高考物理一轮复习 专题五 万有引力与航天 考点2 人造地球卫星教案
- 格式:doc
- 大小:235.51 KB
- 文档页数:11
第14讲 万有引力定律及其应用教学目标1. 了解万有引力定律的发现过程,知道万有引力定律.2. 知道第二宇宙速度和第三宇宙速度,会计算天体的质量和人造卫星的环绕速度. 重点:运用万有引力定律解决天体模型 难点:了解各种天体模型,知道它们的区别知识梳理一、开普勒行星运动定律1. 开普勒第一定律(轨道定律):所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
2. 开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过的相等的面积。
(近日点速率最大,远日点速率最小)3. 开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的平方的比值都相等。
即2234G MK T a π==(M 为中心天体质量)K 是一个与行星无关的常量,仅与中心天体有关二、万有引力定律1. 定律内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们距离的平方成反比。
2. 表达式:F=GmM/r 2G 为万有力恒量:G=6.67×10-11N·m 2/kg 。
说明:(1)公式适用于质点间的相互作用。
当两个物体间的距离远远大于物体本身的大小时,物体可视为质点。
(2)质量分布均匀的球体可视为质点,r 是两球心间的距离。
地球对物体的引力是物体具有重力的根本原因.但重力又不完全等于引力.这是因为地球在不停地自转,地球上的一切物体都随着地球自转而绕地轴做匀速圆周运动,这2ωr m f =,就需要向心力.这个向心力的方向是垂直指向地轴的,它的大小是式中的r 是物体与地轴的距离,ω是地球自转的角速度.这个向心力来自哪里?只能来自地球对物体的引力F ,它是引力F 的一个分力如右图,引力F 的另一个分力才是物体的重力mg .在不同纬度的地方,物体做匀速圆周运动的角速度ω相同,而圆周的半径r 不同,这个半径在赤道处最大,在两极最小(等于零).纬度为α处的物体随地球自转所需的向心力αωcos 2R m f = (R 为地球半径),由公式可见,随着纬度升高,向心力将减小,在两极处Rcos α=0,f =0.作为引力的另一个分量,即重力则随纬度升高而增大.在赤道上,物体的重力等于引力与向心力之差.即.2R MmGmg =.在两极,引力就是重力.但由于地球的角速度很小,仅为10-5rad /s 数量级,所以mg 与F 的差别并不很大.在不考虑地球自转的条件下,地球表面物体的重力.RMmG mg 2=这是一个很有用的结论. 从图1中还可以看出重力mg 一般并不指向地心,只有在南北两极和赤道上重力mg 才能向地心.同样,根据万有引力定律知道,在同一纬度,物体的重力和重力加速度g 的数值,还随着物体离地面高度的增加而减小. 若不考虑地球自转,地球表面处有.2R Mm Gmg=,可以得出地球表面处的重力加速度.2R MG g =. 在距地表高度为h 的高空处,万有引力引起的重力加速度为g ',由牛顿第二定律可得:2)(h R MmGg m +='即g h R R h R M G g 222)()(+=+=' 如果在h =R处,则g '=g/4.在月球轨道处,由于r =60R,所以重力加速度g '= g/3600. 重力加速度随高度增加而减小这一结论对其他星球也适用.二、万有定律的应用1. 讨论重力加速度g 随离地面高度h 的变化情况: 物体的重力近似为地球对物体的引力,即2)(h R MmGmg+=。
2013-2014高三物理一轮复习万有引力与航天教案赵辉 2013.9.4一.万有引力与航天在教材中的地位和特点高考对本章考查的较为全面,运用万有引力定律及向心力公式分析人造卫星的绕行速度、运动周期以及计算天体的质量和密度等。
载人航天的成功和中国探月计划的实施 ,对万有引力定律的应用、人造卫星问题的考查是热点。
