统计数据整理的步骤
- 格式:docx
- 大小:3.90 KB
- 文档页数:3
第三章统计整理【教学目的】1. 深刻理解统计分组的作用,并且能够对不同的社会经济现象进行统计分组2. 运用分配数列对原始数据进行系统整理3. 制作统计表,运用计算机绘制统计图【教学重点】1. 能够对不同的社会经济现象进行统计分组2. 运用分配数列对原始数据进行系统整理3. 制作统计表,运用计算机绘制统计图【教学难点】1. 运用分配数列对原始数据进行系统整理2. 制作统计表,运用计算机绘制统计图【教学时数】教学学时为8 课时【教学内容参考】第一节统计整理的意义一、统计整理的意义统计整理,就是根据统计研究的目的和任务的要求,对统计调查所搜集到的原始资料进行分组、汇总,使其条理化、系统化,从而得到表现总体特征的综合统计资料的工作过程。
对于已整理过的初级资料进行再整理,也属于统计整理。
统计调查取得的各种原始资料是分散的、不系统的,只能表明各个被调查单位的具体情况,反映事物的表面现象或一个侧面,不能说明事物的总体情况与全貌。
因此,只有对这些资料进行加工、整理,才能认识事物的总体及其内部联系。
例如,工业企业普查中,所调查的每个工业企业资料,只能说明每个工业企业的经济类型、注册资本、职工人数、工业总产值、工业增加值、实现利税等具体情况。
必须通过对所有资料进行分组、汇总等加工处理后,才能得到全国工业企业的综合情况,从而分析工业企业的构成、经营状况等,达到对全国工业企业的全面的、系统的认识。
统计整理是统计调查的继续,也是统计分析的前提,它在统计研究中起着承前启后的作用。
因此,资料整理得是否正确,直接决定着整个统计研究任务的完成,不恰当的加工整理,不完善的整理方法,往往使调查得来的丰富、完备的资料失去价值。
因此,必须十分重视统计整理工作。
二、统计整理的步骤统计整理的基本步骤是:(一)对原始资料进行审查。
1. 审查被调查单位的资料是否齐全;2. 应审查数据是否准确。
审查的办法主要有:①逻辑审查:主要是从定性角度审查数据是否符合逻辑,内容是否合理,各项目或数量之间有无相互矛盾的现象。
第二节统计整理一、统计整理的概念和意义统计整理是指根据统计研究的目的和任务,对统计调查或科学实验获得的大量原始资料进行科学的分类、汇总,或对已经加工过的资料进行再加工,使之成为系统化、条理化、标准化的能反映总体特征的综合统计资料的工作过程。
通过统计调查或实验,我们取得了大量的原始资料,但这些原始资料一般是分散的、不系统的个体资料。
它们只能说明总体各单位的具体情况,而不能说明总体特征,难以反映总体的全貌情况。
用这样的资料,无法从总体上认识和研究社会经济现象的数量表现,无法揭示社会经济现象发展变化的本质和规律。
因此,必须对这些分散的、不系统的个体资料采用科学的方法进行加工、整理、汇总,使之成为系统化、条理化、标准化的能反映总体特征的综合统计资料,并以此计算各种反映总体特征的综合指标,认识社会经济现象的总体特征和全貌,认识、分析社会经济现象的本质和发展变化规律。
可见,统计整理不是单纯的数据汇总,而是运用科学的方法,对调查资料进行分类和综合,从感性认识上升到理性认识。
它是从对社会经济现象个体量的认识到社会经济现象总体量的认识的连接点,是统计调查的继续,是统计显示与分析的前提和基础,在整个统计工作中起着承前启后的作用。
统计数据整理的质量,直接影响着统计工作的成果。
二、统计整理的内容统计整理的内容,主要包括以下几个方面:(1)对原始资料进行审核与检查,如果发现被调查单位的资料不齐全或有差错,要及时查询订正。
(2)对各项指标进行综合汇总,并按调查和分析目的的要求进行各种分组,汇总出各组单位数和各项指标的总数。
