工程电磁场实验指导材料
- 格式:doc
- 大小:10.35 MB
- 文档页数:25
电磁场的参考文献电磁场是物质中电荷所产生的一种物理现象,广泛应用于电子技术、通信、电力系统等领域。
了解电磁场的基本原理和相关研究是深入掌握这一领域的必备知识。
本文旨在为读者提供一些重要的参考文献,帮助其进一步了解电磁场的研究进展以及实际应用。
一、经典电动力学参考文献1.《电磁场与电磁波》(作者:刘家琳)该书是电动力学领域的经典之作,深入浅出地介绍了电磁场的基本原理和电磁波的性质。
该书内容系统全面,适合作为电动力学学习的参考书。
2.《电磁学基础》(作者:David J. Griffiths)这本教材是电磁学领域的经典之作,被广泛应用于大学本科及研究生课程中。
该书语言通俗易懂,涵盖了电磁场的基本概念、电场与磁场的计算方法以及麦克斯韦方程组的应用等内容。
二、电磁场数值计算参考文献1.《电磁场模拟与仿真》(作者:刘吉全)该书详细介绍了电磁场的数值计算方法,包括有限差分法、有限元法、边界积分方程法等。
通过实例的应用,读者可以深入了解电磁场的数值计算原理和技术。
2.《Computational Electromagnetics for RF and Microwave Engineering》(作者:David B. Davidson)该书介绍了电磁场的数值计算在射频和微波工程领域的应用。
从理论到实践,该书系统地阐述了电磁场的数值计算方法,并给出了实际工程中的应用案例。
三、电磁场实验技术参考文献1.《电磁场与电磁波实验》(作者:张铭双)该书包含了多个电磁场实验的设计和实施方法,对实验室中的电磁场实践课程非常有帮助。
书中提供了详细的实验操作步骤和实验装置原理,读者可以通过实验深入理解电磁场的概念与现象。
2.《Introduction to Electromagnetic Compatibility》(作者:Clayton R. Paul)该书主要介绍了电磁兼容性(EMC)领域的相关知识,讲解了电磁场对电子系统产生的干扰和噪声问题以及解决方法。
信息与通信工程学院电磁场与电磁波实验报告题目:校园无线信号场强特性的研究姓名班级学号序号指导老师:日期:2012年4月目录一、实验目的 (1)二、实验原理 (1)1、电磁波的传播方式 (1)2、尺度路径损耗 (1)3、阴影衰落 (2)4、建筑物的穿透损耗的定义 (3)三、实验内容 (3)四、实验步骤 (4)1、实验对象的选择 (4)2、数据采集 (5)3、数据录入 (5)4、数据处理 (6)五、实验结果与分析 (7)1、磁场强度地理分布 (7)2、磁场强度统计分布 (13)3、建筑物的穿透损耗 (18)六、问题分析与解决 (18)1、测量误差分析 (18)2、场强分布的研究 (19)七、分工安排 (19)八、心得体会 (19)九、附录:数据处理过程 (21)一、实验目的1. 掌握在移动环境下阴影衰落的概念以及正确的测试方法;2. 研究校园内各种不同环境下阴影衰落的分布规律;3. 掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4. 通过实地测量,分析建筑物穿透损耗随频率的变化关系;5. 研究建筑物穿透损耗与建筑材料的关系。
二、实验原理1、电磁波的传播方式无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。
对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。
因此基站的覆盖区的大小,是无线工程师所关心的。
决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落, 接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。
电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。
当电磁波传播遇到比波长大很多的物体时,发生反射。
当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。
当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。
散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。