本章是牛顿定律和圆周运动的一个实际应用。
概括起来有两个特点:一是对牛顿定律和圆周运动所涉及的基本概念和规律在理解和应用上的进一步加深.二是所涉及描述天体做圆周运动的物理量间逻辑关系复杂,如向心力、万有引力、向心加速度、线速度、角速度、周期、轨道半径、机械能、动能、势能,这些概念间相互关系学生学习起来很抽象.二.万有引力和航天课标和大纲要求三.要点回顾1、物理学史托勒密------------地心说 哥白尼------------日心说开普勒------------行星运动三大定律。
牛顿---------------发现万有引力定律卡文迪许---------通过扭秤实验验证了牛顿的万有引力定律,确定了引力常数和地球平均密度。
2、开普勒定律① 第一定律(轨道定律):所有行星围绕太阳运转的轨道都是 ,太阳处在所有椭圆的一个 上.② 第二定律(面积定律):任意一个行星在绕太阳运动时,行星与太阳的连线在相同时间里扫过的面积是 的.课标要求考试说明要求(1)了解万有引力定律的发现过程。
知道万有引力定律。
认识发现万有引力定律的重要意义,体会科学定律对人类探索未知世界的作用。
()会计算人造卫星的环绕速度。
知道第二宇宙速度和第三宇宙速度。
()了解经典力学的发展历程和伟大成就,体会经典力学创立的价值与意义,认识经典力学的实用范围和局限性。
(1)万有引力定律.重力.重心(Ⅱ) 说明:在地球表面附近可以认为重力近似等于万有引力 (2)圆周运动中的向心力.卫星的运动(限于圆轨道)(Ⅱ) (3)宇宙速度(Ⅰ)(4)航天技术的发展和宇宙航行(Ⅰ)③第三定律:所有行星的轨道的半长轴的三次方跟它的________________的比值都相等,即a 3T2=k .思考:开普勒第三定律中的k 值有什么特点?考点:开普勒第三定律的理解和运用例1:飞船沿半径为r 的圆周轨道绕地球运行,其周期为T 0,如图所示.如果飞船要返回地面,可在轨道上某一点P 处将速率降低到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在B 点相切,求飞船从P 飞到B 所需的时间(设地球半径R 0已知).针对练习1.(新课标全国·)太阳系中的8大行星的轨道均可以近似看成圆轨道.下列4幅图是用来描述这些行星运动所遵从的某一规律的图象.图中坐标系的横轴是lg(T /T 0),纵轴是lg(R /R 0);这里T 和R 分别是行星绕太阳运行的周期和相应的圆轨道半径,T 0和R 0分别是水星绕太阳运行的周期和相应的圆轨道半径.下列4幅图中正确的是( )3、万有引力定律①内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与________________________________成正比,与它们之间____________________成反比. ②公式:____________,通常取G =____________ N·m 2/kg 2,G 是比例系数,叫引力常量. ③适用条件:公式适用于________间的相互作用.当两物体间的距离远大于物体本身的大小时,物体可视为质点;均匀的球体可视为质点,r 是__________间的距离;对一个均匀球体与球外一个质点的万有引力的求解也适用,其中r 为球心到________间的距离. ④问题探究:万有引力和重力有什么联系与区别i.重力与纬度的关系:重力加速度g 随纬度的增大而, ii.重力与高度的关系:重力加速度g 随高度的增大而 。
