八年级数学8章 练习课备课
- 格式:doc
- 大小:60.00 KB
- 文档页数:2
人教版二年级数学上册第八单元《减法练习课》教案一、教学目标1.知识目标:让学生掌握减法的基本概念和运算方法,能够熟练进行减法运算。
2.能力目标:培养学生的思维逻辑能力和数学计算能力,提高他们的数学解决问题的能力。
3.情感目标:激发学生学习数学的兴趣,培养他们的数学自信心。
二、教学重点和难点重点1.减法的基本概念和运算方法。
2.训练学生进行减法运算的能力。
难点1.一些复杂的减法算式的运算过程。
2.需要对学生进行适当的引导和提示,帮助他们理解和解决问题。
三、教学准备1.教学课件或教具。
2.学生练习册或工作纸。
3.班级黑板和粉笔。
4.教师准备的减法练习题。
5.学生练习用的计算器(根据需要)。
四、教学内容和方法1.教学内容:《减法练习课》2.教学方法:–导入:通过生活中的例子引出减法的概念,让学生了解减法的作用和意义。
–讲解:介绍减法的基本概念,给出减法运算的步骤和方法。
–练习:让学生进行减法练习,逐步提高难度,检验他们的掌握程度。
–讲评:对学生进行减法练习题的讲评,指出他们的错误并加以纠正。
五、教学步骤1.导入:通过一个小组活动,让学生分享减法在生活中的应用场景。
2.讲解:简要介绍减法的概念和运算步骤,让学生对减法有基本的了解。
3.练习:安排学生进行一些简单的减法练习,帮助他们熟练掌握减法运算方法。
4.引导:逐步增加练习的难度,引导学生解决一些较复杂的减法问题。
5.讲评:对学生的练习进行讲评,指出常见的错误和解题思路,帮助他们更好地理解减法运算。
6.总结:对今天的学习内容进行总结,强调减法的重要性和学习要点。
六、教学反馈1.利用课堂小测或问答环节,检查学生对减法的掌握情况。
2.鼓励学生积极参与讨论,分享解题思路和方法。
七、作业布置1.布置一定数量的减法练习题作业,巩固学生的学习成果。
2.鼓励学生主动思考、独立解决问题,提高他们的学习兴趣和能力。
八、教学效果评价1.观察学生在课堂上的表现和参与度。
2.批改学生的作业,查看他们的减法运算是否正确。
人教版八年级上册数学《分式方程》(优质教案)一. 教材分析人教版八年级上册数学《分式方程》这一章节是在学生已经掌握了分式的基础知识,如分式的概念、分式的运算等基础上进行讲解的。
本章主要内容是让学生了解分式方程的定义、解法以及应用。
通过本章的学习,学生应能理解分式方程的概念,掌握解分式方程的基本方法,并能够将分式方程应用于解决实际问题。
二. 学情分析学生在学习本章内容之前,已经掌握了分式的基本知识,具备了一定的逻辑思维能力和问题解决能力。
但学生在解分式方程时,可能会遇到理解上的困难,如分式方程的转化、求解过程中的运算等。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。
三. 教学目标1.了解分式方程的定义,理解分式方程与一般方程的区别。
2.掌握解分式方程的基本方法,能够熟练地求解分式方程。
3.能够将分式方程应用于解决实际问题,提高解决实际问题的能力。
四. 教学重难点1.分式方程的定义及其与一般方程的区别。
2.分式方程的解法及其应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,从而掌握分式方程的知识;通过案例分析,让学生了解分式方程在实际问题中的应用;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教学PPT:制作有关分式方程的PPT,内容包括:分式方程的定义、解法及应用。
2.案例材料:收集一些实际问题,用于教学过程中的案例分析。
3.练习题:准备一些分式方程的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用PPT展示分式方程的定义,引导学生思考:什么是分式方程?分式方程与一般方程有什么区别?2.呈现(15分钟)通过PPT呈现分式方程的解法,主要包括:去分母、去括号、移项、合并同类项、化简等步骤。
同时,结合实际问题,让学生了解分式方程在生活中的应用。
3.操练(15分钟)让学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。
八年级数学备课组活动记录八年级数学备课组活动记录弋江中心初中周次第8周活动时间 9月21日活动地点校会议室备课内容全等三角形的判定方法中心发言人李金流考勤签到李金流李辉林姜珩鲍启兵李亚玲孙实玉汪维汉黄林高学情分析暑假刚结束,学生的学习状态还较懒,对新知识有好奇心,但学习主动性仍不高。
