- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学课件
永一切隔数形数焉数
,
,
——
远体莫离形少无能与
联 忘分结数形分形
华系 几家合时时作本
罗莫 庚分
离
何万百难少两是 代事般入直边相 数休好微觉飞倚
统
依
第一章:集合与函数 第二章:基本初等函数 第三章:函数的应用
第一章:集合与函数
第一节:集合
集合的含义与表示
一、请关注我们的生活,会发现………
Axxpx Bxxqr x AB 4 、 { 已 | 2 知 2 0 } , { | 2 0 } 且 { 2 , 1 , 5 }, AB pqr { 2 } 求 , , , 的 . (解 值 :p 得 1 ,q 3 ,r 1)0
A aaBa a AB a AB 5 、 { 4 , 2 设 1 , 2 } { , 5 , 1 , 9 } 已 , 知 { 9 } 求 的 , , 并 值 . 求 Axxx Bxxaax ABA a 6 、 { 已 | 2 3 2 知 0 } { , | 2 1 0 } 若 , 求 的 . 实
解: A∪B={x|-1<x<2} ∪ {x|1<x<3} ={x|-1<x<3}
-1 1 2 3
并集的运算性质:
(1) AA A (2) A A (3) ABBA (4) AAB,BAB, ABAB (5) AB则ABB
注意:计算并集和交集的时候尽可能的转化为图像,减少犯错的几率,常用 的图像有Venn图,数轴表示法,坐标表示法。尤其是涉及到不等式和坐标点 的时候。
⑴ A={1,2,3} , B={1,2,3,4,5}; ⑵设A为新华中学高一(2)班女生的全体组成的集合,
B为这个班学生的全体组成的集合; ⑶ 设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}.
一、子集和真子集的概念
1、子集:一般地,对于两个集合A、B, 如果集合A中任意一个元素都是 集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子 集.
练习题
1、下列命题:重点考察对空集的理解!
(1空 ) 集没有子集;
(2)任何集合至少有两集 个; 子
(3空 ) 集是任何集合的集 真; 子
(4)若 A,则A .其中正确的(有
)
A.0个
B.1个 C.2个
D.3个
2. 设 x,y R, A{( y| x ) y- ,3x-2B }, {( y| x ) x y- - ,2 31},
如果两个集合的元素完全相同,则它们相等。
例:集合A={x|x为小于5的素数},集合A={x ∈ R|(x-1)(x-3)=0},这两 个集合相等吗。
五、集合的分类
根据集合中元素个数的多少,我们将集合分为以下两大类: 1、有限集:含有有限个元素的集合称为有限集特别,不含任何元素的集 合称为空集,记为 ,注意:不能表示为{}。 2.无限集:若一个集合不是有限集,则该集合称为无限集
讨论2:集合{a,b,c,d}与{b,c,d,a}是同一个集合吗?
三、数集的介绍和集合与元素的关系表示
1、常见数集的表示
N:自然数集(含0)即非负整数集
N+或N*:正整数集(不含0)
Z:
整数集
Q: 有理数集
R:
实数集2、集ຫໍສະໝຸດ 与元素的关系(属于∈或不属于 )若一个元素m在集合A中,则说 m∈A,读作“元素m属于集合A” 否则,称为mA,读作“元素m不属于集合A。
U A A∩B B
其实,交集用通俗的语言来说,就是找两个集中中共同存在的元素。
例题: 1、A={-1,1,2,3},B={-1,-2,1},C={-1,1};
A
CB
2,3
-1,1
-2
交集的运算性质:
(1) A A A
(2) A
(3) A B B A
(4) A B A, A B B (5) A B 则 A B A
如图,阴影部分即CSA.
S A
如果集合S包含我们所要研究的各个集合,这时集合S看作一个全集,通 常记作U。
{ 例题、不等式组
2 3
x x
-1 -6
>
0 0
的解集为A,U=R,试求A及CUA,并把它们
分别表示在数轴上。
思考:
1、CUA在U中的补集是什么?