第2讲 卫星发射、变轨和对接 双星模型目标要求 1.理解三种宇宙速度,并会求解第一宇宙速度的大小.2.会处理人造卫星的变轨和对接问题.3.掌握双星、多星系统,会解决相关问题.考点一 宇宙速度第一宇宙速度(环绕速度)v 1= km/s ,是物体在地球附近绕地球做匀速圆周运动的最大环绕速度,也是人造地球卫星的最小发射速度第二宇宙速度(逃逸速度) v 2= km/s ,是物体挣脱地球引力束缚的最小发射速度第三宇宙速度v 3= km/s ,是物体挣脱太阳引力束缚的最小发射速度1.地球的第一宇宙速度的大小与地球质量有关.( √ ) 2.月球的第一宇宙速度也是 km/s.( × )3.同步卫星的运行速度一定小于地球第一宇宙速度.( √ )4.若物体的发射速度大于第二宇宙速度而小于第三宇宙速度,则物体绕太阳运行.( √ )1.第一宇宙速度的推导 方法一:由G m 地m R 2=m v 2R ,得v =Gm 地R=×10-11××1024×106m/s ≈×103 m/s. 方法二:由mg =m v 2R得v =gR =××106 m/s ≈×103 m/s.第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πR g=2π×106s ≈5 075 s ≈85 min.正是近地卫星的周期.2.宇宙速度与运动轨迹的关系(1)v 发= km/s 时,卫星绕地球表面做匀速圆周运动. (2) km/s<v 发 km/s ,卫星绕地球运动的轨迹为椭圆.(3) km/s ≤v 发< km/s ,卫星绕太阳运动的轨迹为椭圆.(4)v 发≥ km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.例1 宇航员在一星球上以速度v 0竖直上抛一质量为m 的物体,经2t 后落回手中,已知该星球半径为R ,忽略该星球自转,则该星球的第一宇宙速度的大小为( ) A.v 0R t B.2v 0Rt C.v 0R 2tD.4v 0Rt答案 A解析 由题意可知星球表面重力加速度为g =v 0t ,由万有引力定律知GMmR 2=mg =m v 12R ,解得v 1=gR =v 0Rt,故选A. 例2 (2023·湖北省联考)中国火星探测器“天问一号”成功发射后,沿地火转移轨道飞行七个多月,于2021年2月到达火星附近,要通过制动减速被火星引力俘获,才能进入环绕火星的轨道飞行.已知地球的质量约为火星质量的10倍,地球半径约为火星半径的2倍,下列说法正确的是( )A .若在火星上发射一颗绕火星运动的近地卫星,其速度至少需要 km/sB .“天问一号”探测器的发射速度一定大于 km/s ,小于 km/sC .火星与地球的第一宇宙速度之比为1∶5D .火星表面的重力加速度大于地球表面的重力加速度 答案 C解析 卫星在行星表面附近绕行的速度为该行星的第一宇宙速度,由G MmR 2=m v 2R ,可得v =GMR ,故v 火∶v 地=1∶5,所以在火星上发射一颗绕火星运动的近地卫星,其速度至少需要v 火=5km/s ,故A 错误,C 正确;“天问一号”探测器挣脱了地球引力束缚,则它的发射速度大于等于11.2 km/s ,故B 错误;g 地=G M 地R 地2,g 火=G M 火R 火2,联立可得g 地>g 火,故D 错误.考点二 卫星的变轨和对接问题1.变轨原理(1)为了节省能量,在赤道上顺着地球自转方向先发射卫星到圆轨道Ⅰ上,卫星在轨道Ⅰ上做匀速圆周运动,有G Mmr 12=m v 2r 1,如图所示.(2)在A 点(近地点)点火加速,由于速度变大,所需向心力变大,G Mm r 12<m v A 2r 1,卫星做离心运动进入椭圆轨道Ⅱ.(3)在椭圆轨道B 点(远地点)将做近心运动,G Mm r 22>m v B 2r 2,再次点火加速,使G Mmr 22=m v ′2r 2,进入圆轨道Ⅲ. 2.变轨过程分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B .在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B . (2)加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,卫星在轨道Ⅱ或轨道Ⅲ上经过B 点的加速度也相同. (3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律r 3T2=k 可知T 1<T 2<T 3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E 1、E 2、E 3,从轨道Ⅰ到轨道Ⅱ和从轨道Ⅱ到轨道Ⅲ都需要点火加速,则E 1<E 2<E 3.