部分学生基础比较薄弱,对几何知识的掌握比较迟缓。
课时安排及说明本周有6个课时,三角形全等的判定方法为6个课时(SAS、ASA、SSS各1节,复习巩固1节)三角形全等的判定方法 AAS以及直角三角形全等的判定方法HL的运用为2个课时教材分析知识占八、、1、三角形全等的判定方法SSS2、会利用圆规、直尺画出满足一定条件的三角形。
重点1、三角形全等的判定方法 AAS以及HL的理解与运用。
2、画图难点三角形全等的判定方法SSS的运用。
教法研究及措施1、本周6个课时都有相应的教学课件帮助完成教学任务。
2、利用课件,在例题的分析与讲解上进行一题多变的教法,采用问题导学,自主探索”的教学模式,较好的达到了目标。
3、画图方面:采用了观察、模仿、动手探究的方法。
课前预习课本内容课后作业P43页第1-5题巩固训练利用课件编写练习并在课堂完成综合练习印发的练习卷填表人黄林高填表时间2013.9.21备课组活动记录基本信息全等三角形的识别一一SSS教材分析:本节的主要内容是全等三角形的“ S.S.S”识别法.本课时内容是上一节内容指导下探索三角形全等条件的一个开端,它揭开了本章核心内容“三角形全等的识别”的篇章。
作为识别三角形全等的一个重要方法,它自然是全等三角形识别学习中不可或缺的重要一环,同时,课堂上“操作一一发现一一归纳”的方法,也是探索其它识别方法和进行科学实验的基石,对后续学习有着指导作用。
又本节课作为几何证明的开始,还承担着规范学生几何说理的重任,自然不能简单“走过”。
教学目标:1、使学生理解并掌握全等三角形的识别方法 1:边边边公理,能使用该识别方法解决一些简单的数学问题与实际问题。
鲁教版(五四制)八年级数学下册第八章一元二次方程同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用一条长60cm 的绳子围成一个面积为2200cm 的长方形.设长方形的长为cm x ,则可列方程为( )A .(30)200x x -=B .(30)200x x +=C .(60)200x x +=D .(60)200x x -= 2、关于x 的方程(a ﹣1)x 2﹣3x +2=0是一元二次方程,则( )A .a ≠1B .a =1C .a >1D .a ≥13、用配方法解方程2410x x -+=时,原方程可以变形为( )A .2(2)3x +=B .2(2)4x -=C .2(2)3x -=D .()2215x -= 4、已知关于x 的一元二次方程x 2-2x -m =0有两个不相等的实数根,则m 的取值范围是( )A .m <-2B .m >-1C .m <0D .m ≥05、解下列方程:①23270x -=;②2310x x --=;③()()242++=+x x x ;④()223131-=-x x .较简便的方法是( )A .依次为直接开平方法,配方法,公式法,因式分解法B .依次为因式分解法,公式法,配方法,直接开平方法C .①用直接开平方法,②③用公式法,④用因式分解法D .①用直接开平方法,②用公式法,③④用因式分解法6、定义运算:221m n mn mn =--△.例如:2424224211=⨯-⨯⨯-=-△.则方程20x =△的根的情况为( ).A .有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .以上结论都不对7、直线y =x +a 不经过第四象限,则关于x 的方程a 2x -2x -1=0的实数解的个数是( )A .0个B .1个C .2个D .1个或2个8、将一块长方形桌布铺在长为3m 、宽为2m 的长方形桌面上,各边下垂的长度相同,并且桌布的面积是桌面面积的2倍,那么桌布下垂的长度为( )A .-2.5B .2.5C .0.5D .-0.59、已知关于x 的方程2210x x --=,则下列关于该方程根的判断,正确的是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定10、定义新运算“a ⊗b ”:对于任意实数a ,b ,都有a ⊗b =(a ﹣b )2﹣b ,其中等式右边是通常的加法、减法和乘法运算,如3⊗2=(3﹣2)2﹣2=﹣1.若x ⊗k =0(k 为实数)是关于x 的方程,且x =2是这个方程的一个根,则k 的值是( )A .4B .﹣1或4C .0或4D .1或4 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x 的一元二次方程(k -1)x 2+4x +2=0有实数根,则k 的取值范围是______.2、方程x 2=4x 的根是____.3、方程(x ﹣3)(x +4)=﹣10的解为 ___.4、某工厂废气年排放量为450万立方米,为改善空气质量,决定分两期治理,使废气的排放量减少到288万立方米.