2、U=Z,A={x|x=2k,k∈Z}, B={x|x=2k+1,K∈Z},则CUA=___, CUB=____。
则 A, B的关 __系 __ 是 __.
x x xa x a 3 . 已 A { 知 | 2 5 } B , { | 1 2 1 } B , A, a 求 的 实 取 . 数 值范围
4、补集与全集
4、设集合A={x|1≤x≤3},B={x|x-a≥0},若A是B的真子集,求实数 a的取值范围。
练习题
1、直线y=x上的点集如何表示?
x+y=2
2、方程组
的解集如何表示?
x-y=1
3、若{1,a}和{a,a2}表示同一个集合, 则a的值不能为多少?
集合间的基本关系
实数有相等关系、大小关系,如5=5,5<7,5>3,等等,类比实数之间的关系, 你会想到集合之间的什么关系? 观察下面几个例子,你能发现两个集合之间的关系吗?
2、并集
一般地,由所有属于集合A或者属于集合B的所构成的集合,称为A与B的并集, 记作A∪B,即
A∪B = {x|x∈A,或x∈B}
A∪B可用右图中的阴影部分来表示
U
A
B
其实,并集用通俗的语言来说,就是把两个集合的元素合并到一起。所以交 集是“求同”,并集是存异。 例题: 设集合A={x|-1<x<2},集合B={x|1<x<3} 求A∪B.
(1)a {a}; (2) {a} ∈{a,b};
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
(6) {-1,1}.
集合与集合的运算
1、交集
一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集, 记作A∩B,即
A∩B={x|x∈A,且x∈B} A∩B可用右图中的阴影部分来表示。
四、开区间、闭区间和半开半闭区间
实数R的区间可以表示为(- ∞ ,+ ∞ )
Ax x xxBxaxbABxx 7 、 { 设 | 2 集 1 } { | 1 合 } { , | } 若 { | 2 }, ABx x ab { | 1 3 } 求 , 的 , .(解 值 a得 1,b3)
第一章:集合与函数
第二节:函数
函数及其表示
一、函数的概念
思考:1、比较这三个集合: A={x ∈Z|x<10},B={x ∈R|x<10} , C={x |x<10} ;
例题:求由方程x2-1=0的实数解构成的集合。 解:(1)列举法:{-1,1}或{1,-1}。 (2)描述法:{x|x2-1=0,x∈R}或{X|X为方程x2-1=0的实数解}
2、两个集合相等
的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以4.9”
1 乘以10再加20 30
2
40
3
50
4
60
5
70
6
80
7
90
8
100
1 平方后乘以4.94.9
1.5
?
2
?
3
?
5
?
6
?
7
?
8
?
二、映射
通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的 数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的 集合,则这种对应关系就称为映射。具体定义如下:
例如:1∈N, -5 ∈ Z, Q 1.5 N
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
5、设A={1,2},B={x|xA},问A与B有什么关系?并用列举法写出B?
6 、 A 设 { | x x 2 集 4 x 0 B 合 } { | , x x 2 2 ( 1 a ) a 2 - 1 x 0 a , R} 若 B A , a 的 求 . 值 实数
7、判断下列表示是否正确:
设A、B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合 A中的任何一个元素x,在集合B中都有唯一确定的元素y与之相对应,那么就称 对应f:A→B为集合A到集合B的一个映射。
国家
首都
中国 美国 韩国 日本
北京 华盛顿 首尔 东京
因此,函数是映射的一 种特殊形式
三、函数的三种表示方法
解析法,图像法,列表法。详见课本P19页。
读作:A包含于B,或者B包含A 可以联系数与数之间的“≤”
BA
2、真子集:
3、空集:
我们把不含任何元素的集合叫做空集,记作Φ,并规定:空集是任何集合 的子集,空集是任何非空集合的真子集。
4、补集与全集
设AS,由S中不属于集合A的所有元素组成的集合称为S的子集A的补集, 记作CSA ,即CSA ={x|x∈S,且xA}
思考题:如何用集合语言描述?
设平面 l1上内 的直 点 L1线 ,直 的 l2上 线 集点 合的 L为 2,试 集 用 合 集 的运l1算 ,l2的 表 位 示 .置关系
解 :(1) 直l1 线 ,l2相交P于 可一 表点 L示 1L为 2 {: 点 P}; (直 2)l1 线 ,l2平行可L1表 L2示 ; 为: (直 3)l1 线 ,l2重合可L1表 L2示 L1为 L2. :