考向1 卫星变轨问题中各物理量的比较例3 (2023·浙江省名校协作体模拟)北京时间2021年10月16日,神舟十三号载人飞船顺利将翟志刚、王亚平、叶光富3名航天员送入空间站.飞船的某段运动可近似看作如图所示的情境,圆形轨道Ⅰ为空间站运行轨道,设圆形轨道Ⅰ的半径为r ,地球表面重力加速度为g ,地球半径为R ,地球的自转周期为T ,椭圆轨道Ⅱ为载人飞船运行轨道,两轨道相切于A 点,椭圆轨道Ⅱ的半长轴为a ,已知引力常量为G ,下列说法正确的是( )A .载人飞船若要进入轨道Ⅰ,需要在A 点减速B .根据题中信息,可求出地球的质量M =4π2r 3GT2C .载人飞船在轨道Ⅰ上的机械能小于在轨道Ⅱ上的机械能D .空间站在圆轨道Ⅰ上运行的周期与载人飞船在椭圆轨道Ⅱ上运行的周期之比为r 3∶a 3 答案 D解析 载人飞船若要进入轨道Ⅰ,要做离心运动,需要在A 点点火加速,故机械能增加,则载人飞船在轨道Ⅰ上的机械能大于在轨道Ⅱ上的机械能,A 、C 错误;设空间站在轨道Ⅰ运行的周期为T 1,由此可得G Mm r 2=4π2mr T 12,解得M =4π2r 3GT 12,题中T 为地球自转的周期,并非在轨道Ⅰ上的周期,不能利用该数据计算地球质量,B 错误;设在轨道Ⅱ上运行的周期为T 2,根据开普勒第三定律有r 3T 12=a 3T 22,解得T 1∶T 2=r 3∶a 3,D 正确.例4 嫦娥五号完美完成中国航天史上最复杂任务后,于2020年12月17日成功返回,最终收获1 731克样本.图中椭圆轨道Ⅰ、100公里环月轨道Ⅱ及月地转移轨道Ⅲ分别为嫦娥五号从月球返回地面过程中所经过的三个轨道示意图,下列关于嫦娥五号从月球返回过程中有关说法正确的是( )A .在轨道Ⅱ上运行时的周期小于在轨道Ⅰ上运行时的周期B .在轨道Ⅰ上运行时的加速度大小始终大于在轨道Ⅱ上运动时的加速度大小C .在N 点时嫦娥五号经过点火加速才能从轨道Ⅱ进入轨道Ⅲ返回D .在月地转移轨道上飞行的过程中可能存在不受万有引力的瞬间 答案 C解析 轨道Ⅱ的半径大于椭圆轨道Ⅰ的半长轴,根据开普勒第三定律可知,在轨道Ⅱ上运行时的周期大于在轨道Ⅰ上运行时的周期,故A 错误;在轨道Ⅰ上的N 点和轨道Ⅱ上的N 点受到的万有引力相同,所以在两个轨道上经过N 点时的加速度相同,故B 错误;从轨道Ⅱ到月地转移轨道Ⅲ做离心运动,在N 点时嫦娥五号需要经过点火加速才能从轨道Ⅱ进入轨道Ⅲ 返回,故C 正确;在月地转移轨道上飞行的过程中,始终在地球的引力范围内,不存在不受万有引力的瞬间,故D 错误.考向2 飞船对接问题例5 北京时间2021年10月16日神舟十三号载人飞船与在轨飞行的天和核心舱顺利实现径向自主交会对接,整个交会对接过程历时约小时.为实现神舟十三号载人飞船与空间站顺利对接,飞船安装有几十台微动力发动机,负责精确地控制它的各种转动和平动.对接前飞船要先到达和空间站很近的相对静止的某个停泊位置(距空间站200 m).为到达这个位置,飞船由惯性飞行状态转入发动机调控状态,下列说法正确的是( ) A .飞船先到空间站同一圆周轨道上同方向运动,合适位置减速靠近即可 B .飞船先到与空间站圆周轨道垂直的同半径轨道上运动,合适位置减速靠近即可 C .飞船到空间站轨道下方圆周轨道上同方向运动,合适的位置减速即可 D .飞船先到空间站轨道上方圆周轨道上同方向运动,合适的位置减速即可 答案 D解析 根据卫星变轨时,由低轨道进入高轨道需要点火加速,反之要减速,所以飞船先到空间站下方的圆周轨道上同方向运动,合适位置加速靠近即可,或者飞船先到空间站轨道上方圆周轨道上同方向运动,合适的位置减速即可,故选D.考点三 双星或多星模型1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统.如图所示.