如果每期治理中废气减少的百分率相同,设每期减少的百分率为x ,则可列方程为 __.5、若关于x 的一元二次方程x 2+2x -k =0有两个不相等的实数根,则k 的取值范围为_____.三、解答题(5小题,每小题10分,共计50分)1、解方程(1)23100x x --=(2)(3)(1)2x x x +-=-2、如图,有长为30m 的篱笆,一面利用墙(墙的最大可用长度为10m ),围成中间隔有一道篱笆(平行于AB )的矩形花圃,设花圃一边AB 的长为x m ,如要围成面积为63m 2的花圃,那么AB 的长是多少?3、某商场一月份的销售额为125万元,二月份的销售额下降了20%,商场从三月份起加强管理,改善经营,使销售额稳步上升,四月份的销售额达到了144万元.(1)求二月份的销售额;(2)求三、四月份销售额的平均增长率.4、某校劳动教育课上,老师让同学们设计劳动基地的规划.如图,在块长15m 、宽10m 的矩形空地上,修建两条同样宽的相互垂直的道路,剩余部分栽种绿植,要使栽种面积为2126m ,则修建的路宽应为多少米?5、(1)解方程:①x (x +2)=3x +6;②x 2+8x -9=0.(2)关于x 的方程x 2-(k -3)x +1-2k =0的根的情况是怎样的?请说明理由.-参考答案-一、单选题1、A【解析】【分析】本题可根据长方形的周长可以用x 表示宽的值,然后根据面积公式即可列出方程【详解】设长方形的长为xcm ,则长方形的宽为()60302x x cm -=-, 根据长方形的面积等于长乘以宽可列方程:(30)200x x -=故答案选A .【点睛】本题考查了由实际问题列出一元二次方程,要掌握运用长方形的面积计算公式S=ab 来解题的方法.2、A【解析】【分析】根据一元二次方程的一般形式20(a 0)++=≠ax bx c 知,二次项系数不为零即可求得a 的取值范围.【详解】由题意知:10a -≠∴1a ≠故选:A【点睛】本题考查了一元二次方程的一般形式,特别注意二次项系数不为零.3、C【解析】【分析】方程常数项移到右边,两边加上4配方得到结果即可.【详解】解:方程2410x x ++=,移项得:241x x +=-,配方得:2443x x -+=,即2(2)3x -=,故选:C .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.4、B【解析】【分析】根据判别式的意义得到Δ=(−2)2−4×(−m )>0,然后解不等式即可.【详解】解:根据题意得Δ=(−2)2−4×(−m )>0,解得m >−1.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2−4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.5、D【解析】【分析】根据各方程的特点逐一判别即可.【详解】解:①23270x -=适合直接开平方法;②2310x x --=适合公式法;③()()242++=+x x x 适合因式分解法;④()223131-=-x x 适合因式分解法;故选:D .【点睛】本题主要考查了解一元二次方程的能力,直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.6、A【解析】【分析】根据新定义列出一元二次方程,根据一元二次方程根的判别式求解即可.【详解】解:∵221m n mn mn =--△∴20x =△,即222210x x -⨯-=整理得,22410x x --=1680∆=+>∴方程20x =△有两个不相等的实数根.故选A【点睛】本题考查了一元二次方程根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.7、D【解析】【分析】根据直线y =x +a 不经过第四象限,可得0a ≥,然后分两种情况:当0a >时,关于x 的方程a 2x -2x -1=0为一元二次方程,利用根与系数的关系,可得一元二次方程有两个不相等实数根;当0a =时,关于x 的方程a 2x -2x -1=0为一元一次方程210x --=,有1个实数解,即可求解.【详解】解:根据题意得直线y =x +a 一定经过第一、三象限,∵直线y =x +a 不经过第四象限,∴0a ≥,当0a >时,关于x 的方程a 2x -2x -1=0为一元二次方程,∴()()224241440b ac a a ∆=-=--⨯-=+>,∴一元二次方程有两个不相等实数根,当0a =时,关于x 的方程a 2x -2x -1=0为一元一次方程210x --=,有1个实数解,综上所述,关于x 的方程a 2x -2x -1=0的实数解的个数是1个或2个.