直接序列扩频通信系统仿真设计
- 格式:doc
- 大小:258.27 KB
- 文档页数:29
直接序列扩频通信系统仿真直接序列扩频通信系统仿真一、实验的背景及内容1、直接扩频通信背景扩频通信,即扩展频谱通信(Spread Spectrum Communication),它与光纤通信、卫星通信,一同被誉为进入信息时代的三大高技术通信传输方式。
有关扩频通信技术的观点是在1941年由好莱坞女演员Hedy Lamarr和钢琴家George Antheil提出的。
解决了短距离数据收发信机、如:卫星定位系统(GPS)、移动通信系统、WLAN(IEEE802.11a, IEEE802.11b, IEE802.11g)和蓝牙技术等应用的关键问题。
扩频技术也为提高无线电频率的利用率(无线电频谱是有限的因此也是一种昂贵的资源)提供帮助。
扩频通信技术自50年代中期美国军方便开始研究,一直为军事通信所独占,广泛应用于军事通信、电子对抗以及导航、测量等各个领域。
直到80年代初才被应用于民用通信领域。
为了满足日益增长的民用通信容量的需求和有效地利用频谱资源,各国都纷纷提出在数字峰窝移动通信、卫星移动通信和未来的个人通信中采用扩频技术,扩频技术现已广泛应用于蜂窝电话、无绳电话、微波通信、无线数据通信、遥测、监控、报警等等的系统中。
2、实验的内容及意义本次实验主要研究了直接序列扩频系统,建立了直接序列扩频系统的matlab仿真模型,在信道中存在高斯白噪声和干扰的情况下,对系统误码率性能进行了仿真及分析。
近年来,随着超大规模集成电路技术、微处理器技术的飞速发展,以及一些新型元器件的应用,扩频通信在技术上已迈上了一个新的台阶,不仅在军事通信中占有重要地位,而且正迅速地渗透到了个人通信和计算机通信等民用领域,成为新世纪最有潜力的通信技术之一因此研究扩频通信具有很深远的意义。
本人通过此次实验,进行深入地研究学习扩频通信技术及对它进行仿真应用,将所学的知识进行归纳与总结,从而巩固通信专业基础知识,为以后的个人学习和工作打下基础。
倍患工程基于m序列的直接扩频通信系统仿真设计李维坤(西北工业大学附属中学,陕西西安,710072 )摘要:本文以现代通信系统中常用的m序列直接序列扩频原理作为本文的研究对象,利用Matlab/SimuHnk等软件工具对直接扩频通信系 统进行仿真研究,探究其对于通信系统性能的影响。
本文将其与无扩频系统在误码率、不同强度窄带干扰等条件下进行性能比较,从而验 证本文设计的直接扩频通信系统具备良好的抗干扰能力。
关键词:m序列;Matlab/Simulink;直接扩频通信系统〇引言凭借抗干扰性能强、保密性良好等显著优点,扩频通信 技术被广泛应用于现代宽带通信系统调制过程中,其技术的 研究和应用推广受到各个研究院校及企业的高度重视。
扩频 通信系统技术是将要发送的信息数据以扩频编码的技术手 段将其扩频调制到一个极宽的带宽上,同时在系统的接收端 采用相关的解调技术从接收到的扩频信息中解调出信宿发 送的信息数据。
在实际应用中常见的扩频通信技术有直序扩 频技术、跳频扩频技术、跳时扩频以及线性调制技术等三种 技术用于现代通信系统。
本文结合其相关理论对扩频技术工 作流程进行介绍,同时利用用MATLAB/Sim ulink等软件工 具对扩频系统及其性能进行仿真测试。
通过将其系统与无扩 频系统进行抗干扰性、误码率等相关性能方面的对比研究,发现本设计的扩频通信系统具备良好的能力。
W = 0.1x C x N I S(4)结合式(3)和式(4),从中可以看出在系统当前给定信 噪比的前提下,可以通过用牺牲带宽的手段来保证较高的搞 干扰能力。
扩频通信的核心就是将扩频码扩展至宽带带宽,通过带宽换取高高抗干扰性能。
因此扩频通信系统通过扩频 技术可以获得拥有比常规通信系统要大得多通信宽带,从而 实现结合香农公式可以得知在较低的信噪比的前提下扩频 通信系统可以获得较强的抗干扰性能。
同时考虑在实际的通信系统一般为窄带通信信道,其信 道的噪声特性主要表现为高斯白噪声特性。
直接序列扩频系统的SIMULINK建模与仿真一.直接扩频发射机系统设数据传输率为100 bps,扩频码片速率为2000chip/s,采用m序列作为扩频序列,以BPSK为调制方式。
试建立扩频系统仿真模型并仿真观察其数据波形、扩频输出波形以及扩频调制输出的频谱。
仿真模型如图5-1所示。
Bernoulli Binary Generator用于产生数据流,其采样时间设置为0.01s,这样输出的数据速率为100bps。
PN Sequence Generator用于产生伪随机扩频序列,其采样时间设置为0.0005s,这样输出的码片速率为2000chip/s。
