直接序列扩频通信系统的误码率仿真
- 格式:doc
- 大小:119.50 KB
- 文档页数:11
目录摘要 (1)第一章绪论 (1)第二章扩展频谱基本原理 (2)第三章直接序列扩频基本模型 (5)第四章MATLAB对直接扩频系统的仿真 (10)码产生模块 (10).数据产生模块 (11).扩频解扩模块 (12).调制与解调模块 (14)调制在时域上是将信号与载波进行相乘,在频域上是将信号频谱进行搬移,搬到以载波频率为频域中心的频域轴上。
在这个系统中我采用的是QPSK调制解调方式,考虑到以后的仿真运算量等情况,系统的载波频率设为扩频码的频率,即扩频码的长度,这即是刚把扩频信号的频谱进行了搬移,其过程如下文所述。
(14).相关模块 (15). 计算误码率模块 (15)第五章扩频系统抗干扰的研究 (17)白噪声干扰及其理论说明 (17).扫频干扰的仿真 (24).多频干扰 (35).单频干扰 (40)摘要本文首先从香农定理分析,得到了无误差传输系统中信噪比和带宽是可以互换的。
接着介绍了扩频通信的几种方式,并把讨论的重点放在了直接序列扩频系统,还介绍了用QPSK调制方式对扩频信号进行调制。
本文用MATLAB对直接序列扩频系统进行了仿真,文中对所仿真的各个模块进行了叙述。
在对直接序列扩频系统进行分析时,用了不同形式的干扰测试了系统性能,这些方式中重点分析了白噪声干扰和扫频干扰。
并从仿真数据和理论上证实,直扩系统不能对白噪声干扰进行有效的抵抗。
在扫频干扰时,分别从连续扫频干扰方式和间断扫频干扰方式两个方面进行了分析仿真,并得出,对于一些扩频码,扫频干扰强于白噪声干扰,提出了以基带为干扰带宽的间断干扰方式的一种干扰形式,这种干扰形式的干扰效果强于其它干扰。
最后还做了多频干扰,单频干扰。
本文的关键词:直接序列扩频白噪声干扰扫频干扰多频干扰AbstractAccording to Shanon Theory, we got the inclusion that SNR and bandwidth can be offset mutually in the inerrant channel. signal should be widen. Then the conception of spread spectrum was produced. Some spread spectrum modes were introduced and the key point was put on the direct spread spectrum system. Modulating the spread spectrum signal using QPSK mode. Simulating the direct spread spectrum system using MATLAB. The paper depicted the modules need to be simulated in detail. Different noises were used to test the performance of the system, such as white noise and chirp. We can got the inclusion that the direct spread spectrum system can not resist the white noise efficiently. When using chirp, two modes were introduced: continuous mode and discontinuous mode. In some spread spectrum codes, chirp was more fierce than white noise. Multiple-Tone and Single-tone were included also..Keyword: direct spread spectrum system, white noise interfere, chirp, Multiple-Tone.第一章绪论21世纪,是信息技术与生物技术蓬勃发展的世纪,在刚进入这个世纪,一个振奋人心的好消息带给了我们,以大唐代表中国向ITU提交的第三代移动通信(3G)标准TD-SCDMA已经开始了实地测试,这是中国首次提出自己的标准和建议,而这也标志着我们正在进行着第四次科技革命――信息技术革命。