《微波技术与天线实验》课程实验报告实验二:集总参数滤波器设计学院通信工程学院班级13083414学号13081405姓名田昕煜指导教师魏一振2015年11 月11 日实验名称:1.实验目的一:通过此次实验,我们需要熟悉集总参数滤波器软件仿真过程,且通过亲自实验来熟悉MWO2003的各种基本操作。
二:本次实验我们需要用到MWO2003的优化和Tune等工具,要求熟练掌握MWO 提供的这些工具的使用方法和技巧2.实验内容设计一低通滤波器要求如下:1、通带频率范围:0MHz~400MHz2、增益参数 S 21 :通带内 0MHz~400MHz S 21 >--0.5dB3、阻带内 600MHZ 以上 S 21 <-50dB4、反射系数 S 11 :通带内 0MHz~400MHz S 11 <-10dB3.实验结果电路设计如下图然后在软件中按照设计的要求做如下的优化要求然后点击运行就可以得到仿真的结果了,我们还可以对结果进一步进行优化,利用优化选项,使用随机优化,点击开始优化,可以是结果更加理想。
之后再点开Tuner微调,多次调试后发下如下参数比较合理得到仿真结果如下4.思考题(1)如果要你设计的是高通滤波器,与前面相比,需要变化那几个步骤?首先需要改变电路图的结构,如下图将原来的电容接地改成电感接地。
之后在优化参数进行重新设置。
也就是将原来0~400MHZ的优化条件改成400MHZ~MAX的频率范围。
原来的600~MAX的改为0~600MHZ的频率范围。
如下图之后重复上述仿真可以得到如下结果可见这样设计并不是十分的完美,在0~300MHZ内基本满足条件,在之后增益略微有偏差。
反射系数在某个区域内比较符合。
(2)你在优化设计过程中,那些参量调解对优化结果影响最大?(最敏感)利用TUNE进行略微条件,观察波形的变化。
可以总结出电容中:调节电容C1(位于最左边的电容)对波形的影响最大。
电感中:调节电感L3(位于最中间的电感)对波形的影响最大。
高中物理电磁实验全套教案
实验目的:通过观察磁感线的分布情况,了解磁场的性质。
实验器材:磁铁、铁磁粉、白纸、透明胶布、尺子。
实验步骤:
1. 在白纸上均匀地撒上一层铁磁粉。
2. 将磁铁放在铁磁粉的上方,让磁铁与铁磁粉之间有一定的距离。
3. 缓慢地将磁铁移动到铁磁粉的不同位置,观察铁磁粉在磁场下的分布情况。
记录每个位置的观察结果。
4. 将铁磁粉粘在白纸上,以便观察和记录。
实验结果与分析:
根据观察结果可知,在磁场中,铁磁粉会排列成条纹状,这些条纹被称为磁感线。
磁感线是磁场强度和方向的图像,它们从磁铁的南极指向北极,形成一系列闭合的曲线。
结论:
1. 磁感线的分布情况可以帮助我们更直观地了解磁场的性质。
2. 磁感线的密度表示磁场的强度,磁感线的方向则表示磁场的方向。
3. 对磁感线的观察可以帮助我们理解磁场的作用规律。
注意事项:
1. 在实验过程中要小心操作,避免弄脏衣物和皮肤。
2. 实验结束后要及时清理工作台和实验器材,确保实验环境整洁。
3. 实验时要保持注意力集中,注意观察和记录实验数据。
工程电磁场实验报告实验二利用Maxwell 2D电磁场分析软件对静磁场进行分析班级:学号:姓名:指导老师:一、实验目的1)认识钢涡流效应的损耗,以及减少涡流损耗的方法2)学习涡流损耗的计算方法3)学习用Maxwell 2D计算叠片钢的涡流二、实验内容1)如图所示,模型为四个钢片叠加而成,每一片的界面长和宽分别为12.7mm和0.356mm,两片之间的距离为8.12um,叠片钢的电导率为 2.08e6S/m,相对磁导率为2000,作用在磁钢表面的外磁场Hz=397.77 A/m,即Bz=1T。
2)本实验就采用轴向磁场涡流求解器来计算不同频率下的涡流损耗。
建立相应的几何模型,指定材料属性和边界条件,分析不同频率下的损耗。
由于模型对X、Y轴具有对称性,可以只计算第一象限内的模型。
三、实验原理1、低频涡流损耗的计算公式为:P=t²w²B²δV/24式中V为叠片体积;t为叠片厚度;B为峰值磁通密度;δ为叠片电导率;w 为外加磁场角频率。
Maxwell 2D所获得的功率损耗值是假定叠钢片在Z方向具有单位长度(1m)时而计算出来的。
因此,上式中的体积显然需要按一下就算公式计算V=12.7*1e-3*0.356*1e-3*1=4.5212e-6(m³)公式成立的条件是频率低于2KHz,趋肤深度远小于叠片厚度。
由此计算各个频率下的涡流损耗,见下表:低频数值计算结果2、高频涡流损耗的计算公式为:P=0.5*Ht²【(ωμ/2σ)^1/2】*S式中,S为叠片表面积,Ht为磁场强度切线分量,σ为叠片电导率,u为叠片相对磁导率,ω为外加磁场角频率。
