非线性电路课程报告记录蔡氏电路的Matlab仿真研究
- 格式:docx
- 大小:235.17 KB
- 文档页数:9
非线性电路理论及应用课程作业XXXXXXXXX蔡氏对偶混沌电路仿真报告一、蔡氏对偶混沌电路分析应用一个三阶自治电路进行仿真,电路如图1所示,其中包含一个电流控制型的非线性电阻元件,其伏安特性关系如图2所示。
L 2L 2i 1CR 2u r u c+-+-i 2i-2-1120.20.1-0.1-0.2O u r /Vi 1/A图1 蔡氏对偶电路 图2 流控型非线性电阻伏安特性对于图1中所示的电路,其状态方程推导如下:2c c 21022112011d d )(d d )()(d d i t uC u i i R t iL i r i i R t i L -=+-=--= 整理上述各式得2c c 22120211121011d d 1)(d d )(1)(d d i Ct u u L i i L R t i i r L i i L R t i -=+-=--=为分析方便,对方程进行归一化处理 令20()L t R τ=,t L Rd d 20=τ 且令 120,,c x i y i z u R ===则上述各方程变为y CR L t z z y x t yx r x y L L t x 0212d d d d )]([d d -=+-=--=上述方程中,将时间τ任记为t ,则方程变为标准蔡氏方程,即为:y tzz y x t yx f y t xβα-=+-=-=d d d d )]([d d 其中21L a L =,220L b CR = 001()()0.5()(11)r x f x m x m m x x ==+-+--二、计算机仿真1、参数设置上述蔡氏对偶电路的微分方程描述的动态系统关于原点对称,对应于分段线性电流控制型电阻的特性,若将f (x )特性分为三段考虑,即为⎪⎩⎪⎨⎧-≤--≤≥-+=1)(1||1)()(1010101x m m x m x x m x m m x m x f为了进行计算机仿真计算分析,我们令 8001.0008.012===L L α,5.121104.6008.0402=⨯⨯==-CR L β 而取2.0510-=-=m ,4.0521==m取初始值为(0.025,-0.022,0.8)应用MATLAB 进行仿真。
一、背景介绍三阶蔡氏电路是一种经典的电路结构,在信号处理、滤波等领域有着重要的应用。
利用MATLAB对三阶蔡氏电路进行仿真分析,可以帮助工程师和研究人员更好地理解电路的特性和行为,对于电路设计和优化具有重要意义。
二、三阶蔡氏电路的基本原理三阶蔡氏电路由三个积分器和两个比例放大器组成,是一种具有强大信号处理能力的电路结构。
它可以用于实现各种滤波器,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
在电子电路和通信系统中有广泛的应用。
三、MATLAB仿真环境的搭建1. 安装MATLAB软件,并确保其正常运行。
2. 新建一个MATLAB脚本文件,用于编写三阶蔡氏电路的仿真代码。
3. 导入必要的工具箱和函数库,确保能够进行电路仿真分析所需的基本操作和函数调用。
四、三阶蔡氏电路的参数设置1. 根据具体的电路结构和设计要求,设置电路的参数,包括电阻值、电容值、放大倍数等。
2. 考虑电路中可能存在的噪声以及非线性元件的影响,进行适当的参数修正和补偿。
五、三阶蔡氏电路的MATLAB仿真代码实现1. 编写三阶蔡氏电路的节点方程,建立电路的数学模型。
2. 利用MATLAB的数值计算工具,如ode45函数等,对电路进行仿真计算。
3. 对仿真结果进行分析和后处理,得到电路的频率响应、相位特性等重要信息。
六、仿真结果与分析1. 利用MATLAB绘制三阶蔡氏电路的幅频特性曲线和相频特性曲线,观察电路的频率响应特性。
2. 对比不同参数设置下的仿真结果,分析电路性能随参数变化的规律和特点。
3. 考虑电路可能存在的非线性特性,对其进行深入分析和讨论,为实际应用提供参考依据。
七、结论与展望通过MATLAB对三阶蔡氏电路的仿真分析,我们深入了解了电路的特性和行为。
这对于电路的设计和优化具有重要意义。
在未来的研究中,可以进一步探究电路在实际应用中的性能表现,以及对其进行更加精细的仿真和分析。
也可以考虑将仿真结果与实际测试数据进行对比,验证仿真模型的准确性和可靠性。
非线性电路课程报告电气工程学院蔡氏混沌电路的MATLAB仿真摘要:混沌是非线性系统中的常见现象。
本文应用MA TLAB软件对蔡氏电路进行了仿真分析,并对仿真结果作了讨论,指出了这种研究方法的应用前景。
关键词:蔡氏电路混沌动力学吸引子系统仿真1.引言作为一种普遍存在的非线性现象, 混沌的发现对科学的发展具有深远的影响。