为了使扩频模块(乘法器)上的数据采样速率相同,需要对数据流进行升速率处理。
Unipolar yo Bipolar Converter用于完成数据和扩频序列的双极性变换。
乘法器输出就是扩频输出,其码速率等于采样速率,即每个采样点代表一个码片。
扩频输出信号以BPSK方式进行调制。
模型中采用了调制的等效低通模型来实现,调制输出信号是复信号,采样率为2000次/s。
调制也可采用通带模型来实现。
为了使频谱观察范围达到4kHz,需要被观察信号的采样率达到8000次/s,为此,以升速率模块配合采样保持模块将调制输出信号采样率提高到8000次/s。
图5-1 直接扩频发射机仿真系统模型仿真执行后,两个频谱仪将分别显示扩频前后的信号频谱,采用BPSK调制的等效低通模型时,调制前后的功率频谱相同,如图5-2所示。
可见,数据信号的带宽约100Hz,其功率峰值约为20dB处,而扩频输出信号带宽展宽了20倍,为2kHz,而功率峰值下降到约7dB处。
仿真输出的时域波形结果如图5-3所示,图中显示了数据流、PN序列以及扩频输出信号的波形,当数据为+1时,扩频输出就是对应的PN序列,当数据为-1时,扩频输出是PN序列的反相结果。
图5-2 直接扩频发射机扩频前后的信号频谱仿真结果分析:图5-2分别为扩频之前与扩频之后的频谱图,由图可知,数据信号的带宽约100Hz,其功率峰值约为20dB处,而扩频输出信号带宽展宽了20倍,为2kHz,而功率峰值下降到约7dB处。
直接序列扩频通信系统仿真设计直接序列扩频通信系统是一种常用于无线通信中的传输技术,可用于提高通信质量和抗干扰能力。
其基本原理是将原始信号乘以一个扩频码序列,使得信号的带宽变宽,从而提高信号的抗干扰能力。
本文将对直接序列扩频通信系统进行仿真设计,包括系统结构、信号处理和性能评估等方面。
一、系统结构设计1.发送端设计发送端主要包括原始信号处理和扩频处理两个模块。
原始信号处理模块用于将待传输的信息编码成数字信号,可以采用各种调制技术(如二进制调制);扩频处理模块将原始信号乘以扩频码序列,以实现信号的扩频。
2.接收端设计接收端主要包括解扩和信号恢复两个模块。
解扩模块对接收到的信号进行解扩,即将信号除以扩频码序列;信号恢复模块对解扩后的信号进行滤波和解调,最终得到原始信号。
二、信号处理设计信号处理是直接序列扩频通信系统中的关键环节,对其性能和抗干扰能力起着决定性作用。
下面将详细介绍信号处理的设计。
1.扩频码序列设计扩频码序列的设计非常重要,它直接影响到扩频通信系统的性能。
常用的扩频码序列有伪随机码(PN码)和正交码等,可以通过Matlab等工具进行生成和优化。
2.扩频处理设计扩频处理是将原始信号与扩频码序列进行乘积运算的过程。
可以采用数字乘法器或卷积器等方式实现,具体实现方式需要根据实际情况确定。
3.解扩和信号恢复设计解扩和信号恢复是接收端的重要环节,其中解扩模块用于将接收到的信号除以扩频码序列,信号恢复模块用于对解扩后的信号进行滤波和解调。
滤波器可以采用低通滤波器,解调方式可以根据信号特点选取。
三、性能评估设计对于直接序列扩频通信系统的性能评估,一般需要考虑以下几个方面:1.误码率评估误码率是衡量通信系统性能的重要参数。
可以通过对接收到的信号进行解码和比对的方式来评估误码率,并与理论值进行比较。
2.抗干扰性能评估扩频通信系统的抗干扰能力是其核心优势之一、可以通过仿真添加干扰信号,并比较接收到的信号与原始信号的相关性来评估抗干扰性能。
直接序列扩频通信系统仿真设计直接序列扩频(Direct Sequence Spread Spectrum)通信系统是一种广泛应用于无线通信领域的通信技术,它通过将原始信号与伪随机噪声序列进行逐位相乘,从而将信号的带宽扩展到噪声频谱的宽度,从而实现抗干扰和保密性能的显著提高。
本文将通过仿真设计一个直接序列扩频通信系统,详细介绍其工作原理和仿真过程。
直接序列扩频通信系统由发送端和接收端组成。
在发送端,原始信号经过码片发生器生成伪随机噪声序列,并与原始信号进行逐位相乘得到扩频信号。
扩频信号经过调制器进行调制,然后经过发射机发送到接收端。
在接收端,接收到的信号经过解调器进行解调,然后通过相关器与伪随机噪声序列相乘得到原始信号。
首先,需要设计码片发生器。
伪随机噪声序列在直接序列扩频通信系统中起到关键作用,它决定了信号的扩展带宽和抗干扰性能。
常用的伪随机噪声序列有伪随机码生成器(PN码)和高斯白噪声序列(AWGN)。
在仿真中,可以选择PN码作为伪随机噪声序列。
PN码的生成方式有很多,其中最常见的是使用移位寄存器和反馈电路生成的线性反馈移位寄存器(LFSR)。
其次,需要设计调制器和解调器。