公司成立的条件位频率大于等于10KHz,趋肤深度远远小于叠片厚度。
高频数值计算结果四、计算机仿真由实验结果与理论值比较可以大致看出,在较低频部分用低频计算公式得理论值与仿真值吻合的很好,而高频部分误差较大。
而高频部分用高频计算公式计算时与仿真值也吻合得非常好。
工程电磁场课程设计一、课程目标知识目标:1. 理解电磁场的基本概念,掌握电磁场的基本定律,如麦克斯韦方程组;2. 学会分析电磁场在实际工程中的应用,如电磁波传输、电磁兼容性等;3. 掌握电磁场问题的求解方法,如分离变量法、镜像法等。
技能目标:1. 能够运用所学知识,解决实际的电磁场问题,设计简单的电磁设备;2. 培养运用数学软件(如MATLAB)进行电磁场仿真的能力;3. 提高团队协作能力,通过小组讨论、汇报等形式,提升沟通和表达能力。
情感态度价值观目标:1. 培养学生对电磁场学科的兴趣,激发学习热情,形成积极向上的学习态度;2. 引导学生关注电磁场技术在我国的最新发展动态,增强国家意识和社会责任感;3. 培养学生勇于探索、敢于创新的精神,提高面对复杂工程问题的自信心。
本课程针对高年级本科或研究生阶段的学生,结合学科特点和教学要求,注重理论与实践相结合,培养学生的电磁场分析与应用能力。
课程目标旨在使学生掌握电磁场基本知识,具备解决实际工程问题的能力,同时培养良好的学习态度和价值观。
通过具体的学习成果分解,为后续的教学设计和评估提供明确依据。
二、教学内容1. 电磁场基本概念:磁场、电场、电磁场;电磁场与电磁波的关系;教材章节:第一章第一节2. 麦克斯韦方程组:积分形式和微分形式;边界条件;教材章节:第一章第二节3. 电磁场求解方法:分离变量法、镜像法、有限差分法;教材章节:第二章4. 电磁场应用:电磁波传输、电磁兼容性、电磁场在生物医学中的应用;教材章节:第三章5. 电磁场仿真:MATLAB软件操作,建模与仿真;教材章节:第四章6. 电磁设备设计:天线设计、电磁兼容设计、传感器设计;教材章节:第五章教学内容按照教学大纲的安排,从基本概念、理论、方法、应用和设计等方面展开,注重科学性和系统性。
通过对教材章节的合理安排和进度控制,使学生能够逐步掌握电磁场相关知识,提高实际应用能力。
三、教学方法本课程将采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:教师通过生动的语言和形象的表达,系统讲解电磁场的基本概念、理论和方法,使学生掌握课程核心知识。
电磁场与电磁波实验报告.中南⼤学信息科学与⼯程学院课题名称:电磁场与电磁波实验报告信息科学与⼯程学院通信⼯程1201 学班学姓院:级:号:名:0909120927 苏⽂强指导⽼师:陈宁实验⼀电磁波反射实验⼀实验⽬的1. 掌握微波分光仪的基本使⽤⽅法;2. 了解3cm 信号源的产⽣、传输及基本特性;3. 验证电磁波反射定律。
⼆预习内容电磁波的反射定律三实验原理微波与其它波段的⽆线电波相⽐具有:波长极短,频率很⾼,振荡周期极短的特点。
微波传输具有似光特性,其传播为直线传播。
电磁波在传播过程中如遇到障碍物,必定要发⽣反射。
本实验以⼀块⼤的⾦属板作为障碍物来研究当电磁波以某⼀⼊射⾓投射到此⾦属板上所遵循的反射定律,即:反射电磁波位于⼊射电磁波和通过⼊射点的法线所决定的平⾯上反射电磁波和⼊射电磁波分别位于法线两侧;反射⾓θr 等于⼊射⾓θi。
原理如图1.1所⽰。
图1.1四实验内容与步骤1. 调整微波分光仪的两喇叭⼝⾯使其互相正对,它们各⾃的轴线应在⼀条直线上,指⽰两喇叭位置的指针分别指于⼯作平台的0-180 刻度处。
将⽀座放在⼯作平台上,并利⽤平台上的定位销和刻线对正⽀座,拉起平台上四个压紧螺钉旋转⼀个⾓度后放下,即可压紧⽀座。
2. 将反射全属板放到⽀座上,应使⾦属板平⾯与⽀座下⾯的⼩圆盘上的90-90 这对刻线⼀致,这时⼩平台上的0 刻度就与⾦属板的法线⽅向⼀致。
将⾦属板与发射、接收喇叭锁定,以保证实验稳定可靠。
3. 打开信号源开关,将三厘⽶固态信号源设置在:“电压”和“等幅”档。
4. 调节可变衰减器,使得活动臂上微安表的读数为满量程的80%左右。
5. 转动微波分光仪的⼩平台,使固定臂指针指在刻度为30 度处,这个⾓度数就是⼊射⾓度数,然后转动活动臂,使得表头指⽰最⼤,此时活动臂上指针所指的刻度就是反射⾓度数,记下该⾓度读数。
如果此时表头指⽰太⼤或太⼩,应调整微波分光仪中的可变衰减器或晶体检波器,使表头指⽰接近满量程的80%做此项实验。