混沌行为是确定性因素导致的类似随机运动的行为,即:一个可由确定性方程描述的非线性系统,其长期行为表现为明显的随机性和不可预测性, 我们就认为该系统存在混沌现象.混沌具有三个特点:随机性;遍历性;规律性。
混沌有一个很重要的性质:系统行为对初始条件非常敏感。
混沌理论是架起确定论和概率论两大理论体系之间的桥梁,与相对论、量子力学一起被称为20世纪物理学的三大革命。
近年来,混沌现象及其应用成为一个研究热点,学者们对混沌在通讯工程、电子工程、生物工程、经济学等领域中的应用进行着广泛的研究。
许多学者通过非线性电路对混沌行为进行了广泛地研究, 其中最典型的是蔡氏电路,它是能产生混沌行为的最小、最简单的三阶自治电路。
在电路与系统领域,由于蔡氏电路的提出,对混沌理论及其应用的研究也变得十分活跃。
蔡氏混沌电路是一个物理结构及数学模型都相对简单的混沌系统,然而它也是一个典型的混沌电路,对蔡氏电路的研究有助于理解混沌的演化过程及其了解混沌相关特性。
由于混沌动力学系统的复杂性,绝大多数混沌动力学系统难以用已知的函数表示其通解,所以通过数值计算对混沌行为的时空演化进行描述是研究混沌的一种重要方法。
MATLAB软件是以矩阵计算为基础的数值计算、模型仿真的优秀数学工具。
借助MATLAB软件强大的数值计算及仿真能力,使得对许多复杂的混沌系统的研究变得相对容易和直观。
本文对其进行深入的数学分析;在MA TIAB环境下,建立了该电路的仿真模型,通过改变电路中的线性电阻值和系统状态变量初始值,对其非线性动力学行为进行仿真分析。
非线性电路实验报告非线性电路【摘要】本次实验测量了有源非线性电阻的I-U 特性曲线,了解了非线性电阻的性质。
再利用有源非线性电阻搭建蔡氏振荡电路,改变特征参数,观察到不同的混沌现象,计算费根鲍姆常数。
再将两个蔡氏振荡电路搭建电路,观察并研究混沌同步。
最后我们观察信号的的加密,在混沌同步电路的基础上继续搭建,观察信号的加密与解密。
关键词:非线性电路、混沌、信号加密一.引言非线性科学的萌芽期可以追溯到19世纪末20世纪初,法国数学家庞加莱在解决天体力学中的三体问题时提出了庞加莱猜想。
非线性科学的真正建立是在20世纪六七十年代。
1963年,美国气象学家洛伦茨在《确定论非周期流》一文中,给出了描述大气湍流的洛伦茨方程,并提出了著名的“蝴蝶效应”,从而揭开了对非线性科学深入研究的序幕。
非线性科学被誉为继相对论和量子力学之后,20世界物理学的“第三次重大革命”。
由非线性科学所引起的对确定论和随机论、有序和无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻的影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。
迄今为止,最丰富的混沌现象是非线性震荡电路中观察到的,这是因为电路可以精密元件控制,因此可以通过精确地改变实验条件得到丰富的实验结果,蔡氏电路是华裔科学家蔡少棠设计的能产生混沌的最简单的电路,它是熟悉和理解非线性现象的经典电路。
本次实验通过蔡氏电路研究混沌、混沌同步与混沌通信。
了解有源性负阻的I-U特性曲线与混沌现象的规律。
二.实验原理1. 费恩鲍姆系数一个完全确定的系统,即使非常简单,由于系统内部的非线性作用,同样具有内在的随机性,可以产生随机性的非周期运动。
在许多非线性系统中,既有周期运动,又有混沌运动。
所谓混沌,是服从确定性规律但具有随机性的运动,其主要特征是系统行为对于初始条件的敏感性。
菲根鲍姆发现,一个动力学系统中分岔点处参量n 收敛服从普适规律。
存在常数:,被称为菲根鲍姆常数。
基于MATLAB的非线性电路特性仿真研究作者:李佳伦来源:《科技视界》2019年第24期【摘要】实际电路都是非线性的。
非线性电路具有很多和线性电路完全不同的特性,表现出非线性电路独有的一些行为。
论文利用MATLAB搭建了不同的非线性电路模型,然后利用数值仿真,分析了非线性电路稳态不唯一、极限环、混沌等三个典型特性,直观展现了非线性电路中稳定与不稳定平衡点、极限环、混沌等不同行为的具体表现,分析了非线性电路轨迹与初始点的相关性,为了解非线性电路特殊的行为提供参考。