(2)特点①各自所需的向心力由彼此间的万有引力提供,即Gm 1m 2L 2=m 1ω12r 1,Gm 1m 2L 2=m 2ω22r 2. ②两星的周期、角速度相同,即T 1=T 2,ω1=ω2. ③两星的轨道半径与它们之间的距离关系为r 1+r 2=L . ④两星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.⑤双星的运动周期T =2πL 3G (m 1+m 2).⑥双星的总质量m 1+m 2=4π2L 3T 2G.2.多星模型所研究星体所受万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.常见的多星及规律:常见的三星模型①Gm 2(2R )2+GMm R 2=ma 向②Gm 2L2×cos 30°×2=ma 向 常见的四星模型①Gm 2L 2×cos 45°×2+Gm 2(2L )2=ma 向②Gm 2L 2×cos 30°×2+GmM ⎝⎛⎭⎫ L 3 2=ma 向例6 如图所示,“食双星”是两颗相距为d 的恒星A 、B ,只在相互引力作用下绕连线上O 点做匀速圆周运动,彼此掩食(像月亮挡住太阳)而造成亮度发生周期性变化的两颗恒星.观察者在地球上通过望远镜观察“食双星”,视线与双星轨道共面.观测发现每隔时间T 两颗恒星与望远镜共线一次,已知引力常量为G ,地球距A 、B 很远,可认为地球保持静止,则( )A .恒星A 、B 运动的周期为T B .恒星A 的质量小于B 的质量C .恒星A 、B 的总质量为π2d 3GT 2D .恒星A 的线速度大于B 的线速度 答案 C解析 每隔时间T 两颗恒星与望远镜共线一次,则两恒星的运动周期为T ′=2T ,故A 错误; 根据万有引力提供向心力有G m A m B d 2=m A 4π2(2T )2r A =m B 4π2(2T )2r B ,由题图知r A <r B ,则m A >m B ,故B错误;由B 选项得,两恒星总质量为M =m A +m B =π2d 3GT2,故C 正确;根据v =ωr ,两恒星角速度相等,则v A <v B ,故D 错误.例7 (多选)2019年人类天文史上首张黑洞图片正式公布.在宇宙中当一颗恒星靠近黑洞时,黑洞和恒星可以相互绕行,从而组成双星系统.在相互绕行的过程中,质量较大的恒星上的物质会逐渐被吸入到质量较小的黑洞中,从而被吞噬掉,黑洞吞噬恒星的过程也被称为“潮汐瓦解事件”.天鹅座X -1就是一个由黑洞和恒星组成的双星系统,它们以两者连线上的某一点为圆心做匀速圆周运动,如图所示.在刚开始吞噬的较短时间内,恒星和黑洞的距离不变,则在这段时间内,下列说法正确的是( )A .两者之间的万有引力变大B .黑洞的角速度变大C .恒星的线速度变大D .黑洞的线速度变大 答案 AC解析 假设恒星和黑洞的质量分别为M 、m ,环绕半径分别为R 、r ,且m <M ,两者之间的距离为L ,则根据万有引力定律有G MmL 2=F 向,恒星和黑洞的距离不变,随着黑洞吞噬恒星,在刚开始吞噬的较短时间内,M 与m 的乘积变大,它们间的万有引力变大,故A 正确;双星系统属于同轴转动的模型,角速度相等,根据万有引力提供向心力有G MmL 2=mω2r =Mω2R ,其中R +r =L ,解得恒星的角速度ω=G (M +m )L 3,双星的质量之和不变,则角速度不变,故B 错误;根据mω2r =Mω2R ,得M m =rR,因为M 减小,m 增大,所以R 增大,r 减小,由v恒=ωR ,v 黑=ωr ,可得v 恒变大,v 黑变小,故C 正确,D 错误.例8 (多选)如图所示,质量相等的三颗星体组成三星系统,其他星体对它们的引力作用可忽略.设每颗星体的质量均为m ,三颗星体分别位于边长为r 的等边三角形的三个顶点上,它们绕某一共同的圆心O 在三角形所在的平面内以相同的角速度做匀速圆周运动.已知引力常量为G ,下列说法正确的是( )A .每颗星体所需向心力大小为2G m 2r 2B .每颗星体运行的周期均为2πr 33GmC .若r 不变,星体质量均变为2m ,则星体的角速度变为原来的2倍D .