在直接序列扩频通信系统中,常用的调制方式有二进制相移键控(BPSK)和四进制相移键控(QPSK)。
在仿真中,可以选择BPSK作为调制方式。
解调器与调制器相反,将接收到的扩频信号与伪随机噪声序列相乘得到原始信号。
最后,需要设计发射机和接收机。
发射机通过电路将调制后的扩频信号发射出去,接收机将接收到的信号通过电路进行放大和解调处理,从而得到原始信号。
在仿真中,可以使用MATLAB等仿真软件来实现直接序列扩频通信系统。
首先,定义参数包括信号的比特率、码片周期、发射功率等。
然后,生成随机的原始信号数据。
接下来,根据参数生成伪随机噪声序列。
将伪随机噪声序列与原始信号进行逐位相乘得到扩频信号。
通过调制器进行调制,得到调制后的信号。
在接收端,通过解调器解调接收到的信号,得到解调后的扩频信号。
function dscdmamodem(user,snr_in_dbs) %建立模型:用户信息,snr_in_dbs为信噪比%设置初始参数user=[0 1 0 1 1 0 1];close all%定义步长变量%length_user=length(user); %改变用户数据中的0为-1for i=1:length_userif user(i)==0;user(i)=-1;endend%用户传输前设置fc=3; %载频eb=2; %每个字符的能量tb=1; %每个信息比特所占的时间%用户输入的数据信息t=0.01:0.01:tb*length_user;basebandsig=[];for i=1:length_user;for j=0.01:0.01:tb;if user(i)==1;basebandsig=[basebandsig 1];elsebasebandsig=[basebandsig -1];endendendfigure(1)plot(basebandsig)axis([0 100*length_user -1.5 1.5]);title('用户输入的信息')Y=fft(basebandsig);figure(2)plot(abs(Y))axis([0 100 0 300]);title('扩频前的频域图')%用户的BPSK调制过程bpskmod=[];for i=1:length_user;for j=0.01:0.01:tb;bpskmod=[bpskmod sqrt(2*eb)*user(i)*cos(2*pi*fc*j)]; endendlength(bpskmod)W=fft(bpskmod);%用户BPSK调制后的波形图输出figure(3)plot(bpskmod)axis([0 100*length_user -3 3]);title('用户经BPSK调制之后的波形')%扩频%PN码发生器seed=[1 -1 1 -1]; %设PN码初始值为1000 spreadspectrum=[];pn=[];for i=1:length_userfor j=1:10; %PN码和数据比特码的比率设为10:1pn=[pn seed(4)];if seed(4)==seed(3) temp=-1;else temp=1;endseed(4)=seed(3);seed(3)=seed(2);seed(2)=seed(1);seed(1)=temp;endspreadspectrum=[spreadspectrum user(i)*pn];end%扩频过程pnupsampled=[];len_pn=length(pn);for i=1:len_pnfor j=0.1:0.1:tbif pn(i)==1pnupsampled=[pnupsampled 1];elsepnupsampled=[pnupsampled -1];endendendlength_pnupsampled=length(pnupsampled); sigtx=bpskmod.*pnupsampled;%扩频码波形输出figure(4)plot(pnupsampled)axis([0 100*length_user -2 2]);title('PN码波形图')%扩频后的波形图输出figure(5)plot(sigtx)axis([0 100*length_user -3 3]);title('用PN码扩频后的波形图')composite_signal=sigtx;%扩频后的频域波形图Z=fft(sigtx);figure(6)plot(abs(Z))axis([0 100 0 300]);title('扩频后的频域图')%高斯白噪声信道传输snr_in_dbs=20; %设信噪比为20composite_signal=awgn(composite_signal,snr_in_dbs);%从信道中解扩出用户的信息rx=composite_signal.