(3)将汇总的结果编制成统计表与统计图,以便进一步分析和应用。
三、统计整理的方法与步骤(一)统计分组统计分组是根据研究的任务和对象的特点,按照某种分组标志将统计总体分为若干组成部分。
理解统计分组的概念要注意三点:(1)统计分组的对象是总体。
(2)统计分组应有分组标志。
(3)统计分组对总体而言是“分”,对总体单位而言是“合”。
浅谈统计数据整理的一般问题摘要通过各种渠道将统计数据搜集上来,首先应对这些数据进行加工整理,使之系统化、条理化,以符合统计分析的要求,关键词:统计数据整理;概念;步骤一、统计整理的一些基本概念1 总体和总体单位(1)总体和总体单位密切联系在一起,但两者不是固定不变的,随着研究目的和任务的改变,总体和总体单位就会发生变化。
例如,调查全县各镇的工业生产情况,则全县的所有镇构成总体,每个镇是总体单位。
如果任务是调查了解某个镇的工业生产情况,则该镇的每个工业企业是总体单位,该镇的所有工业企业构成总体,对这个镇来说,在前一个调查任务中,它是总体单位,而在后一个调查任务中,它是总体。
(2)总体的特征①同质性。
是指构成总体的各个单位必须在某一(些)方面是相同的。
例如,调查了解某镇工业生产情况,那么构成总体的每个单位必须有共同性,即每个总体单位必须是工业企业并且是该镇所属。
同质性是构成总体的首要条件。
②大量性。
统计总体必须由足够多的单位组成,仅是个别单位或少数单位不能形成总体。
因为统计研究的目的是为了从数量方面揭示社会经济现象的本质特征和规律性,只有从大量现象的普遍联系中才能表现出来,个别单位和少数单位的特征难以反映现象的本质和规律性。
③变异性。
构成总体的各个单位在某些方面是相同的,但在其他方面则各不相同,具有质的差别和量的差别,这种差别称为变异。
(3)总体的分类。
统计总体按其包括的单位数的限度,可分为有限总体和无限总体。
一个统计总体中包括的单位数如果是有限的,称为有限总体。
例如,某厂职工人数、某市工业企业个数、某市人口总数等都是有限总体。
一个统计总体中包括的单位数如果是无限的或者在一定的条件下是无法确定的,则称为无限总体。
例如,某种野生动物的数量是难以确定的,则可以称为无限总体。
对无限总体无法进行全面调查了解。
2 标志和标志值标志是说明总体单位特征的名称。
标志的具体表现称为标志值。
如职工的年龄有18岁、19岁、21岁……。
数据的搜集与整理技巧在当今信息爆炸的时代,数据搜集和整理技巧成为了我们日常工作和生活中不可或缺的一部分。
对于个人、企业和学术界来说,有效地收集和整理数据能够提供有用的信息,帮助我们做出更好的决策和判断。
本文将介绍一些常用的数据搜集和整理技巧,以便读者能够更好地掌握并利用数据。
一、确定数据需求在开始搜集和整理数据之前,我们首先需要明确自己的数据需求。
明确的数据需求能够帮助我们更有针对性地去搜集和整理数据,避免浪费时间和资源。
我们可以思考以下问题来确定数据需求:我需要什么类型的数据?数据的来源是什么?我需要多少数据?数据的更新频率是多久?明确了这些问题后,我们就可以更加有目的地去搜集和整理数据。
二、选择合适的搜集方法针对不同的数据需求,我们可以选择不同的搜集方法。
以下介绍几种常用的搜集方法。
1. 问卷调查:通过设计和发放问卷,可以搜集到大量的主观数据和量化数据。
在设计问卷时,需要注意问题的合理性和选项的多样性,以便得到客观准确的数据。
2. 实地观察:直接去现场进行数据的观察和记录,可以获得真实和直观的数据。
实地观察通常适用于需要了解特定环境或行为的数据需求。
3. 文献研究:通过查阅已有的文献资料,可以获取到相关领域的研究成果和统计数据。
这种方法适用于需要进行背景研究和综合分析的数据需求。