故选:D【点睛】本题主要考查了一次函数的图象和性质,一元二次方程根的判别式,熟练掌握相关知识点,并利用分类讨论思想解答是解题的关键.8、C【解析】【分析】设桌布下垂的长度为h 米,则有()()3222322h h +⨯+=⨯⨯,计算求解即可.【详解】解:设桌布下垂的长度为h 米则有()()3222322h h +⨯+=⨯⨯解得0.5h =(负值舍去)故选C .【点睛】本题考查了一元二次方程的应用.解题的关键在于列出正确的一元二次方程.9、C【解析】【分析】先求出“Δ”的值,再根据根的判别式判断即可.【详解】解:x 2-2x -1=0,∵1a =,2b =-,1c =-,∴Δ=(-2)2-4×1×(-1)=8>0,∵Δ>0,∴方程有两个不相等的实数根,故选:C .【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根.10、D【解析】【分析】利用新运算把方程x ⊗k =0(k 为实数)化为2()0x k k --=,把x =2代入求解即可.【详解】解:∵a ⊗b =(a ﹣b )2﹣b ,∴关于x 的方程x ⊗k =0(k 为实数)化为2()0x k k --=,∵x =2是这个方程的一个根,∴4-4k +k 2-k =0,解得:124,1k k ==,故选:D .【点睛】本题考查了解一元二次方程,解题的关键是根据新定义运算法则得到关于k的方程.二、填空题1、k≤3且k≠1##k≠1且k≤3【解析】【分析】由二次项系数非零及根的判别式Δ=b2-4ac≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围.【详解】解:∵关于x的一元二次方程(k-1)x2+4x+2=0有实数根,∴k-1 0且Δ=42-4(k-1)×2≥0,解得:k≤3且k≠1.故答案为:k≤3且k≠1.【点睛】本题考查了根的判别式以及一元二次方程的定义,利用二次项系数非零及根的判别式Δ=b2-4ac≥0,找出关于k的一元一次不等式组是解题的关键.2、x1=0,x2=4## x1=4,x2=0【解析】【分析】移项后用因式分解法求解即可.【详解】解:∵x2=4x,∴x2-4x=0,∴x(x-4)=0,∴x =0或x -4=0,∴x 1=0,x 2=4,故答案为:x 1=0,x 2=4.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.3、122,1x x =-=【解析】【分析】先把方程化为一元二次方程的一般形式,再利用因式分解法解方程即可.【详解】解:(x ﹣3)(x +4)=﹣10212100,x x220,x x210,x x20x ∴+=或10,x -=解得:122, 1.x x故答案为:122,1x x =-=【点睛】本题考查的是利用因式分解法解一元二次方程,掌握“利用十字乘法把方程的左边分解因式化为两个一次方程”是解本题的关键.4、2450(1)288x -=【解析】【分析】利用经过两期治理后废气的排放量=治理前废气的排放量(1⨯-每期减少的百分率)2,即可得出关于x 的一元二次方程,此题得解.【详解】解:依题意得:2450(1)288x -=.故答案为:2450(1)288x -=.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 5、1k >-【解析】【分析】根据当△>0时,方程有两个不相等的两个实数根可得△=4+4k >0,再解即可.【详解】解:关于x 的一元二次方程x 2+2x -k =0,△=4+4k >0,解得:k >-1.故答案为:k >-1.【点睛】本题考查的是根的判别式,根据方程的根列不等式,解不等式,即一元二次方程ax 2+bx +c =0(a ≠0)中,当△>0时,方程有两个不相等的两个实数根.三、解答题1、 (1)122,5=-=x x(2)x 1x 2 【解析】【分析】(1)利用因式分解求解即可;(2)利用公式法进行求解.(1)解:23100x x --=,(2)(5)0x x +-=,20x +=或50x -=,解得:122,5=-=x x ;(2)解:(3)(1)2x x x +-=-,210x x +-=,1,1,1a b c ===-,2141(1)50∴∆=-⨯⨯-=>,x ∴===解得:x 1x 2. 