直接序列扩频系统的SIMULINK建模与仿真一.直接扩频发射机系统设数据传输率为100 bps,扩频码片速率为2000chip/s,采用m序列作为扩频序列,以BPSK为调制方式。
试建立扩频系统仿真模型并仿真观察其数据波形、扩频输出波形以及扩频调制输出的频谱。
仿真模型如图5-1所示。
Bernoulli Binary Generator用于产生数据流,其采样时间设置为0.01s,这样输出的数据速率为100bps。
PN Sequence Generator用于产生伪随机扩频序列,其采样时间设置为0.0005s,这样输出的码片速率为2000chip/s。
为了使扩频模块(乘法器)上的数据采样速率相同,需要对数据流进行升速率处理。
Unipolar yo Bipolar Converter用于完成数据和扩频序列的双极性变换。
乘法器输出就是扩频输出,其码速率等于采样速率,即每个采样点代表一个码片。
扩频输出信号以BPSK方式进行调制。
模型中采用了调制的等效低通模型来实现,调制输出信号是复信号,采样率为2000次/s。
调制也可采用通带模型来实现。
为了使频谱观察范围达到4kHz,需要被观察信号的采样率达到8000次/s,为此,以升速率模块配合采样保持模块将调制输出信号采样率提高到8000次/s。
图5-1 直接扩频发射机仿真系统模型仿真执行后,两个频谱仪将分别显示扩频前后的信号频谱,采用BPSK调制的等效低通模型时,调制前后的功率频谱相同,如图5-2所示。
可见,数据信号的带宽约100Hz,其功率峰值约为20dB处,而扩频输出信号带宽展宽了20倍,为2kHz,而功率峰值下降到约7dB处。
仿真输出的时域波形结果如图5-3所示,图中显示了数据流、PN序列以及扩频输出信号的波形,当数据为+1时,扩频输出就是对应的PN序列,当数据为-1时,扩频输出是PN序列的反相结果。
图5-2 直接扩频发射机扩频前后的信号频谱仿真结果分析:图5-2分别为扩频之前与扩频之后的频谱图,由图可知,数据信号的带宽约100Hz,其功率峰值约为20dB处,而扩频输出信号带宽展宽了20倍,为2kHz,而功率峰值下降到约7dB处。
1、生成m序列及m序列性质实验产生7位m序列,频率100Hz,模拟线性反馈移位寄存器序列,原理图如下:clear all;clc;X1=0;X2=0;X3=1;m=350; %重复50遍的7位单极性m序列for i=1:mY3=X3; Y2=X2; Y1=X1;X3=Y2; X2=Y1;X1=xor(Y3,Y1);L(i)=Y1;endfor i=1:mM(i)=1-2*L(i); %将单极性m序列变为双极性m序列endk=1:1:m;figure(1)subplot(3,1,1) %做m序列图stem(k-1,M);axis([0,7,-1,1]);xlabel('k');ylabel('M序列');title('移位寄存器产生的双极性7位M序列') ;subplot(3,1,2)ym=fft(M,4096);magm=abs(ym); %求双极性m序列频谱fm=(1:2048)*200/2048;plot(fm,magm(1:2048)*2/4096);if x_rand(i)>=0.5 %大于等于0.5的取1,小于0.5的取0x(i)=1;a=a+1;else x(i)=0;endendt=0:N-1;figure(2) %做信息码图subplot(2,1,1)stem(t,x);title('扩频前待发送二进制信息序列');tt=0:349;subplot(2,1,2)l=1:7*N;y(l)=0;for i=1:Nk=7*i-6;y(k)=x(i);k=k+1;y(k)=x(i);k=k+1;y(k)=x(i);k=k+1;y(k)=x(i);k=k+1;y(k)=x(i);k =k+1;y(k)=x(i);k=k+1;y(k)=x(i);ends(l)=0;for i=1:350 %扩频后,码率变为100/7*7=100Hzs(i)=xor(L(i),y(i));endtt=0:7*N-1;stem(tt,s);axis([0,350,0,1]);title('扩频后的待发送序列码');N=400000;ybb=fft(s_bpskb,N); %无扩频信号BPSK调制频谱magb=abs(ybb);fbb=(1:N/2)*100000/N;subplot(2,1,1)plot(fbb,magb(1:N/2)*2/N);axis([1700,2300,0,0.8]);title('扩频前调制信号频谱');xlabel('Hz');subplot(2,1,2)yb=fft(s_bpsk,N); %扩频信号BPSK调制频谱mag=abs(yb);fb=(1:N/2)*100000/N;plot(fb,mag(1:N/2)*2/N);axis([1700,2300,0,0.8]);title('扩频后调制信号频谱');xlabel('Hz');title('扩频后经加噪过信道后的信号与原信号时域波形对比'); xlabel('t');axis([0.0675,0.0725,-1.2,1.2]);subplot(2,2,2)ybba=fft(s_bpskba,N); %无扩频调制信号经信道后频谱分析magba=abs(ybba);plot(fbb,magba(1:N/2)*2/N);title('扩频前经信道调制信号频谱');axis([1700,2300,0,0.8]);xlabel('Hz');subplot(2,2,4)yba=fft(s_bpska,N); %扩频调制信号经信道后频谱分析maga=abs(yba);fb=(1:N/2)*100000/N;plot(fb,maga(1:N/2)*2/N);axis([1700,2300,0,0.8]);xlabel('Hz');title('扩频后经信道调制信号频谱');幅,符合高斯白噪声的原理。
课程实验报告课程3G移动通信实验实验名称多用户CDMA直接序列系统扩频仿真学院通信工程专业通信工程班级13083414学号13081403学生姓名一、实验内容【实验目的】⏹加深对CDMA扩频系统的理解;⏹能够使用Matlab语言完成简化的CDMA直接序列扩频系统仿真和分析;【实验内容】⏹使用Matlab语言完成扩频系统仿真;⏹分析误比特率;【实验设备】⏹一台PC 机【实验步骤】生成4个用户的信息码,分别用各自的扩频码进行扩频,然后按照图3的原理进行发送、接收,统计误比特率。
其中噪声为高斯白噪声awgn,信噪比可以取2dB。
【实验报告】按照要求完成实验报告。
实验报告中要求画出实验步骤中的波形图,并对实验结果进行总结。
【实验原理】直接序列扩频系统采用高码速率的直接序列(Direct Sequence,DS),伪随机码在发端进行扩频,在收端用相同的码序列去进行解扩,然后将展宽的扩频信号还原成原始信息。
直接序列扩频系统的发射机和接收机框图如图1所示。
二、仿真程序及说明ex_f.m:function m = ex_f(mt,pn)%ex_f 用pn序列扩频mt% 返回mt与pn大小乘积的序列m=reshape((mt'*pn)',1,[]);endde_f.m:function d = de_f( s,pn )%de_f decode the exfrequncy modulate% s->the seq need decode, length of s must be intergally larger than length of pn d_l=s.*ex_f(ones(1,length(s)/length(pn)),pn);d=sum(reshape(d_l,length(pn),[]))/length(pn);endmultiuser.m:H2=[1 1;1 -1];NH2=H2*(-1);H4=[H2 H2;H2 NH2];NH4=H4*(-1);H8=[H4 H4;H4 NH4];NH8=H8*(-1);H16=[H8 H8;H8 NH8];NH16=H16*(-1);H32=[H16 H16;H16 NH16];NH32=H32*(-1);H64=[H32 H32;H32 