若m 不变,星体间的距离变为4r ,则星体的线速度变为原来的14答案 BC解析 任意两颗星体间的万有引力大小F 0=G m 2r 2,每颗星体受到其他两个星体的引力的合力为F =2F 0cos 30°=3G m 2r 2,A 错误;由牛顿第二定律可得F =m (2πT )2r ′,其中r ′=r 2cos 30°=3r3,解得每颗星体运行的周期均为T =2πr 33Gm ,B 正确;星体原来的角速度ω=2πT=3Gm r 3,若r 不变,星体质量均变为2m ,则星体的角速度ω′=2πT ′=6Gmr 3,则星体的角速度变为原来的2倍,C 正确;星体原来的线速度大小v =2πr ′T ,若m 不变,星体间的距离变为4r ,则星体的周期T ′=2π(4r )33Gm=16πr 33Gm =8T ,星体的线速度大小v ′=2πT ′×4r ′=πr ′T ,则星体的线速度变为原来的12,D 错误.考点四 星球“瓦解”问题 黑洞1.星球的瓦解问题当星球自转越来越快时,星球对“赤道”上的物体的引力不足以提供向心力时,物体将会“飘起来”,进一步导致星球瓦解,瓦解的临界条件是赤道上的物体所受星球的引力恰好提供向心力,即GMmR 2=mω2R ,得ω=GMR 3.当ω>GMR 3时,星球瓦解,当ω<GMR 3时,星球稳定运行. 2.黑洞黑洞是一种密度极大、引力极大的天体,以至于光都无法逃逸,科学家一般通过观测绕黑洞运行的天体的运动规律间接研究黑洞.当天体的逃逸速度(逃逸速度为其第一宇宙速度的2倍)超过光速时,该天体就是黑洞.考向1 星球的瓦解问题例9 (2018·全国卷Ⅱ·16)2018年2月,我国500 m 口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T = ms.假设星体为质量均匀分布的球体,已知万有引力常量为×10-11N·m 2/kg 2.以周期T 稳定自转的星体的密度最小值约为( )A .5×109 kg/m 3B .5×1012 kg/m 3C .5×1015 kg/m 3D .5×1018 kg/m 3答案 C解析 脉冲星稳定自转,万有引力提供向心力,则有G Mm r 2≥mr 4π2T 2,又知M =ρ·43πr 3,整理得密度ρ≥3πGT 2=3××10-11×(×10-3)2 kg/m 3≈×1015 kg/m 3,故选C.考向2 黑洞问题例10 科技日报北京2017年9月6日电,英国《自然·天文学》杂志发表的一篇论文称,某科学家在银河系中心附近的一团分子气体云中发现了一个黑洞.科学研究表明,当天体的逃逸速度(逃逸速度为其第一宇宙速度的2倍)超过光速时,该天体就是黑洞.已知某天体与地球的质量之比为k ,地球的半径为R ,地球的环绕速度(第一宇宙速度)为v 1, 光速为c ,则要使该天体成为黑洞,其半径应小于( ) A.2v 12R kc 2 B.2kc 2R v 12 C.k v 12R 2c 2 D.2k v 12R c2答案 D解析 地球的第一宇宙速度为v 1=GMR,则黑洞的第一宇宙速度为v 2=GkMr,并且有2v 2>c ,联立解得r <2k v 12Rc2,所以D 正确,A 、B 、C 错误.课时精练1.(多选)目前,在地球周围有许多人造地球卫星绕着它运转,其中一些卫星的轨道近似为圆,且轨道半径逐渐变小.若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是()A.卫星的动能逐渐减小B.由于地球引力做正功,引力势能一定减小C.由于稀薄气体阻力做负功,地球引力做正功,机械能保持不变D.卫星克服稀薄气体阻力做的功小于引力势能的减小量答案BD解析在卫星轨道半径变小的过程中,地球引力做正功,引力势能一定减小,卫星轨道半径变小,动能增大,由于稀薄气体阻力做负功,机械能减小,选项A、C错误,B正确;卫星动能增大,卫星克服稀薄气体阻力做的功小于地球引力做的正功,而地球引力做的正功等于引力势能的减小量,所以卫星克服阻力做的功小于引力势能的减小量,选项D正确.2.(2023·浙江省强基联盟统测)2021年5月15日中国的火星探测器天问一号成功在火星表面着陆,如图为天问一号的降落器“祝融”运行的降低轨道示意图,由椭圆轨道1、椭圆轨道2、圆轨道3、最终经过轨道4落在火星表面附近,最后启动主发动机进行反冲,稳稳地落在火星表面,P点是它们的内切点.