【点睛】本题考查解一元二次方程,解题的关键是掌握因式分解法、公式法求解一元二次方程.2、7m【解析】【分析】设AB 的长为x m ,则平行于墙的一边长为:(303)x -m ,该花圃的面积为:(303)x x -,令该面积等于63,求出符合题意的x 的值,即是所求AB 的长.【详解】解:设该花圃的一边AB 的长为x m ,则与AB 相邻的边的长为()303x -m ,由题意得:(303)63x x -=,即:210210x x -+=,解得:13x =,27x =当3x =m 时,平行于墙的一边长为:30321m 10m x -=>,不合题意舍去;当7x =m 时,平行于墙的一边长为:3039m 10m x -=<,符合题意,所以,AB 的长是7m .【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解.3、 (1)100万元(2)20%【解析】【分析】(1)利用二月份的销售额=一月份的销售额(120%)⨯-,即可求出结论;(2)设三、四月份销售额的平均增长率为x ,利用四月份的销售额=二月份的销售额(1⨯+平均增长率)2,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.(1)解:125(120%)12580%100⨯-=⨯=(万元).答:二月份的销售额为100万元.(2)设三、四月份销售额的平均增长率为x ,依题意得:2100(1)144x +=,解得:10.220%x ==,2 2.2x =-(不合题意,舍去).答:三、四月份销售额的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.4、道路宽为1m【解析】【分析】设道路的宽为x 米,根据“剩余部分栽种绿植,要使栽种面积为2126m ”建立等量关系,列方程求解即可.【详解】设道路的宽为x 米.依题意得:(15-x )(10-x )=126,150-25 x + x 2=126x 2-25 x+24=0(x -1)(x -24)=0解得:x 1=1,x 2=24(不合题意舍去)答:道路宽为1m .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出方程是本题的关键.5、(1)①13x =,22x =-;②11x =,29x =-;(2)有两个不相等的实数根,见解析【解析】【分析】(1)①根据因式分解法解一元二次方程即可,②根据配方法解一元二次方程即可;(2)根据一元二次方程根的判别式进行判断即可.【详解】解:(1)①原方程可变为()()232x x x +=+,()()2320x x x +-+=,()()320x x -+=,∴30x -=或20x +=,∴13x =,22x =-.②289x x +=,2816916x x ++=+,即()2425x +=,∴45x +=±,即45x +=或45x +=-,∴11x =,29x =-.(2)∵1a =,()33b k k =--=-,12c k =-,∴()()22434112b ac k k ∆=-=--⨯⨯- ()222296482521414k k k k k k k k =-+-+=++=+++=++, ∵()210+≥k , ∴()2140k ++>,即0>, ∴关于x 的方程()23120x k x k --+-=有两个不相等的实数根.【点睛】本题考查了解一元二次方程,一元二次方程根的判别式判断一元二次方程根的情况,正确的计算是解题的关键.。
《8 和 9 解决问题练习》教学设计一、教学目标(一)知识与技能通过现实的问题情景,使学生能够看懂数学问题,能够找到问题与条之间的联系,明确“解决问题需要的信息” ,并能利用 10 以内加减法正确解答。
(二)过程与方法使学生经历与同伴合作解决问题的过程,能够从问题的角度寻找相关条和从条的角度找问题的审题方法,同时进行数学问题结构的渗透。
(三)情感态度和价值观通过现实情境引导学生逐步学会用数学的眼光观察周围世界,发现与数学有关的问题并能够提出数学问题,体会生活中处处有数学。
二、目标分析本教学目标是学生首先能看懂数学问题,能够找到问题与条之间的联系的基础上,逐步深入分析题目,从而提出不同的问题,以培养学生在观察的基础上提出问题、解决问题的能力。
三、教学重难点教学重点:使学生能够看懂数学问题并找到问题与条之间的联系,明确“解决问题需要的信息”,使其正确解答。
教学难点:学会从问题的角度寻找与问题有关的条和从条的角度提出问题的分析方法、渗透数学问题结构,体会两个相关信息和一个问题构成一个数学问题。
四、教学准备、信封、写有条的纸条等。