《电磁场与电磁波》实验指导说明书西华师范大学计算机学院目录第一部分产品说明 (3)一、系统简介 (2)二、系统特点 (2)三、系统组成 (2)四、性能指标 (3)五、系统主要部件参数 (3)第二部分实验内容 (6)实验一电磁波的频率和功率测试 (6)实验二电磁波感应器的设计与制作 (9)实验三位移电流的测试及计算 (12)实验四天线方向图的测试--功率测试法 (15)实验五电磁波波节、波幅及波长的测试 (20)实验六电磁波的极化实验 (24)实验七电磁波的PIN调制特性 (27)实验八天线方向图的测试—电压测试法 (30)实验九同轴测量线的驻波测试 (34)实验十反射系数及驻波相位的测试 (37)第三部分射频连接器示意图 (40)第一部分产品说明一、系统简介电磁场电磁波及天线技术是通信工程、电子工程、电磁场与电磁波、微波技术、天线技术类专业必不可少的一门实验课程,本系统包含功率测试、频率测试、方波信号产生,电磁波产生器、功率放大器、选频放大器等,具有电磁波极化特性测试,天线方向图测试、静电场中位移电流测试等多种功能,加深学生对电磁波产生(调制)、发射、传输和接收(检波)过程及终端设备相关特性的认识,培养学生对电磁场电磁波及天线的理解、应用创新能力。
二、系统特点1、实验系统面向《电磁场与电磁波》的课程建设,紧密配合教学大纲,通过直观生动的实验现象及操作,完成对电磁场与电磁波相关特性的测试。
2、系统内置1kHz方波可调信号源、选频放大器,在完成对电磁波PIN调制功能的同时,可用于对天线方向图的测试,而无需选配其他实验装置。
3、本装置电磁波发射可选大功率或小功率2路输出,方便做不同实验时的自由切换,输出端口均为标准的N型接头。
4、采用数字显示方式,在提高准确性的基础上,更能方便感应器在任何位置归零,直接读取数值。
5、实验系统自带频率计及功率计,用于对发射电磁波频率、功率的测试及校准。
6、完成电磁波的极化特性测试、场电流的测试及终端天线增益的测试。
comsol仿真实验报告一、实验目的本次实验旨在通过使用 COMSOL Multiphysics 软件对特定的物理现象或工程问题进行仿真分析,深入理解相关理论知识,并获取直观、准确的结果,为实际应用提供有效的参考和指导。
二、实验原理COMSOL Multiphysics 是一款基于有限元方法的多物理场仿真软件,它能够将多个物理场(如电场、磁场、热场、流体场等)耦合在一个模型中进行求解。
其基本原理是将连续的求解区域离散化为有限个单元,通过对每个单元上的偏微分方程进行近似求解,最终得到整个区域的数值解。
在本次实验中,我们所涉及的物理场及相关方程如下:(一)热传递热传递主要有三种方式:热传导、热对流和热辐射。
热传导遵循傅里叶定律:$q =k\nabla T$,其中$q$ 为热流密度,$k$ 为热导率,$\nabla T$ 为温度梯度。
热对流通过牛顿冷却定律描述:$q = h(T T_{amb})$,其中$h$ 为对流换热系数,$T$ 为物体表面温度,$T_{amb}$为环境温度。
(二)流体流动对于不可压缩流体,其运动遵循纳维斯托克斯方程:$\rho(\frac{\partial \vec{u}}{\partial t} +(\vec{u}\cdot\nabla)\vec{u})=\nabla p +\mu\nabla^2\vec{u} +\vec{f}$其中$\rho$ 为流体密度,$\vec{u}$为流体速度,$p$ 为压力,$\mu$ 为动力粘度,$\vec{f}$为体积力。
(三)电磁场麦克斯韦方程组是描述电磁场的基本方程:$\nabla\cdot\vec{D} =\rho$$\nabla\cdot\vec{B} = 0$$\nabla\times\vec{E} =\frac{\partial \vec{B}}{\partial t}$$\nabla\times\vec{H} =\vec{J} +\frac{\partial \vec{D}}{\partial t}$其中$\vec{D}$为电位移矢量,$\vec{B}$为磁感应强度,$\vec{E}$为电场强度,$\vec{H}$为磁场强度,$\rho$ 为电荷密度,$\vec{J}$为电流密度。
“电磁场与电磁波”和“微波技术”课内实验大纲及实验指导书唐万春,车文荃编制陈如山审定南京理工大学通信工程系2006年12月目录1.“电磁场与电磁波”课内实验大纲2.“电磁场与电磁波”课内实验指导说明书实验一电磁波参量的测定实验二电磁波的极化3.“微波技术”课内实验大纲4.“微波技术”课内实验指导说明书实验一传输线的工作状态及驻波比测量实验二微波网络散射参量测试5.“电磁场与电磁波”和“微波技术”课内实验评分标准南京理工大学实验教学大纲课程名称:电磁场与电磁波开课实验室:电磁场与微波技术实验室执笔人:唐万春审定人:陈如山修(制)订日期: 2005年4月*由学校出版、印刷的实验教材(或指导书),统一写作“南京理工大学出版”。