关于探测器在上述运动的过程中,下列说法中正确的是()A.探测器在轨道1和轨道2上运动时的机械能相等B.探测器在轨道2上由Q点向P点运动的过程中速度增大,机械能减小C.探测器在轨道1上运行经过P点的速度大于在轨道2上运行经过P点的速度D.轨道4可以看作平抛运动的轨迹答案C解析探测器从轨道1变到轨道2上需要在P点减速,故机械能减小,所以探测器在轨道1和轨道2上运动时的机械能不相等,故C正确,A错误;探测器在同一轨道运行时,机械能不变,则探测器在轨道2上由Q点向P点运动的过程中速度增大,动能增大,势能减小,机可得,械能不变,故B错误;探测器沿轨道4到落到火星表面上是在做近心运动,由a=G MR2在降落过程中加速度不断增大,平抛运动的加速度不发生改变,故轨道4不能看成平抛运动的轨迹,故D 错误.3.(多选)宇宙中两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称之为双星系统.设某双星系统A 、B 绕其连线上的某固定点O 做匀速圆周运动,如图所示.若A 、B 两星球到O 点的距离之比为3∶1,则( )A .星球A 与星球B 所受引力大小之比为1∶1 B .星球A 与星球B 的线速度大小之比为1∶3C .星球A 与星球B 的质量之比为3∶1D .星球A 与星球B 的动能之比为3∶1 答案 AD解析 星球A 所受的引力与星球B 所受的引力均为二者之间的万有引力,大小是相等的,故A 正确;双星系统中,星球A 与星球B 转动的角速度相等,根据v =ωr 可知,线速度大小之比为3∶1,故B 错误;A 、B 两星球做匀速圆周运动的向心力由二者之间的万有引力提供,可得G m A m BL 2=m A ω2r A =m B ω2r B ,则星球A 与星球B 的质量之比为m A ∶m B =r B ∶r A =1∶3,故C 错误;星球A 与星球B 的动能之比为E k A E k B =12m A v A 212m B v B2=m A (ωr A )2m B (ωr B )2=31,故D 正确.4.(2023·浙江诸暨市模拟)如图所示,“嫦娥一号”发射后绕地球椭圆轨道运行,多次调整后进入奔月轨道,接近月球后绕月球椭圆轨道运行,调整后进入月球表面轨道.已知a 是某一地球椭圆轨道的远地点,b 和c 是不同月球椭圆轨道的远月点,a 点到地球中心的距离等于b 点到月球中心的距离.则“嫦娥一号”( )A .在a 点速度小于地球第一宇宙速度B .在a 点和在b 点的加速度大小相等C .在b 点的机械能小于在c 点的机械能D .在奔月轨道上所受的万有引力一直减小 答案 A解析 地球第一宇宙速度等于卫星在地球表面轨道绕地球做圆周运动的线速度大小,是卫星绕地球运动的最大环绕速度,故“嫦娥一号”在a 点速度小于地球第一宇宙速度,A 正确;在a 点,根据万有引力提供向心力可得GM 地m r 2=ma a ,解得a a =GM 地r 2,在b 点,根据万有引力提供向心力可得GM 月m r 2=ma b ,解得a b =GM 月r 2,由于a 点到地球中心的距离等于b 点到月球中心的距离,且地球质量大于月球质量,可得a a >a b ,B 错误;卫星绕同一中心天体转动时,从低轨道变轨到高轨道,需要在变轨处点火加速,此过程卫星的机械能增加,可知同一卫星绕同一中心天体转动时,轨道越高,卫星机械能越大,故“嫦娥一号”在b 点的机械能大于在c 点的机械能,C 错误;在奔月轨道上,卫星受到地球的引力越来越小,受到月球的引力越来越大,可知“嫦娥一号”受到的万有引力先减小后增大,D 错误.5.星球上的物体脱离星球引力所需要的最小速度称为第二宇宙速度.星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1.已知某星球的半径为r ,它表面的重力加速度为地球表面重力加速度g 的16.不计其他星球的影响.