NH32]; %产生walsh64扩频码%p1=H64(5,:);p2=H64(10,:);p3=H64(15,:);p4=H64(20,:);m1t=mod(fix(randn(1,16)),2)*2-1; %产生4个用户的随机序列%m2t=mod(fix(randn(1,16)),2)*2-1;m3t=mod(fix(randn(1,16)),2)*2-1;m4t=mod(fix(randn(1,16)),2)*2-1;s1=ex_f(m1t,p1); %对四个用户进行扩频%s2=ex_f(m2t,p2);s3=ex_f(m3t,p3);s4=ex_f(m4t,p4);s=s1+s2+s3+s4; %合并并通过AWGN信道%s=awgn(s,0.01);d1=de_f(s,p1); %解扩频%d2=de_f(s,p2);d3=de_f(s,p3);d4=de_f(s,p4);d1=d1./abs(d1); %判决%d2=d2./abs(d2);d3=d3./abs(d3);d4=d4./abs(d4);err1=sum(abs(m1t-d1)/2); %统计误码%err2=sum(abs(m2t-d2)/2);err3=sum(abs(m3t-d3)/2);err4=sum(abs(m4t-d4)/2);subplot(4,2,1)stairs(m1t);title('用户1消息序列')axis([1 16 -1.5 1.5]);subplot(4,2,3)stairs(m2t);title('用户2消息序列')axis([1 16 -1.5 1.5]);subplot(4,2,5)stairs(m3t);title('用户3消息序列')axis([1 16 -1.5 1.5]);subplot(4,2,7)stairs(m4t);title('用户4消息序列')axis([1 16 -1.5 1.5]);subplot(4,2,2)stairs(d1);title(['用户1接收序列' '(' '误码:' num2str(err1) '误码率:' num2str(err1/16) ')']) axis([1 16 -1.5 1.5]);subplot(4,2,4)stairs(d2);title(['用户2接收序列' '(' '误码:' num2str(err2) '误码率:' num2str(err2/16) ')']) axis([1 16 -1.5 1.5]);subplot(4,2,6)stairs(d3);title(['用户3接收序列' '(' '误码:' num2str(err3) '误码率:' num2str(err3/16) ')']) axis([1 16 -1.5 1.5]);subplot(4,2,8)stairs(d4);title(['用户4接收序列' '(' '误码:' num2str(err4) '误码率:' num2str(err4/16) ')']) axis([1 16 -1.5 1.5]);总结扩频通信是用pn码去扩展每一个信号周期。
直接序列扩频通信系统误码率的仿真分析
高丙坤;阎胜玉;袁静;朴晓光;姚鹏举
【期刊名称】《东北石油大学学报》
【年(卷),期】2002(026)002
【摘要】根据香农定理和柯捷尔尼可夫潜在抗干扰理论,借助MatLab工具箱和Monte Carlo仿真算法,建立了直接序列扩频通信系统仿真模型. 通过分析无干扰时的误码率仿真曲线与理论计算值,证明了所建仿真模型的正确性. 以此为基础,研究了扩频处理增益、正弦干扰信号振幅与误码率的关系,结果表明:在相同信噪比下,处理增益越大,误码率越小,特别是大信噪比时,这种差别尤为明显;而在处理增益不变时,正弦干扰信号振幅增加,误码率则增大.
【总页数】3页(P40-42)
【作者】高丙坤;阎胜玉;袁静;朴晓光;姚鹏举
【作者单位】大庆石油学院,电气信息工程学院,黑龙江,安达,151400;大庆石油学院,电气信息工程学院,黑龙江,安达,151400;西安电子科技大学,通信工程学院,陕西,西安,710071;大庆石油学院,电气信息工程学院,黑龙江,安达,151400;大庆石油管理局,电力总公司,黑龙江,大庆,163453
【正文语种】中文
【中图分类】TN919.71
【相关文献】