4. 数据库检索:利用各类数据库进行数据检索,可以获取到大量的统计数据和实证研究成果。
在进行数据库检索时,需要根据自己的数据需求选择合适的数据库和检索关键词。
三、整理数据的基本步骤当我们搜集到一定量的数据后,就需要进行数据的整理和整合,以便我们更好地理解和分析数据。
以下是数据整理的基本步骤。
1. 数据清洗:将收集到的原始数据进行筛选和清理,剔除错误、无效或重复的数据。
数据清洗是保证后续分析的数据准确性和可靠性的重要步骤。
2. 数据归类:将数据按照特定的分类标准进行分组和归类。
通过归类可以使数据更具有结构性,便于我们后续的分析和使用。
简述统计的工作过程
统计的工作过程可以分为以下几个步骤:
1. 确定目标:首先需要明确统计的目标和目的。
确定要研究的问题是什么,需要收集哪些数据,以及想要得到什么样的结果。
2. 收集数据:根据确定的目标,收集与问题相关的数据。
数据可以通过实地调查、问卷调查、观察、实验等方式获得。
在收集数据的过程中,需要注意数据的准确性和完整性。
3. 数据整理和清洗:收集到的数据可能存在错误、缺失或不完整的情况。
在进行统计分析之前,需要对数据进行整理和清洗,包括删除重复数据、修正错误数据、填充缺失值等操作。
4. 数据分析:使用统计学方法对整理后的数据进行分析。
常用的统计分析方法包括描述统计、推断统计、回归分析、方差分析等。
根据具体的问题和数据类型选择合适的统计方法进行分析。
5. 结果解释和报告:对分析结果进行解释,得出结论,并撰写统计报告。
报告应包括数据的描述、分析方法、结果和结论,以及可能的局限性和建议等内容。
6. 结果应用:根据统计分析的结果,对问题进行决策或采取相应的行动。
统计结果可以用于支持政策制定、市场调研、产品改进等决策过程。
统计的工作过程是一个从确定目标、收集数据、整理清洗数据、进行统计分析、解释结果和应用结果的过程。
通过这个过程,可以对问题进行客观、科学的研究和分析。
简述统计数据整理的步骤
统计数据整理的步骤可以分为以下五个步骤:
1. 数据收集:收集相关的统计数据,可以通过问卷调查、实地观察、采访等方式获得数据。
2. 数据清洗:对收集到的数据进行初步清洗,包括查找和修正数据中的错误、填补缺失数据、删除重复数据等处理。
3. 数据整理:对清洗后的数据进行整理和归类,可以通过建立表格、图表或数据库等形式进行整理,便于后续分析和使用。
4. 数据分析:根据整理后的数据,进行统计分析,包括描述性统计(如均值、中位数、标准差等),推断性统计(如假设检验、置信区间等)等方法。
5. 结果呈现:将分析后的统计结果以适当的形式呈现,可以使用统计图表、报告、演示文稿等方式展示结果。
同时,对分析结果进行解释和讨论,提出可能的应用和建议。
数据统计学处理的基本步骤数据统计学是一门研究如何收集、整理、分析和解释数据的学科。
在当今信息化的时代,数据处理已成为各行各业的重要工作之一。
因此,学习数据统计学处理的基本步骤对于我们更好地应对现实生活和工作中的数据处理问题具有重要的意义。
一、数据的收集数据的收集是数据统计学处理的第一步。
在数据收集过程中,我们需要明确数据收集的目的和数据来源,以及数据的类型和数量。
数据的收集方式多种多样,例如问卷调查、实验观测、统计报表等。
在收集数据的过程中,我们需要注意数据的真实性、准确性和完整性,以保证后续的数据处理结果的可靠性。
二、数据的整理与清洗数据的整理与清洗是数据统计学处理的第二步。
在数据整理与清洗过程中,我们需要对收集到的数据进行初步的整理和清洗,以确保数据的规范化和标准化。
具体来说,我们需要对数据进行分类、排序、筛选、填充等操作,以确保数据的完整性和一致性。