【关键词】非线性电路;平衡点;极限环;混沌中图分类号: TN710 文献标识码: A 文章编号: 2095-2457(2019)24-0047-004DOI:10.19694/ki.issn2095-2457.2019.24.023【Abstract】All actual circuits are nonlinear. Nonlinear circuits have many different characteristics from linear circuits, and some special behaviors would appear. The paper uses MATLAB to build different nonlinear circuit models, and then uses numerical simulation to analyze three typical characteristics of nonlinear circuits, i.e. multiple steady states, limit cycle and chaos, and visually shows the stable equilibrium point and unstable equilibrium point, limit cycle, chaos and other characteristics in nonlinear circuits. The paper also analyzes the dependence of trajectories of nonlinear circuits on the initial points. The results provide a reference for understanding the special behaviors of nonlinear circuits.【Key words】Non-linear circuit; Equilibrium point; Limit cycle; Chaos0 引言在線性电路中,线性元件的特点是其参数不随电压或电流而变化。
非线性电路课程报告记录蔡氏电路的Matlab仿真研究
————————————————————————————————作者:————————————————————————————————日期:
CHINA
[键入文档标题] [键入文档副标题]
USER
蔡氏电路的Matlab仿真分析
摘要:对一种典型的产生混沌现象的电路——蔡氏混沌电路进行了分析研究。
从理论分析和仿真两个角度分别研究蔡氏电路中的混沌现象。
蔡氏电路是一个典型的混沌电路,只要改变其中一个元件的参数,就可产生多种类型混沌现象。
在Matlab 的平台上编制相关系统对蔡氏电路进行了仿真研究。
关键词:蔡氏电路,非线性负电阻;混沌电路;吸引子
引言
随着计算机和计算科学的快速发展,混沌现象及其应用研究已成为自然科学技术和社会科学研究领域的一个热点。
而非线性电路是混沌及混沌同步应用研究的重要途径之一,其中一个最典型的电路是三阶自治蔡氏电路。
在这个电路中观察到了混沌
吸引子。
蔡氏电路是能产生混沌行为最简单的自治电路,所有从三阶自治常微分方程描述的系统中得到的分岔和混沌现象都能够在蔡氏电路中通过计算机仿真和示波器观察到。
经过若干年的研究及目前对它的分析,无论是在理论方面、模拟方面还是实验方面均日臻完善。
在理论和实践不断取得进展时,
人们也不断开拓新的应用领域,如在通信、生理学、化学反应工程等方面不断产生新的技术构想,并有希望很快成为现实。
1混沌概念及其相关特征
1.1混沌和吸引子的定义
混沌至今没有统一的定义,但人们一致的看法是:一个确定的非线性系统,如果含有貌似噪声的有界行为,且又表现若干特性,便可称为混沌系统,此处所说的若干特性主要是如下三个方面:(1)振荡信号的功率连续分布,且可能是带状分布的,这个特征表明振荡为非周期的,也就是说明信号貌似噪声的原因。
(2)在相空间,该系统的相邻近的轨道线彼此以指数规律迅速分离,从而导致对初始值得极端敏感性,这使得系统的行为长期不可预测。
(3)在轨道线存在的相空间的某一特定的有界部分内,轨道线具有遍历性和混合性。
遍历性是指任何一条轨道线会探访整个特定的有界部分,混合性是指初始间单关系将弥漫的动力学行为所消除。
混沌吸引子:吸引子是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它。
若吸引子的轨线对初始条件高度敏感依赖,该吸引子就称为混沌吸引子。
吸引子无外乎两种状态,即单个点和稳定极限环。
系统的吸引子理论是关于吸引子的科学理论,它是混沌学的重要组成部分。
奇异(怪)吸引子:具有分数维结构的吸引子称为奇异吸引子。
奇异吸引子是反映混沌系统运动特征的产物,也是一种混沌系统中无序稳态的运动形态。
它具有自相似性,同时具有分形结构。
奇异吸引子是混沌运动的主要特征之一。
奇异吸引子的出现与系统中包含某种不稳定性(不同于轨道不稳定性和李雅普诺夫不稳定性)有着密切关系,它具有不同属性的内外两种方向:在奇异吸引子外的一切运动都趋向(吸引)到吸引子,属于“稳定”的方向;一切到达奇异吸引子内的运动都互相排斥,对应于“不稳定”方向。
1.2混沌的基本特征
混沌具有两个基本的特征:一是运转状态的非周期性,即混沌系统输出信号的周期为无穷大,且在功率上与纯粹噪声信号难以分辨,因而是随机信号,然而混沌系统是确定性动力学系统,本身并不包含任何随机因素的作用,其产生随机输出信号的原因完全是因为系统内部各变量之间的强非线性耦合。