“电磁场与电磁波”课内实验指导书唐万春编写南京理工大学通信工程系二00六年十二月实验一电磁波参量的测定实验1.实验目的a)观察电磁波的传播特性。
b)通过测定自由空间中电磁波的波长,来确定电磁波传播的相位常数k和传播速度v。
c)了解用相干波的原理测量波长的方法。
2.实验内容a)了解并熟悉电磁波综合测试仪的工作特点、线路结构、使用方法。
b)测量信号源的工作波长(或频率)。
3.实验原理与说明a)所使用的实验仪器分度转台晶体检波器可变衰减器喇叭天线反射板固态信号源微安表实验仪器布置图如下:体检波器图1 实验仪器布置图参阅图1。
固态信号源所产生的信号经可变衰减器至矩形喇叭天线,由喇叭天线辐射出去,在接收端用矩形喇叭天线接收,接收到的信号经晶体检波器后通过微安表指示。
b) 原理本实验利用相干波原理,通过测得的电磁波的波长,再由关系式2,k v f kπωλλ===得到电磁波的主要参量k ,v 等。
实验示意图如图2所示。
图中0r P 、1r P 、2r P 和3r P 分别表示辐射喇叭、固定反射板、可动反射板和接收喇叭,图中介质板是一23030()mm ⨯的玻璃板,它对电磁波进行反射、折射后,可实现相干波测试。
北方民族大学Beifang University of Nationalities 《电磁场与电磁波》实验指导书主编赵霞校对楚栓成北方民族大学电气信息工程学院二○一五年八月目录电磁场与电磁波实验系统介绍 (3)实验一电磁波参量的测量 (6)实验二电磁波的极化特性 (8)实验三电磁波反射与折射 (11)《电磁场与电磁波》实验系统简介一、概述DH926B型微波分光仪可作为电磁场与波的波动实验,适合于高等院校和中等专业学校作教学实验。
因此,《电磁场与电磁波》实验系统就采用了现已经有的DH926B型微波分光仪作为本课程的实验系统。
二、实验系统简介:本实验系统主要由DH926B型微波分光仪和DH1121B 3cm固态信号源组成。
1. 微波分光仪(如图一所示)图一微波分光仪(2)主要元件性能喇叭天线的增益大约是20分贝,波瓣的理论半功率点宽度大约为:H面是200,E面是160。
当发射喇叭口面的宽边与水平面平行时,发射信号电矢量的偏损方向是垂直的。
可变衰减器用来改变微波信号幅度的大小,衰减器的度盘指示越大,对微波信号的衰减也越大。
晶体检波器可将微波信号变成直流信号或低频信号(当微波信号幅度用低频信号调制时)。
当以上这些元件连接时,各波导端应对齐。
如果连接不正确,则信号传输可能受破坏。
(3)安装与调整(参照图一所示)本仪器为了便于运输、包装,出厂包装时将分度转台做了必要的拆卸,用户在使用前需做如下安装与调整。
①基座(即喷漆的大圆盘)的安装:将Φ40.5的孔向上,将四个支脚按图安置在基座上。
②固定臂的安装:在包装箱中有固定臂取出,将固定臂头部的 4个 M5螺钉通过基座(即喷漆的大圆盘)。
四个沉孔拧入固定臂上并将指针摆正。
③活动臂的安装:将喷漆的大圆盘上的两个M3螺钉松开后,将活动臂上的三个M4螺钉拧紧,再把两个M3螺钉拧紧,使活动臂能自由旋转。
拧紧大头螺钉即可使活动臂固紧,松开大头螺钉即可使活动臂自由旋转。
④铝制支柱的安装:包装箱内有四根不同长度的铝制支柱,将其中最长的一根旋入固定臂螺孔中。
《电磁场与电磁波》实验教学大纲一、课程基本信息(5号黑体)(具体内容为5号宋体,1.5倍行距,首行缩进2字符)中文名称:电磁场与电磁波英文名称:Electromagnetic field and electromagnetic wave 课程代码:1104144授课专业:(电科/电信)开课单位:理学院开课学期:第三学年第二学期学分/学时:1/16考核方式:考查二、课程简介:教学目的:“电磁场与电磁波”是理工科院校电子信息类专业一门重要的专业基础课。
由于该课程核心的基本概念、基本理论和分析方法都很重要,而且系统性、理论性很强,因此在学习本课程时,开始必要的实验课,使抽象的概念和理论能形象化,具体化,对学生加深理解和深刻地掌握基本理论和分析方法,培养学生分析问题和解决问题的能力都是十分有益的。
做好本课程的实验,是学好本课程的必要的教学辅助环节。
教学要求:(1)仔细阅读教材和实验指导书。
(2)了解和熟悉实验设备、弄懂实验原理和实验目的、明确实验方法和实验步骤、并牢记相关注意事项。