*pnupsampled; figure(7)plot(rx)title('用户解扩后的波形')%BPSK解调过程demodcar=[];for i=1:length_userfor j=0.01:0.01:tbdemodcar=[demodcar sqrt(2*eb)*cos(2*pi*fc*j)];endendbpskdemod=rx.*demodcar;figure(8)plot(bpskdemod)title('用户经BPSK解调之后的波形')len_dmod=length(bpskdemod);sum=zeros(1,len_dmod/100);for i=1:len_dmod/100for j=(i-1)*100+1:i*100sum(i)=sum(i)+bpskdemod(j);endend%检波过程rxbits=[];for i=1:length_userif sum(i)>0rxbits=[rxbits 1];elserxbits=[rxbits 0];endendlength_rxbits=length(rxbits);t=0.01:0.01:tb*length_rxbits;savbandsig=[];for i=1:length_rxbitsfor j=0.01:0.01:tbif rxbits(i)==1savbandsig=[savbandsig 1];elsesavbandsig=[savbandsig -1];endendendfigure(9)plot(savbandsig)axis([0 100*length_user -1.5 1.5]); title('用户经检波之后的波形')。
直接序列扩频通信系统的设计与实现摘要:扩频通信,即扩展频谱通信(Spread Spectrum Communication)是数字通信中的一种,它与光纤通信、卫星通信,一同被誉为进入信息时代的三大高技术通信传输方式。
具有大容量、抗干扰、低截获功率等特点以及可实现码分多址(CDMA)等优点。
采用扩频通信可以在更恶劣的环境下正常工作,可以将信号隐蔽在噪声中。
在扩频通信系统中,直接序列扩频通信系统的应用最为广泛。
Matlab具有其他仿真软件(如Sysetemview和Maple等)所无可比拟的矩阵运算能力和系统仿真能力,Matlab的仿真工具包Simulink凭借其强大的数学功能,能实现精确的电路仿真。
关键词:直接序列扩频通信系统、Matlab、误码率目录第1章绪论 (1)1.1背景 (1)1.2选题的目的和意义 (1)1.3 本课程设计的主要内容 (1)第2章直接序列扩频通信系统 (2)2.1 直接序列扩频通信的理论基础 (2)2.2直接序列系统组成 (3)第3章扩频系统的设计与实现 (4)3.1直接通信系统仿真 (4)3.2直接扩频Matlab仿真组成框图 (4)3.3 BPSK调制 (5)3.3 m序列 (6)3.4 扩频系统的解扩 (7)3.5扩频系统的解调 (8)3.6误码率 (9)3.7直接序列扩频系统的实现 (9)第4章心得和结论 (15)附录 (16)参考文献 (21)第1章绪论1.1背景信息时代的到来,使我们对通信的依赖越来越大,由于信道的开放性,信息在传播过程中会加进各种各样的干扰,使得无线通信面临的干扰环境更为恶劣。
自50年代中期美国军方便开始研究,一直为军事通信所独占,广泛应用于军事通信、电子对抗以及导航、测量等各个领域。
直到80年代初才被应用于民用通信领域。
为了满足日益增长的民用通信容量的需求和有效地利用频谱资源,各国都纷纷提出在数字峰窝移动通信、卫星移动通信和未来的个人通信中采用扩频技术,扩频技术于蜂窝电话、无绳电话、微波通信、无线数据通信、遥测、监控、报警等系统中。
直接序列扩频通信系统仿真设计摘要:利用Matlab/Simulink对直接序列扩频系统进行了仿真,并对仿真结果做了详细的讲解分析。
先对直接序列扩频系统原理进行介绍,然后基于Simulink 的发射机和接收机的仿真,同时对直接序列扩频系统的抗干扰能力与直接序列扩频系统的同步方法进行了相关仿真,最后在该系统中加入特定的干扰,进行测试,研究整个系统的抗干扰性能。