同时,我们还需要进行数据的去重和异常值的处理,以消除数据中可能存在的噪声和错误。
三、数据的分析与处理数据的分析与处理是数据统计学处理的核心步骤。
在数据分析和处理过程中,我们需要根据数据的类型和分布特征,选择适当的统计方法和工具,对数据进行分析和处理。
具体来说,我们可以采用描述性统计、推断性统计、回归分析、聚类分析等方法,对数据进行分组、统计、比较、预测等操作,以获取数据的特征、趋势和规律。
四、数据的解释与应用数据的解释与应用是数据统计学处理的最终目的。
在数据解释和应用过程中,我们需要将数据处理结果进行解释和说明,以便于更好地理解数据的含义和价值。
同时,我们还需要将数据处理结果应用到实际问题中,以解决现实生活和工作中的实际问题。
例如,我们可以利用数据分析结果进行市场调研、产品设计、生产管理、财务决策等方面的应用。
总之,数据统计学处理是一门非常重要的学科,它可以帮助我们更好地理解和处理数据,解决实际生活和工作中的问题。
在学习数据统计学处理的过程中,我们需要掌握数据的收集、整理、分析和解释等基本步骤,以及相应的方法和工具。
统计数据整理的步骤
数据是现代社会中不可或缺的一部分,通过对数据的统计和整理可以帮助我们了解事物的发展趋势、分析问题的原因和解决方法。
而在进行统计数据整理时,我们需要按照一定的步骤进行,以确保数据的准确性和可靠性。
下面将介绍统计数据整理的主要步骤。
一、确定统计目的和对象
在进行统计数据整理之前,我们首先需要明确统计的目的和对象。
明确统计目的能帮助我们更准确地选择和运用统计方法,而明确统计对象则是为了确定需要收集哪些数据。
二、收集数据
收集数据是统计数据整理的重要一步。
我们可以通过调查问卷、实地调研、网络搜索等方式来收集数据。
在收集数据时,需要注意数据的来源和可靠性,避免出现虚假或不准确的数据。
三、清洗数据
在收集到数据之后,我们需要对数据进行清洗。
清洗数据是为了排除掉错误的数据和异常值,以确保数据的准确性。
清洗数据的过程包括查找和修正错误数据、删除重复数据、处理缺失值等。
四、整理数据
整理数据是将收集到的数据按照一定的规则和格式进行整理。
首先,
我们需要对数据进行分类,将不同类型的数据分开存放。
其次,可以对数据进行编码和标记,以便后续的分析和使用。
最后,还可以对数据进行归纳和汇总,以便更好地理解和解释数据。
五、分析数据
分析数据是统计数据整理的核心步骤。
通过对数据的分析,我们可以发现数据中的规律和趋势,为后续的决策和规划提供依据。
分析数据的方法包括描述统计、推断统计、回归分析、时间序列分析等。
六、呈现数据
数据的呈现是将统计结果以图表、表格、报告等形式展示出来,以便更直观地传达统计结果。
在呈现数据时,需要选择合适的图表和表格类型,并注意图表和表格的标签、标题和注释,使其更易于理解和解读。
七、解释数据
解释数据是对统计结果进行分析和说明,以便他人能够理解和应用统计结果。
在解释数据时,需要注意数据的背景和前提条件,避免误导或歧义。
八、验证数据
验证数据是为了确保统计结果的准确性和可靠性。
我们可以通过对数据进行重复统计、比较不同统计方法的结果、进行抽样调查等方式来验证数据的正确性。
九、总结和反思
在完成统计数据整理后,我们需要对整个过程进行总结和反思。
总结是为了总结经验和教训,为以后的统计工作提供参考。
反思是为了发现和改进统计数据整理的不足之处,提高统计工作的质量和效率。
通过以上的步骤,我们可以对统计数据进行科学、系统的整理,为后续的分析和决策提供准确、可靠的依据。
统计数据整理虽然是繁琐的工作,但却是非常重要的一环,只有通过科学的统计数据整理,才能使数据发挥最大的价值,为社会的发展和进步做出贡献。