(3)认真观察实验现象,详细、规范的记录实验数据。
(4)实验完成后,认真分析实验数据,详细地写出实验报告专业培养目标与要求培养具备电子信息科学与技术的基础理论和基本知识,受到严格的科学实验训练和科学研究初步训练,能在电子信息科学与技术、电子科学与技术、信息与通信工程、控制科学与工程等无线通信技术相关领域和行政部门从事科学研究、教学、科技开发、产品设计、生产技术或管理工作的适应我国科学和经济发展需要、面向未来、掌握电子信息高科技知识、德智体全面发展的卓越工程师人才。
验证型实验。
学生根据实验指导书的要求,在教师指导下,按照既定方法、既定的仪器条件,完成全部实验过程。
借以深化对相关理论教学内容的认识和理解,培养学生的基本实验能力。
操作型实验。
学生按课程内容要求,动手拆装和调试实验设备、装置或上机操作,掌握其基本原理和方法,培养基本的维护与维修技巧。
《电磁场与电磁波》教学大纲一、课程基本信息课程名称:电磁场与电磁波课程编码:58083004课程类别:专业教育必修适用专业:通信工程开课学期:3—3课程学时:总学时: 64学时;其中理论 48 学时,实验 16 学时。
课程学分:4先修课程:大学物理、模拟电子线路、数字逻辑电路并修课程:课程简介:《电磁场与电磁波》课程是高等学校通信工程等电子科学与技术类各专业本科生必修的一门技术基础课.电磁场与电磁波是通信技术的理论基础,是通信工程专业本科学生的知识结构中重要组成部分。
本课程包括电磁场与电磁波两大部分。
电磁场部分是在《电磁学》课程的基础上,运用矢量分析的方法,描述静电场和恒定磁场的基本物理概念,在总结基本实验定律的基础上给出电磁场的基本规律,研究静态场的解题方法.电磁波部分主要是介绍有关电磁波在各种介质中的传播规律及天线的基本理论.二、课程教育目标本课程使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。
使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。
培养学生正确的思维方法和分析问题的能力,使学生学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。
其教育目标主要表在以下三方面:1、内容方面,应使学生牢固掌握矢量运算,梯度、散度和旋度概念,高斯公式和斯托克司公式;掌握恒定和时变电磁场的麦克斯韦方程组、泊松方程、电磁波的波动方程等;掌握分离变量法、镜像法、有有界空间中电磁波的求解方法等;理解电磁场的矢势¦和标势、规范变换、规范不变性、库仑规范、洛仑兹规范、时谐平面电磁波、推迟势、电磁辐射、截止频率和谐振频率等概念。
2、能力方面,应使学生学会和掌握如何通过数学方法求解一些基本和实际问题,对结果给予物理解释的科学研究方法;使学生在运算能力和抽象思维能力方面受到初步而又严格的训练;培养学生解决和研究问题的能力,培养学生严谨的科学学风.3、方法方面,着重物理概念、基本规律和基本问题的解释和阐述,注意本课程与大学物理电磁学的衔接,以及与后继课程联系,注重解决常见基本问题和实际问题。
工程电磁场实验指导讲义实验一用模拟法测绘静电场带电导体(有时称电极)在空中形成的静电场,除极简单的情况外,大都不能求出它的数学表达式。
为了实用的目的,往往借助实验的方法来测定。
但是直接测量静电场则遇到很大的困难,这因为设备复杂,与原电场迭加起来,使原电场产生显著的畸变,但是可以用间接的测定方法(称模拟法)来解决。
模拟法的特点是仿造另一个电场(称模拟场),使它与原电场完全一样,当用探针去测模拟场时,它不受干扰,因此可间接地测出被模拟的静电场。
一、目的1.学习用模拟法描述和研究静电场分布的概念和方法;2.测绘等位线,根据等位线画出电力线,加深对电场强度和电位要领的理解及静电场分布规律的认识。
二、原理1.用电流场模拟静电场用模拟法测量静电场的方法之一是用电流场代替静电场。
由电磁学理论可知,电解质(或水液)中稳恒电流的电流场与电介质(或真空)中的静电场具有相似性。
在电流场的无源区域中,电流密度矢量满足(1)在静电场的无源区域中,电场强度矢量满足由(1)式和(2)式可看出电流场中的电流密度矢量和静电场中的电场强度矢量所遵从的物理规律具有相同的数学形式,所以这两种场具有相似性。
在相似的场源分布和相似的边界条件下,它们的解的表达式具有相同的数学模型。
如果把连接电源的两个电极放在不良导体如稀薄溶液(或水液)中,在溶液中将产生电流场。
电流场中有许多电位彼此相等的点,测出这些电位相等的点,描绘成面就是等位面。