关键词:通信系统;直接序列扩频;调制解调保密通信目录第一章绪论 11.1课题背景及意义 11.2 Simulink的简介 1第二章直接序列扩频通信原理 32.1扩频通信概念及分类 32.2直接序列扩频定义 32.3直接序列扩频的基本原理 32.4 直扩系统的性能分析 52.4.1 直扩系统的抗干扰性 52.4.2 直扩系统的抗多径干扰性能 6第三章基于Simulink的发射机的仿真 73.1直接序列扩频通信系统发射机的设计 73.2基于Simulink的发射机的仿真 83.3基于Simulink的接收机仿真设计 12第四章直接序列扩频通信系统的抗干扰性能分析 17第五章 CDMA系统仿真设计 21第4章实验心得 27参考书目 28第一章绪论1.1课题背景及意义扩展频谱通信是建立在Claude E.Shannon的信息论基础之上的一种新型的通信体制。
由于扩频通信体制具有抗干扰能力强、截获率低、码分多址、信号隐蔽、测距和易于组网等一系列优点,自从问世之后便引起了世界各国的极大关注,并率先应用在军事通信中。
随着近年来大规模、超大规模集成电路和微处理器技的广泛应用,以及一些新型器件的应用,扩频技术的应用形成了新的高潮。
事实上,扩频通信已成为电子对抗环境下提高通信设备抗干扰能力的最有效的手段,并在近十几年来爆发的几场现代化战争中发挥了巨大的威力。
随着CDMA扩频通信技术在民用通信中的深入应用和不断渗透,以及在卫星通信、深空通信、武器制导、GPS全球定位系统和跳频通信等民用和国防民事通信的强烈需求下,扩谱通信的地位越来越重要了。
基于Simulink的直接序列扩频通信系统抗干扰的仿真实现王玲【摘要】主要研究了直接序列扩频通信系统( DSSS)的抗干扰能力。
利用Simulink对直接序列扩频通系统的发射机模块和接收机模块进行仿真设计,在高斯信道中加入不同中心频率、幅度的窄带干扰。
通过传输过程中各个波形和频谱变换图,研究直扩系统误码率、信噪比和扩频增益的关系。
当窄带干扰强度超过系统抗干扰容限时,使用自适应滤波器中的LMS(最小均方差)和RLS(最小递推二乘)滤波器来抑制窄带干扰。
仿真结果表明:自适应滤波具有良好放任窄带干扰抑制效果,但RLS算法复杂仿真时间长,LMS收敛速度较慢。
%The visual simulation tool Simulink provided by Matlab is used to build transmitter module and receiver module of DSSS communication system and the narrow-band interference in different carrier fre-quency and amplitude is added to the AWNG channel. The relationship among BER,SNR and spreading gain of DSSS system is researched by means of every waveform and spectrum transformation diagram in the transmission process. When theNarrow -Band Interference overstep the tolerance of the DSSS sys-tem,we can use the adaptive filter such as LMS ( Least Mean Square ) filter and RLS( Recursive Least Square) filter to improve suppressing Narrow-Band Interference. The simulation confirmed that the adap-tive filter has a good effect onNarrow-Band Interference suppression. The RLS filter’ s algorithm is com-plex so its simulation time is long. The LMS filter’ sconvergence speed is slow.【期刊名称】《中国传媒大学学报(自然科学版)》【年(卷),期】2015(000)006【总页数】7页(P21-27)【关键词】直接序列扩频;Simulink;窄带干扰;自适应滤波【作者】王玲【作者单位】中国传媒大学理工学部信息工程学院,北京100024【正文语种】中文【中图分类】TN911.4在众多的通信技术中,扩频通信技术由于具有独特的抗干扰能力以及很宽的使用频带而在军事通信领域中备受青睐。
直接序列扩频通信系统建模仿真分析直接序列扩频(Direct-Sequence Spread Spectrum,DSSS)通信系统是一种广泛应用于无线通信、通信安全加密、以及定位任务中的基本通信技术。