因此,其输出的随机信号在理论上是可以精确重复的。
二是对初始条件的高度敏感性,即若存在对初始条件的任何微小的偏离(扰动),则此偏离随着系统的演化将迅速以指数率增长,使得在很短的时间内系统的状态与受扰前便失去任何的相关性,因此,混沌仅具有极为短期的预测性。
混沌状态具有以下三个关键(核心)概念:即对初始条件的敏感性、分形、奇异吸引子。
2蔡氏电路与非线性负电阻的实现
2.1蔡氏电路的构成
蔡氏电路是一个典型的混沌电路。
蔡氏电路实验电路图如图1所示。
电路中的电感L 和电容C 1、C 2并联构成一个振荡电路。
R 是一个有源非线性负电阻元件,电感L 和电容C 2组成一损耗可以忽略的谐振回路;可变电阻R 和电容C 1串联将振荡器产生的正弦信号移相输出。
图1.蔡氏电路图
图2.有源非线性负电阻伏安特性曲线
蔡氏电路的状态方程式为:
C 1dUc 1/dt=G (Uc 2-Uc 1)-gUc 1
C 2dUc 2/dt=G(Uc 1-Uc 2)+i L
Ldi L /dt= -Uc 2
式中U C1,U C2分别为电容C 1,C 2上的电压;i l 为电感L 上的电流,G=1/R 0为电导;g 为R 的伏安特性函数。
当R 为线性电阻时,g 为常数,电路为一般振荡电路,此时把C 1和C 2两端的电压分别输入到示波器的x,y 轴,显示的图形是椭圆形;当R 为非线性负电阻时,其伏安特性如图2,此时把C 1 和C 2两端的电压分别输入到示波器的x,y 轴,调节G 的值就会观察到不同的混沌现象。
3蔡氏电路的Matlab 仿真分析
以下是蔡氏电路平衡点出的仿真。
为了进行计算机仿真分析,我们令
2
71L L α==,22100L CR β==
取2.00-=m ,4.01=m 。
设置的初值[0.1;0.1;0.1],仿真时间为[0,200]。
蔡氏电路的仿真程序如下:
function simulation_chua
clc;
clear;
[t,y]=ode45(@chua,[0,200],[0.1;0.1;0.1]);
figure;
plot3(y(:,1),y(:,2),y(:,3));
xlabel('X');
ylabel('Y');
zlabel('Z');
figure;
plot(t,y(:,1),'-');
xlabel('t');
ylabel('X');
title('Chua system ');
figure;
plot(t,y(:,2),'-');
xlabel('t');
ylabel('Y');
title('Chua system ');
figure;
plot(t,y(:,3),'-');
xlabel('t');
ylabel('Z');
title('Chua system ');
figure;
plot(y(:,1),y(:,3))
figure;
plot(y(:,1),y(:,2))
figure;
plot(y(:,2),y(:,3));
xlabel('il1'),ylabel('uc'),zlabel('1')
grid
function dy=chua(t,y)
ga=-0.2; gb=0.4; bp=1;
aa=7; bb=10;
a=0.5;
ia=gb*y(1)+a*(ga-gb)*(abs(y(1)+bp)-abs(y(1)-bp)); dy=[ aa*(y(2)-ia)
y(1)-y(2)+y(3)
-bb*y(2)];
仿真结果如下图:
4混沌电路的几种应用
基于混沌电路的特性,它在许多领域中有重要的应用。
但由于目前混沌学仍处于研究阶段,故其应用并不完善,出现的一些问题还有待解决。
1.保密通信中的应用:使强度更大的混沌信号和真实信号同步,由于混沌信号具有信号频谱宽、类似噪声、随机不可预测等特性,当真实信号被混沌信号所掩盖时,攻击者就很难从传输信号中分离出原始真实信号。
另外要求收发两端使用相同的混沌系统以及系统参数和状态初值,使系统同步并输出相同的混沌信号,以便正确地恢复信号[5]。
2.自动控制中的应用:考察非线性混沌系统的输出信号与输入信号的自反馈耦合,或者从系统外部强迫注入某一周期信号,或者直接将系统自身的输出信号取出一部分经过一定的时间延迟后再反馈到原混沌系统中去.作为控制信号,通过调节控制因子及控制信号的大小实现稳定控制。
3.传感应用:混沌具有初值敏感性, 当其结构参数稳定时,初始值与动力轨道在一定的时间内是一一对应的, 而且对于微小的初值变化, 其运动轨迹就会出现指数分离。
若初值细微变化是由混沌系统中的传感元件随被测参数变化而引起的, 则轨迹之间的巨大差异就能直接反映被测参数的大小。
这种混沌型传感器具有很高的灵敏度和分辨率, 特别适用于微应变、微应力的测量;微量变化物参数的测量。