要素生产率,α、β、γ表示要素的弹性系数。
柯布道格拉斯生产函数的核心思想是,通过将输入要素(如资本和劳动)与全要素生产率相结合,可以预测产出的变化。
这个模型假设生产过程中的技术水平是固定的,并且每个要素对产出的贡献程度是固定的。
柯布道格拉斯生产函数的形式化表述可能有些晦涩难懂,但是我们可以通过一个简单的例子来理解它的应用。
假设一个农场使用了一定数量的土地和劳动力来种植农作物。
我们可以将土地和劳动力作为输入要素,农作物的产量作为输出。
通过柯布道格拉斯生产函数,我们可以分析不同的土地和劳动力对农作物产量的影响,并找出最佳的要素组合方式。
在柯布道格拉斯生产函数中,弹性系数α、β和γ表示了不同要素对产出的敏感性。
当α大于1时,资本输入对产出的增长影响更大;当α小于1时,劳动输入对产出的增长影响更大;当α等于1时,资本和劳动的影响是等价的。
柯布道格拉斯生产函数还可以用来分析全要素生产率的增长。
通过对全要素生产率的改进,可以提高产出水平而不需要增加输入要素。
这对于发展中国家和企业来说具有重要意义,因为他们可以通过提高技术水平来实现经济增长,而不仅仅依靠增加资本和劳动力的投入。
然而,柯布道格拉斯生产函数也存在一些限制。
它假设了技术水平是固定的,这在现实生产过程中并不成立。
现代经济往往面临着科技进步和创新的快速变化,传统的柯布道格拉斯生产函数无法很好地解释这种变化。
此外,柯布道格拉斯生产函数忽略了其他可能影响产出的因素,如市场需求、政府政策等。
专题拓展5.1:柯布——道格拉斯生产函数社会财富的生产过程是多种多样的。
几千年来,随着生产力水平的不断提高,人类生产活动的形式,已从刀耕火种的落后状态发展到电子计算机控制的大规模自动化生产。
然而,从经济学的角度来看,无论何种生产过程,都可以看成是在一定社会、经济、技术和自然条件下,一组技术要素转化为产出的过程。
生产函数就是在某些前提假设下,描述这一过程的经济数学模型。
它表示的是在一定的技术水平下各种生产要素投入量的某一组合同它所能产出的最大可能产出量之间的关系。
西方经济学家对生产函数的定义,以诺贝尔经济学奖获得者萨缪尔森教授为生产函数所下的定义为代表。
他认为生产函数是一种技术关系,被用来表明每一种具体数量的投入物(即生产要素)的配合所可能生产的最大产量。
一定历史时期的生产函数是反映当时的社会生产力水平的。
只有明确一定历史阶段的社会生产力特征才能构造出最能反映当时生产力发展水平的生产函数。
柯布——道格拉斯生产函数正是在工业经济时代所构造出的反映工业经济时代生产力特征的函数模型。
柯布——道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家道格拉斯(P.H.Douglas)共同探讨投入和产出的关系时创造的生产函数,是在生产函数的一般形式上作了改进,引入了技术资源这一因素。
他们根据有关历史资料,研究了从1899-1922年美国的资本和劳动对生产的影响,认为在技术经济条件不变的情况下,产出与投入的劳动力及资本的关系可以表示为:其中:Y——产量;A ——技术水平;K ——投入的资本量;L ——投入的劳动量;——K和L的产出弹性。
指数表示资本弹性,说明当生产资本增加1%时,产出平均增长%;是劳动力的弹性,说明当投入生产的劳动力增加1%时,产出平均增长%;A是常数,也称效率系数。
函数中把 A技术水平作为固定常数,难以反映出因技术进步而给产出带来的影响,为了克服这一不足之处,应该对柯布——道格拉斯生产函数作以改进。
柯布-道格拉斯生产函数概述(来源背景作用)柯布—道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(Paul H. Douglas)共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的。
是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
他们根据有关历史资料,研究了从1899-1922年美国的资本和劳动对生产的影响,在技术经济条件不变的情况下,得出了产出与投入的劳动力及资本的关系。
但是柯布-道格拉斯生产函数中把技术水平A作为固定常数,难以反映出因技术进步而给产出带来的影响。
柯布—道格拉斯生产函数中,如果有任何一种投入品为零,则产出也为零,因此对于生产来说,每种生产要素都是必需的,没有一种要素可以完全替代另一种要素。
柯布—道格拉斯生产函数是采用的边际分析方法,可用于分析要素投入对产量(产出)的贡献率、规模收益和其他系列问题。
是生产函数中应用广泛的一种!根据研究目的和需要,现在有很多在柯布——道格拉斯生产函数基础上变形应用的函数形式。
[编辑]柯布-道格拉斯生产函数的基本形式柯布-道格拉斯生产函数的基本形式为:Y = A(t)LαKβμ式中Y是工业总产值,At是综合技术水平,L是投入的劳动力数(单位是万人或人),K是投入的资本,一般指固定资产净值(单位是亿元或万元,但必须与劳动力数的单位相对应,如劳动力用万人作单位,固定资产净值就用亿元作单位),α 是劳动力产出的弹性系数,β是资本产出的弹性系数,μ表示随机干扰的影响,μ≤1。
从这个模型看出,决定工业系统发展水平的主要因素是投入的劳动力数、固定资产和综合技术水平(包括经营管理水平、劳动力素质、引进先进技术等)。