它在一定范围内使用频率,把本应几百到几千赫兹范围内的信号不断扩展到数兆赫兹,从而使其能够穿过更多的干扰、降低传送信号的复杂性和重复率、提高传送信号的安全性,也就是广播信号的功率被平分到更宽的频带,其中的信息非常难以被拦截和窃取,该抽波提高了信号的吞吐量。
构成直接序列扩频通信系统的主要硬件组件包括,数据源,编码器,抽波器,线路,解抽波器以及解码器,以及接收数据的终端设备。
数据源可以是任何数据,例如电脑传出的文本,照片,视频甚至声音。
编码器是一个负责将原始数据信号编码为无关信号块的系统。
抽波器用于将无关信号增广,并将其扩展至较宽的频带。
经过线路,即传输介质,将传输数据从发射端送达接收端,通常利用电磁波来传输信号,例如无线频段等。
接收端的解抽波器可以将扩频数据恢复到原始数据,解码器可以将接收到的数据进行解码,以便终端能够解析处理该数据。
直接序列扩频通信系统建模仿真分析,主要是通过建立系统建模,利用仿真软件,来模拟系统的运行流程,然后对模拟的结果进行分析。
首先,先构建系统模型,采用现有的数学工具,如矩阵方程、微积分知识和计算机技术,建立系统的数学模型,即构建系统建模。
接着,根据构建好的模型,可以使用各种仿真软件,比如matlab,来模拟系统的运行,使用仿真技术可以更好地发现系统中存在的问题。
最后,对模拟结果进行分析,比如观察系统的信噪比、传输的错误率曲线等,进而追踪出系统中可能存在的问题,从而提出相应的改进建议,提高系统的性能。
通过模型仿真分析,我们可以看到,直接序列扩频通信系统是一种表现优异的技术,它能够有效抑制扰乱,提高传输介质上的信号安全性,这种技术特别适用于无线通信中传输质量有要求的应用,诸如GSM、CDMA等。
《扩频通信原理》课程设计报告题目:直接扩频系统仿真班级:0110910和0110911姓名:詹晓丹(2009210432)姜微(2009210503)张建华(2009210336)指导老师:李兆玉1.课程设计目的(1)了解、掌握直接扩频通信系统的组成、工作原理;(2)了解、熟悉扩频调制、解调、解扩方法,并分析其性能;(3)学习、掌握Matlab相关编程知识并用其实现仿真的直接扩频通信系统;2.课程设计实验原理直接扩频通信系统工作原理:直接序列扩频,就是直接用高码率的扩频码序列在发端去扩展信号的频谱,在收端用相同的扩频码去解扩,把展宽的扩频信号还原成原始的基带信号。
在发端输入的信息与扩频码发生器产生的伪随机码序列(这里使用的是m序列)进行波形相乘,得到复合信号,实现信号频谱的展宽,展宽后的信号再调制射频载波发送出去。
由于采用平衡调制可以提高系统抗侦波的能力,所以直接序列扩频调制一般都采用二相平衡调制方式。
一般扩频调制时一个信息码包含一个周期的伪码,用扩频后的复合信号对载波进行二相相移监控(BPSK)调制,当gt从“0”变成“1”或从“1”变到“0”时,载波相位发生180度相移。
接收端的本振信号与发射端射频载波相差一个中频,接收端收到的宽带射频信号与本振信号混频、低频滤波后得到中频信号,然后与本地产生的与发端相同并且同步的扩频码序列进行波形相乘,实现相关解扩,再经信息解调,恢复出原始信号。
3.建立模型描述(1)直接扩频通信系统组成框图:(2)直接扩频通信系统波形图:4.模块功能分析(1)直扩系统的调制功能模块:(都包含模块框图和不同调制、解调方式介绍、分析)(a)扩频调制模块用扩频码发生器产生一个伪随机码pn(这里用的是m序列),与信源信息码序列xt相乘,实现频谱的展宽(b)BPSK调制模块调制的方式可以有二相相移监控BPSK、四相相移键控QPSK、偏移四相相移监控OQPSK、最小频移监控MSK。
QPSK调制的目的是节省频谱,但在扩频系统中有时候带宽的利用并不是最重要的;OQPSK的优点就是调制信号的相位改变没有倒π现象;MSK调制信号时可以避免相位突变,由于以上调制方式实现比较复杂,所以我们选用扩频系统中最常用的BPSK调制方式。
直接序列扩频系统的SIMULINK仿真—通信工程课程设计移动通信课程设计报告题目直接序列扩频系统的 SIMULINK仿真学院电子信息工程学院专业通信工程学生姓名学号年级指导教师职称讲师二〇一四年一月三日直接序列扩频系统的SIMULINK仿真摘要:本文介绍了直接序列扩频通信技术,利用Matlab/Simulink对直接序列扩频系统进行了仿真,并对仿真结果做了详细的讲解分析。
同时为了方便理解也对其原理进行了相关的说明,做到每个环节每个步骤都透彻明了。
本文也做了基于Simulink的发射机的仿真, Simulink的接收机的仿真,也介绍了在加入干扰后扩频通信仿真。
读者可以通过对本文的阅读对直接序列扩频的相关原理有一定的了解,同时也会了解到直接序列扩频系统的各种应用其中最重要的是可以用来抗干扰,从而提高通信性能。