这些面也是静电场中的等位面。
通常电场分布是在三维空间中,但在水液中进行模拟实验时,测出的电场是在一个水平面内的分布。
这样等位面就变成了等位线。
根据电力线与等位线正交的关系,即可画出电力线,这些电力线上每一点切线方向就是该点电场强度的方向。
这样就可以用等位线和电力线形象地表示静电场的分布了。
检测电流中各等位线时,不影响电力线的分布。
测量支路不能从电流场中取出电流,因此,必须使用高内阻电压表或平衡电桥法进行测绘。
但直流电压长时间加在电极上,在水液中会使电极产生“极化作用”而影响电流场的分布,若把直流电压换成交流电压就能消除这种影响。
当电极接上交流电压时,产生交流电场的瞬时值是随时间变化的,但交流电压的有效值与直流电压是等效的,所以在交流电场中用交流电压表测量有效值的等位线与交流电场中测量测量同值的等位线,其效果和位置完全相同。
2.同轴圆柱面形电极的静电场与电流场图1为静电场模拟举例,现在用同轴电缆圆柱形电极具体说明电流场与静电场的相似性。
如图1(a)所示,将其置于水液中,在电极之间加电压(为正,为负)。
由于电极形状是轴对称的,电流自向在水液中形成一个径向均匀的稳恒电流场。
在电极、间有电场的整个空间内填满均匀的不良导体,这样原真空静电场中的电力线平面被埋没在不良导体之中,这就仿造了一个与静电场分布完全一样的模拟场。
静电场中带电导体的表面是等位面,模拟场中的电极即不良导体的电导率要远远大于水液的电导率,才能认为电极也是等位面。
有了“模拟场”,可以分析它与静电场的相似性。
图1 静电场模拟举例(1)静电场图2为长同轴柱面的电场。
如图2(a)所示,在真空中有一个半径为的长圆柱导体(电极)和一个半径为的长圆柱导体(电极),它们的中心轴重合。
设、的电位分别为,(接地),各带等量异号电荷,则在两电极之间产生静电场。
由于对称性,在垂直于轴的任一截面内有均匀分布的辐射状电力线(见图2(b)),电场的等位面是许多同轴管状柱面。
电力线与等位线正交,等位线是封闭线,而电力线是有头有尾的,它发自正电荷,终止于负电荷,它的方向是由正电荷指向负电荷的方向。
对中心金属圆柱,金属内部场强为0,电荷分布在金属表面,电力线应从中心圆柱柱面发出,而终止于圆筒壁的内表面。
我们在轴长方向上取一段单位长度的同轴柱面,其截面图如图2(d)所示,并设内外柱面各带电荷和。
做半径为的高斯面(柱面),设此面上的电场强度为,由高斯定理可得由式(3)就有积分上式得其中。
应用边界条件:时,;时,,分别带入(4)式,解出积分常数和,再把和的值代回(4),整理后得式(4)、(5)表示柱面之间的电位和r的函数关系,可以看出和是线性关系,并且相对电位仅是坐标的函数。
图2 长同轴柱面的电场(2)电流场如图3所示,在电极、间有电场的整个空间内填满均匀的不良导体(如水液),仿造一个与静电场完全一样的模拟场。
这个原理性的装置称为“模拟模型”。
直接测出它上面的模拟场,就可以间接地获得原静电场的分布图。
图3 同轴柱面电场模拟模型的获得为了计算电流场的电位差,先计算两柱面间的电阻,后计算电流,最后计算任意两点间的电位差。
设不良导电介质薄层(如水液)厚度为,电阻率为,则任意半径到圆周之间的电阻是:将(6)式积分得半径到半径圆周之间的总电阻:同理可得半径到半径之间的总电阻:因此,从内柱到外柱面的电流为:则外柱面()至半径处的电位:比较(5)式和(10)式可知,静电场与模拟场的电位分布是相同的。
以上是边界条件相同的静电场与电流场的电位分布相同的一个实例,电极形状复杂的静电场用解析法计算是困难的,甚至是不可能的,这时用电流场模拟静电场将显示出更大的优越性。
3.长平行导线(输电线)的电场如图4(a)所示,两圆柱形长平行导线、各带等量异号电荷,电位分别为、。
由于对称性,静电场中存在着许多水平的并与导线垂直的电力线平面,图4(a)中的平面就是其中一个。
平面的电场分布如图4(b)所示。
图4 长平行导线的电场以均匀的不良导体填满整个有电场的空间,并在电极、上接入电动势为的电池,做成如图4(c)所示的模拟模型,不良导体内电场的分布在有稳定电流的情况下不会改变。
在长平行导线的电场里,存在一个平面等位面,即过两导线垂直连线中点的平面。
因此可以将模拟模型简化。
把图4(c)的简块(原静电场的电力线平面(面)改写为表示不良导体中电力线平面(面))内两电极中间的平面等位面切开,中间夹以任意的不良导体金属板。
这样金属板与电池中间点是等电位的。
用导线把金属板和这个等位点连接起来,得到图4(d)。
这时,金属板两边的不良导体内各自的电流状态,以及金属板两边各自的电场分布完全与图4(c)的相同,并且是左右对称的。