1.基于MATLAB的直接序列扩频通信系统性能仿真分析研究 [J], 张蕾;郑实勤
2.基于System View的直接序列扩频通信系统仿真分析 [J], 曾令国
3.基于MATLAB的直接序列扩频通信系统性能仿真分析 [J], 史玥
4.基于LabVIEW-USRP的直接序列扩频通信系统仿真实验 [J], 李毅;杨栋;李晓辉
5.基于Simulink的直接序列扩频通信系统仿真研究 [J], 王家明;於维程;何勇;王炜;孙晨
因版权原因,仅展示原文概要,查看原文内容请购买。
直接序列扩频通信系统仿真设计直接序列扩频通信系统是一种常用于无线通信中的传输技术,可用于提高通信质量和抗干扰能力。
其基本原理是将原始信号乘以一个扩频码序列,使得信号的带宽变宽,从而提高信号的抗干扰能力。
本文将对直接序列扩频通信系统进行仿真设计,包括系统结构、信号处理和性能评估等方面。
一、系统结构设计1.发送端设计发送端主要包括原始信号处理和扩频处理两个模块。
原始信号处理模块用于将待传输的信息编码成数字信号,可以采用各种调制技术(如二进制调制);扩频处理模块将原始信号乘以扩频码序列,以实现信号的扩频。
2.接收端设计接收端主要包括解扩和信号恢复两个模块。
解扩模块对接收到的信号进行解扩,即将信号除以扩频码序列;信号恢复模块对解扩后的信号进行滤波和解调,最终得到原始信号。
二、信号处理设计信号处理是直接序列扩频通信系统中的关键环节,对其性能和抗干扰能力起着决定性作用。
下面将详细介绍信号处理的设计。
1.扩频码序列设计扩频码序列的设计非常重要,它直接影响到扩频通信系统的性能。
常用的扩频码序列有伪随机码(PN码)和正交码等,可以通过Matlab等工具进行生成和优化。
2.扩频处理设计扩频处理是将原始信号与扩频码序列进行乘积运算的过程。
可以采用数字乘法器或卷积器等方式实现,具体实现方式需要根据实际情况确定。
3.解扩和信号恢复设计解扩和信号恢复是接收端的重要环节,其中解扩模块用于将接收到的信号除以扩频码序列,信号恢复模块用于对解扩后的信号进行滤波和解调。
滤波器可以采用低通滤波器,解调方式可以根据信号特点选取。
三、性能评估设计对于直接序列扩频通信系统的性能评估,一般需要考虑以下几个方面:1.误码率评估误码率是衡量通信系统性能的重要参数。
可以通过对接收到的信号进行解码和比对的方式来评估误码率,并与理论值进行比较。
2.抗干扰性能评估扩频通信系统的抗干扰能力是其核心优势之一、可以通过仿真添加干扰信号,并比较接收到的信号与原始信号的相关性来评估抗干扰性能。
直接序列扩频通信系统仿真设计直接序列扩频(Direct Sequence Spread Spectrum)通信系统是一种广泛应用于无线通信领域的通信技术,它通过将原始信号与伪随机噪声序列进行逐位相乘,从而将信号的带宽扩展到噪声频谱的宽度,从而实现抗干扰和保密性能的显著提高。
本文将通过仿真设计一个直接序列扩频通信系统,详细介绍其工作原理和仿真过程。
直接序列扩频通信系统由发送端和接收端组成。
在发送端,原始信号经过码片发生器生成伪随机噪声序列,并与原始信号进行逐位相乘得到扩频信号。
扩频信号经过调制器进行调制,然后经过发射机发送到接收端。
在接收端,接收到的信号经过解调器进行解调,然后通过相关器与伪随机噪声序列相乘得到原始信号。
首先,需要设计码片发生器。
伪随机噪声序列在直接序列扩频通信系统中起到关键作用,它决定了信号的扩展带宽和抗干扰性能。
常用的伪随机噪声序列有伪随机码生成器(PN码)和高斯白噪声序列(AWGN)。
在仿真中,可以选择PN码作为伪随机噪声序列。
PN码的生成方式有很多,其中最常见的是使用移位寄存器和反馈电路生成的线性反馈移位寄存器(LFSR)。
其次,需要设计调制器和解调器。
在直接序列扩频通信系统中,常用的调制方式有二进制相移键控(BPSK)和四进制相移键控(QPSK)。
在仿真中,可以选择BPSK作为调制方式。
解调器与调制器相反,将接收到的扩频信号与伪随机噪声序列相乘得到原始信号。
最后,需要设计发射机和接收机。
发射机通过电路将调制后的扩频信号发射出去,接收机将接收到的信号通过电路进行放大和解调处理,从而得到原始信号。
在仿真中,可以使用MATLAB等仿真软件来实现直接序列扩频通信系统。