关键字: 扩频通信;SIMULINK;直接序列扩频目录第1章绪论 (1)1.1 扩频通信的应用及仿真的意义 (1)1.2 扩频通信的背景 (1)1.4 扩频通信主要特点 .................................. 2 第2章MATLAB/SIMULINK简介 . (4)2.1 Matlab的简介 (4)2.2 Simulink的简介 .................................... 4 第3章直接序列扩频的原理 .. (7)3.1 扩频通信的定义 (7)3.2 扩频通信的分类 (7)3.3 直接序列扩频的定义与原理 (7)3.4 直接序列扩频通信技术特点: ....................... 10 第4章基于Simulink的发射机的仿真设计 (13)4.1 直接序列扩频通信系统发射机的设计 (13)4.2 直接序列扩频通信系统接收机的设计 ................. 14 第5章仿真的系统与结果 (17)5.1 基于Simulink的发射机的仿真 (17)5.2 基于Simulink的接收机的仿真 (19)5.3 直接序列扩频通信系统的抗干扰性能分析 (23)第6章结束语 (27)I参考文献 (29)II成都学院(成都大学)课程设计报告第1章绪论1.1 扩频通信的应用及仿真的意义目前,我国电网中应用的通信方式主要有明线、电力线载波、电缆和新兴起的一点多址微波等。
V ol.19 N o.2 74 航 天 器 工 程SPA CECR AF T EN GIN EERIN G第19卷 第2期2010年3月基于Simulink 的直接序列扩频通信系统的仿真倪琳娜 赵振岩 于海锋(北京空间飞行器总体设计部,北京 100094)摘 要 卫星通信系统测试扩频信号源需具备自检功能。
文章利用M ATLAB 的可视化工具箱Sim ulink 建立了直扩通信系统的仿真模型,为扩频信号源自检程序设计提供参考。
采用滑动相关捕获算法、单v 值非相干延迟锁定伪码跟踪环,实现了伪码同步。
仿真结果表明,该系统可无误码地恢复发端原始信息。
关键词 卫星通信 直接序列扩频 伪码捕获 伪码跟踪中图分类号:T N914142 文献标志码:A 文章编号:1673-8748(2010)02-0074-07Simulation of Direct Sequence Spread Spectrum C ommunicationSystem Based on SimulinkNI Linna ZH AO Zhenyan YU H aifeng(Beijing Institute of Spacecraft Sy stem Engineering,Beijing 100094,China)Abstract:T he spread spectrum signal source for testing the per for mance o f satellite communica -tion system must have the self -check functio n 1To pro vide the reference mo de to the self -check pro gram .s desig n of spread spectrum signal so urce,the simulation m odel of direct sequence spread spectrum com munication system has been built by using Simulink provided by MA TLAB 1Sliding correlation acquisition schem e and one -v no n -coherent delay -lock tracking lo op are adopt -ed to im plement the synchro nization of PN code 1The result show s that the simulated sy stem can recover the transm itted signal correctly 1Key words:satellite com munication;direct sequence spread spectrum;PN acquisition;PN tr acking收稿日期:2009-09-21;修回日期:2010-02-06作者简介:倪琳娜(1985-),女,中国空间技术研究院空间飞行器设计专业在读研究生。