五、教学过程(一)在读懂题意后,找准和问题相关的信息.出示图,引导学生观察图。
从图中你知道了什么?你能找到几个条?要解决的问题是什么?怎样解答?学生列式 6+ 3=9(个)教师要追问如下问题:解答正确吗? 6 表示什么? 3 表示什么? 9 表示什么?为什么用加法?2.出示图:(1)看图读懂题意,独立解答。
(2)交流讨论:学生列出算式:8-4=4 , 10-4=6 之后,教师要追问。
师:你觉得哪个算式正确?为什么?图上确实有10 只鸡,你为什么要用8 去减?做种让学生发现:两只大鸡和要解决的问题没有关系,是多余条。
(3)小结反思:在解决问题时,一定要根据问题去选择那些和问题有关的信息。
【设计意图】通过两道不同层次的练习,引导学生从图中提取信息,通过条与问题之间的联系,分析数量关系并解答;使学生进一步感受到解决问题必须要找准有用的信息,深化学生对数学问题的理解。
4.1探索确定位置的方法教材分析作为本章的第一节课,它起着承上启下的作用。
一方面,小学教材中已介绍过确定物体位置的两种常用的方法,但是由于知识不足,学生对两类方法的认识非常肤浅,并没有形成坐标意识;另一方面,本节课设置的目的在于让学生了解探究的方法,更重要的是促使学生形成坐标意识,从而为引入直角坐标系作好铺垫,为今后学习函数及其图象的关系奠定基础。
学情分析学生已具备掌握探索确定位置的两种常用方法的知识与经验基础,但由于中学生数学思维还不是很严密,真正让学生掌握这两种常用方法,透彻了解它们的细节,并能学以致用还是存在一定的困难。
针对本课的两种常用方法的前提是在平面上,针对有序数对法中,学生易忽视起始位置的约定及有序性,本课利用“报座位起立”环节,让学生真真实实地感受到它们的重要性。
针对方向距离法中,学生易忽视参照点的选定,本课利用有效的问题让学生自然地领悟参照点的不可或缺。
教学目标1、探索确定平面上物体位置的方法;初步会用有序数对和方向、距离表示平面上的点的位置.2、体验用有序数对表示平面上点的位置的坐标思想,体验用方向和距离表示平面上点的位置的坐标思想;3、通过运用位置确定的方法解决实际问题,激发学生的学习兴趣.教学重点与难点教学重点:探索在平面上确定位置的两种常用方法.教学难点:本节“合作学习”涉及两种确定方法的运用,还涉及测量、比例计算等方面,是本节教学的难点.教学准备:教学课件,刻度尺,量角器教学过程:一、创设情境,引入新课(一)探索新知一:“有序数对”法1、问题:①A,B两人能否找到属于自己的位置? ②假如A要找到自己的位置,还需加什么条件? B呢?③如果换两张电影票,A,B能找到自己的位置吗? 电影院里的座位是如何确定的? ④如果将“6排3号”记作(6,3),那么3排6号如何表示?⑤在电影票上“6排3号”与“3排6号”中的“6”的含义有什么不同?⑥(5,6)表示什么含义?(6,5)又表示什么?这说明什么?二、师生合作,探究学习1、思考:(1)确定一个座位一般需要几个数据?为什么?(2)一对数如(5, 2)所表示的座位有几个?一个位置用几个数对来表示?这说明了什么?小结:为了表示简便,把第几排第几号记为数对形式,习惯上把排数写在前面,号数写在后面,再两头括号,中间逗号。
八年级数学备课组集体备课教案第一章:实数的运算一、教学目标1. 理解实数的概念,掌握实数的分类及特点。
2. 熟练掌握实数的运算方法,包括加、减、乘、除、乘方等。
3. 能够运用实数运算解决实际问题。
二、教学内容1. 实数的概念及分类。
2. 实数的运算方法及运算律。
3. 实数运算在实际问题中的应用。
三、教学重点与难点1. 实数的分类及特点。
2. 实数运算方法的掌握。
3. 实数运算在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解实数的概念、分类及运算方法。
2. 利用例题,演示实数运算的过程。
3. 引导学生运用实数运算解决实际问题,培养学生的实际应用能力。
五、教学步骤1. 引入实数的概念,讲解实数的分类及特点。
2. 讲解实数的运算方法,并通过例题演示运算过程。
3. 布置练习题,让学生巩固实数运算的方法。
4. 引导学生运用实数运算解决实际问题,分享解题过程及答案。
第二章:方程与不等式的解法一、教学目标1. 理解方程与不等式的概念,掌握一元一次方程、一元一次不等式的解法。
2. 能够运用解法解简单的一元二次方程和不等式。
3. 能够运用方程与不等式解决实际问题。
二、教学内容1. 方程与不等式的概念及分类。
2. 一元一次方程、一元一次不等式的解法。
3. 一元二次方程和不等式的解法。
4. 方程与不等式在实际问题中的应用。
三、教学重点与难点1. 方程与不等式的解法。
2. 一元二次方程和不等式的解法。