去掉绘成虚线的半边后,剩下的半边就构成长平面导线的电场简化的模拟模型。
实验时,只要测出半边,另一半也就知道了。
前面提到的不良导体,是相对于电极的不良导体而言的。
因为只有电极的导电率大得多的时候,电流通过电极本身而产生的电位差才能忽略不计。
这样,静电场中电极是等位体的现象才能在模拟场中得以近似实现。
三、仪器静电场描绘仪电源,描绘装置,模拟模型(带电极的水槽),导电液(自来水),32开白纸(同学自备)四、实验内容和步骤1.描绘同轴电缆的等位线按图5接好线路,模拟模型中放入自来水使水深性同(约5mm),在装置的描绘台面上布置好白纸,且固定好。
先用探针定出圆心位置,按下探针上端的描绘针,白纸上就定出了圆心的位置。
接通电源,外侧电压调至10。
将按钮置“内侧”,用探针分别找出2、4、6、8的等位线。
每条等位线均匀测8个点,测绘时沿径向移动,能较快确定测绘点的数值,测绘点若能布置在4条直径上更好。
等位线测完后,以所确定圆心位置为中心,以0.5cm为半径画圆,为中心圆柱柱面;以4cm、5cm为半径作圆为圆筒的内外筒壁。
图5 电场描绘仪示意图2.用同样的测量方法,测量出两平行板的电场分布图。
3.用同样的测量方法,测量出两平行轴电线的电场分布图。
五、数据处理1.在测绘等位线图上再画出电力线分布图,作图时应在图中标出正负电荷,画出电力线方向。
电力线应与等位线正交,电力线的疏密应反映电场强度的大小。
2.根据电场强度公式,由实验得出的电位分布曲线,求出,绘制曲线图,并观察电场强度变化的规律。
六、问题讨论1.如果将电源的电压增大一倍或减小一半,等位线和电力线的形状是否变化?电场强度和电位分布是否变化?2.若在自来水的某个地方放入一块金属块,会出现什么现象?放入的是绝缘体又会出现什么现象?3.如果在实验中没有调好水槽的水平(如沿某一个方向倾斜),应出现什么现象?4.在本实验中测绘等位线为什么要使用高内阻的交流电压表?不用模拟法,可否直接测量静电场?七、注意的问题1.一条等位线上相邻两个记录点的距离约为1cm为宜,曲线急转弯或两曲线靠近处,记录应取得密一些,否则连接曲线时会遇到困难。
2.水液深度各处应该相同,否则导电液不能视为均匀的不良导体薄层,模拟场和静电场的分布不会相同。
3.由于水槽边界条件的限制(水槽边界处水液中的电流只能沿边界平行流过,等位线必然与边界垂直),边上的等位线和电力线分布严重失真,故失去模拟意义,故靠边的图线不必绘出。
4.探针较锋利,操作时应小心,以免划伤皮肤。
5.水槽使用完后,将水液倒掉,并用干布将残留水液擦拭干净,放通风处晾干,以防电极生锈。
实验二 用感应法测磁场了解载流圆线圈的磁场是研究一般载流回路的基础。
本实验用感应法测定圆线圈的交流磁场,从而掌握低频交变磁场的测定方法,以及了解如何用探测线圈确定磁场方向。
一、 目的1. 掌握感应法测磁场的原理和方法。
2. 研究单只载流圆线圈和亥姆霍兹线圈轴线上及周围的磁场分布。
二、 原理法拉第电磁感应定律指出,处于磁场中的导体回路,其感应电动势的大小与穿过它的磁通量的变化率成正比。
因此,可以通过测定探测线圈中的感应电动势来确定磁场量。
1. 均匀磁场的测定 设被测磁场为均匀分布的交变磁场,如图1穿过探测线圈的磁通量为:式中,、分别为探测线圈的匝数和面积,为磁感应强度的峰值,为交变磁场的角频率,为探测线圈法线与磁场之间的夹角。
线圈中的感应电动势为:式中,为感应电动势的峰值。
由于探测线圈的内阻远小于毫伏表的内阻,可忽略线圈上的压降。
故毫伏表的读数(有效值)与感应电动势的峰值之间有如下关系:由上式可知,当或时,毫伏表读数有极大值:。
显然,由毫伏表测出的最大值可确定磁感应强度的峰值:n 图1磁感应强度的方向,可通过毫伏表读数的最小值来确定。
式(3)对求导得:容易看出,当或时,毫伏表读数对夹角的变化最大。
此时,探测线圈只要稍微有转动,便可引起毫伏表读数的明显变化。
利用这一特征,可准确地确定探测线圈的方位。
如图2所示,此时探测线圈法线方向与磁感应强度方向垂直。
2.非均匀磁场的测定为测定非均匀磁场,探测线圈的面积必须很小。
但由公式(3)看出,此时毫伏表的读数也将变得很小,即探测线圈的灵敏度降低,不利于测量。
为克服这一矛盾,设计了如图3所示的探测线圈。
用增加匝数的方法来提高它的灵敏度。
可以证明在线圈体积适当小的前提下,当时,探测线圈几何中心处的磁感应强度仍可用(4)式表示。
代入各匝线圈的平均面积,则式(4)可写成:即与保持线性关系。
故可通过测定来测定的大小和方向。