首先,定义参数包括信号的比特率、码片周期、发射功率等。
然后,生成随机的原始信号数据。
接下来,根据参数生成伪随机噪声序列。
将伪随机噪声序列与原始信号进行逐位相乘得到扩频信号。
通过调制器进行调制,得到调制后的信号。
在接收端,通过解调器解调接收到的信号,得到解调后的扩频信号。
基于matlab的直接序列扩频通信系统仿真基于MATLAB的直接序列扩频通信系统仿真1.实验原理:直接序列扩频(DSSS)是直接利用具有高码率的扩频码系列采用各种调制方式在发端与扩展信号的频谱,而在收端,用相同的扩频码序去进行解扩,把扩展宽的扩频信号还原成原始的信息。
它是一种数字调制方法,具体说,就是将信源与一定的PN码(伪噪声码)进行摸二加。
例如说在发射端将"1"用11000100110,而将"0"用00110010110去代替,这个过程就实现了扩频,而在接收机处只要把收到的序列是11000100110就恢复成"1"是00110010110就恢复成"0",这就是解扩。
这样信源速率就被提高了11倍,同时也使处理增益达到 10DB以上,从而有效地提高了整机倍噪比。
1.1 直扩系统模型直接序列扩频系统是将要发送的信息用伪随机码(PN码)扩展到一个很宽的频带上去,在接收端用与发送端相同的伪随机码对接收到的扩频信号进行相关处理,恢复出发送的信号。
对干扰信号而言,与伪随机码不相关,在接收端被扩展,使落入信号通频带内的干扰信号功率大大降低,从而提高了相关的输出信噪比,达到了抗干扰的目的。
直扩系统一般采用频率调制或相位调制的方式来进行数据调制,在码分多址通信中,其调制多采用BPSK、DPSK、QPSK、MPSK 等方式,本实验中采取BPSK方式。
直扩系统的组成如图1所示,与信源输出的信号a(t)是码元持续时间为Ta的信息流,伪随机码产生器产生伪随机码c(t),每个伪随机码的码元宽度为Tc (Tc<<Ta)。
将信息码与伪随机码进行相乘或模二加,产生一速率与伪随机码速率相同的扩频序列,这时信息带宽已经被展宽(如图2b),然后用扩频序列去调制载波,则信号频谱被搬移到射频上(如图2c )。
在接收端,接收到的信号经混频后,用与发射同步的伪随机码对中频信号进行相关解扩,将信号的频带恢复为信息的频带,然后再进行解调,恢复出所传送的信息a(t)。
直接序列扩频通信系统的误码率仿真1.引言扩展频谱通信系统是将基带信号的频谱扩展至很宽的频带上,然后再进行 传输的一种通信系统,即将待传送的信息数据用伪随机编码调制,实现频谱扩展后再传输,接收端则采用同样的编码进行解调及相关处理,恢复原始信息数据。
扩频通信的基础理论根据信息论中的shannon 公式)(N S B C /1log 2+= 式中,C 是系统的信道容量,B 是系统信道带宽,N 是噪声功率,S 为信号的功率,S/N 即为信噪比。
Shannon 公式表明了一个系统信道无误差的传输信息的能力与存在于信道中的信噪比以及用于传输信息的系统信道带宽之间的关系。
该公式说明了两个极为重要的概念:一是在一定的信道容量条件下,可以用减少发送信号功率、增加带宽的方法来达到信道容量的要求;另一个是可以采用减少带宽而增加信号功率的方法来达到信道容量的要求。
这也就说明了信道容量可以通过带宽与信噪比的互换来保持不变。
在实际的工程应用中,改变信号的功率并不容易,相比较而言,扩展信号的带宽更容易操作,所以,要提高信道容量,采用增加信号的带宽比提高信号功率的方法要有效的多。
由于扩频通信系统可以在信号功率远低于噪声功率的环境中工作,因此扩 频通信系统具有抗干扰能力强,保密性强等优点,在现在通信领域内的应用越 来越广泛。
2.系统概述本次仿真实验是以MATLAB 为仿真平台,信号是8位双极性二进制信号,由 1和-1组成。
随后对产生的双极性信号进行时域抽样,得到基带信号s ,是一组1024位的信息码。
伪随机序列由mgen 函数产生,共有1024个码元。
对已得到的基带信号进行扩频调制,直接把基带信号S与产生的伪随机序列相乘,得到扩频信号。
然后对已作扩频处理的信号作BPSK 载波调制,得到发射信号。
发射信号通过存在高斯白噪声的信道,到达接到端,接收端首先对信号进行解调,将信号解调到中频段,然后将解调的信号与伪随机信号码作乘法运算,对解调信号进行解扩。