3. 方程与不等式在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解方程与不等式的概念及解法。
2. 利用例题,演示一元一次方程、一元一次不等式的解法。
3. 引导学生运用解法解决实际问题,培养学生的实际应用能力。
五、教学步骤1. 引入方程与不等式的概念,讲解分类。
2. 讲解一元一次方程、一元一次不等式的解法,并通过例题演示解法。
3. 讲解一元二次方程和不等式的解法,并通过例题演示解法。
4. 布置练习题,让学生巩固解法。
初中八年级数学上册备课教案5篇初中八年级数学上册备课教案篇1分式方程教学目标1.经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.教学重点:将实际问题中的等量关系用分式方程表示教学难点:找实际问题中的等量关系教学过程:情境导入:有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000 kg和15000 kg。
已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每公顷的产量。
你能找出这一问题中的所有等量关系吗?(分组交流)如果设第一块试验田每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。
根据题意,可得方程___________________二、讲授新课从甲地到乙地有两条公路:一条是全长600 km的普通公路,另一条是全长480 km的高速公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。
求该客车由高速公路从甲地到乙地所需的时间。
这一问题中有哪些等量关系?如果设客车由高速公路从甲地到乙地所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程_ _____________________。
学生分组探讨、交流,列出方程.三.做一做:为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。
已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。
如果设第一次捐款人数为人,那么满足怎样的方程?四.议一议:上面所得到的方程有什么共同特点?分母中含有未知数的方程叫做分式方程分式方程与整式方程有什么区别?五、随堂练习(1)据联合国《20_年全球投资报告》指出,中国20_年吸收外国投资额达530亿美元,比上一年增加了13%。
6.6《用7、8的乘法口诀解决问题练习课》(教案)二年级上册数学人教版今天我要为大家带来的是二年级上册数学人教版的《用7、8的乘法口诀解决问题练习课》教案。
一、教学内容我们将在这一节课中复习和巩固7、8的乘法口诀,并运用口诀解决实际问题。
教材的章节主要包括7、8的乘法口诀及其应用。
二、教学目标通过本节课的学习,希望学生们能够熟练掌握7、8的乘法口诀,并能够运用口诀解决实际问题。
三、教学难点与重点本节课的重点是让学生熟练掌握7、8的乘法口诀,难点是如何引导学生将口诀运用到实际问题中。
四、教具与学具准备为了帮助学生们更好地理解和运用7、8的乘法口诀,我准备了一些图片和练习题。
五、教学过程1. 情景引入:我先用图片展示了一些实际问题,比如有7个小朋友,每个小朋友有8个糖果,一共有多少个糖果?让学生们思考并尝试解答。
2. 讲解口诀:然后我带领学生们复习了7、8的乘法口诀,通过例题讲解,让学生们理解口诀的运用。
3. 随堂练习:我给出了一些练习题,让学生们运用口诀计算,并及时给予指导和反馈。
4. 小组合作:我让学生们分组合作,共同解决一些综合性的问题,比如有7个小组,每个小组有8个玩具,一共有多少个玩具?让学生们通过讨论和计算得出答案。
六、板书设计我在黑板上写下了7、8的乘法口诀,并在旁边标注了一些实际问题的例子,方便学生们理解和记忆。
七、作业设计1. 请学生们运用7、8的乘法口诀,解决一些实际问题,并写下解答过程。
答案:比如有7个小朋友,每个小朋友有8个糖果,一共有56个糖果。
八、课后反思及拓展延伸通过本节课的教学,我发现学生们对7、8的乘法口诀掌握得比较好,但在运用口诀解决实际问题时,有些学生还存在一定的困难。
在课后,我会继续加强对这部分学生的辅导,并给出更多的实际问题,让学生们练习和巩固。
同时,我也会鼓励学生们在课后自主探索更多的乘法口诀应用问题,提高他们的数学思维能力。
重点和难点解析关于7、8的乘法口诀的熟练掌握程度。