忽略该星球的自转,则该星球的第二宇宙速度为( ) A.gr 3B.gr 6C.gr 3D.gr答案 A解析 该星球的第一宇宙速度满足G Mmr 2=m v 12r ,在该星球表面处万有引力等于重力,则有G Mm r 2=m g6,由以上两式得该星球的第一宇宙速度v 1=gr 6,则该星球的第二宇宙速度v 2=2×gr6=gr3,故A 正确. 6.(2023·浙江稽阳联谊学校联考)2022年2月27日,长征八号遥二运载火箭在海南文昌点火起飞,经过12次分离,“跳着芭蕾”将22颗卫星分别顺利送入预定轨道,创造了我国一箭多星发射的最高纪录.如图所示,假设其中两颗同轨道卫星A 、B 绕地球飞行的轨道可视为圆轨道,轨道离地面的高度均为地球半径的116.下列说法正确的是( )A .卫星A 和卫星B 的质量必须严格相等 B .卫星在轨道上飞行的速度大于 km/sC .卫星B 在同轨道上加速就能与卫星A 对接D .卫星进入轨道后所受地球的万有引力大小约为它在地面时的(1617)2答案 D解析 人造卫星的环绕周期、环绕半径等参量与卫星自身质量无关,A 错误;第一宇宙速度为卫星绕地球表面做匀速圆周运动的最大环绕速度,卫星在轨道上飞行的速度小于 km/s ,B 错误;卫星B 在同轨道上加速,会使卫星B 做离心运动,环绕半径变大,无法完成对接,C 错误;卫星在地球表面运动时,受地球的万有引力大小F 1=G MmR 2,卫星进入轨道后,受地球的万有引力大小F 2=G Mm(R +116R )2,因此卫星进入轨道后所受地球的万有引力大小约为它在地面时的(1617)2,D 正确.7.(2023·浙江省联考)2021年5月22日,中国首辆火星车“祝融号”已安全驶离着陆平台,到达火星表面(如图所示)开始巡视探测,已知地球质量约为火星质量的倍,地球的第一宇宙速度约为火星第一宇宙速度的倍.假设地球和火星均为质量分布均匀的球体,不考虑地球和火星的自转,则“祝融号”在地球表面和火星表面所受万有引力大小的比值约为( )A .B .C .D .9 答案 C解析 设祝融号质量为m ,地球质量为M ,地球的第一宇宙速度为v ,地球的半径为R ,则GMm R 2=m v 2R ,得R =GM v 2,祝融号在地球表面所受万有引力大小为F =GMm R 2=GMm (GM v 2)2=m v 4GM,设火星质量为M 1,火星的第一宇宙速度为v 1,火星的半径为R 1,同理可得祝融号在火星表面所受万有引力大小为F 1=m v 14GM 1,所以F F 1=v 4M 1v 14M=()4×1≈,故A 、B 、D 错误,C 正确.8.(2023·浙江绍兴市柯桥区模拟)2022年4月16日,神舟十三号与空间站天和核心舱分离,正式踏上回家之路,分离过程简化如图所示,脱离前天和核心舱处于半径为r 1的圆轨道Ⅰ,运行周期为T 1,从P 点脱离后神舟十三号飞船沿轨道Ⅱ返回半径为r 2的近地圆轨道Ⅲ上,Q 点为轨道Ⅱ与轨道Ⅲ的切点,在轨道Ⅲ上运行周期为T 2,然后再多次调整轨道,绕行5圈多点顺利着落在东风着陆场,根据信息可知( )A .T 1∶T 2=r 1∶r 2B .可以估算地球的密度为ρ=3πGT 12C .飞船在轨道Ⅱ上Q 点的速率要大于在轨道Ⅱ上P 点的速率D .飞船从P 到Q 过程中与地心连线扫过的面积与天和核心舱与地心连线在相同时间内扫过的面积相等 答案 C解析 根据开普勒第三定律有r 13T 12=r 23T 22,得T 1∶T 2=r 13∶r 23,故A 错误;根据万有引力提供向心力G Mm r 22=m 4π2T 22r 2,由于轨道Ⅲ为近地轨道,则地球体积为V =43πr 23,得ρ=M V =3πGT 22,故B 错误;飞船沿轨道Ⅱ运动过程中满足机械能守恒定律,Q 点的引力势能小于P 点的引力势能,故Q 点的动能大于P 点的动能,即Q 点的速度大于P 点的速度,故C 正确;根据开普勒第二定律,同一环绕天体与地心连线在相同时间内扫过的面积相等,飞船与核心舱在不同轨道运动,故D 错误.9.(2023·浙江省十校联盟第二次联考)如图所示,“天舟一号”货运飞船与“天宫二号”空间实验室对接,对接后飞行轨道高度与“天宫二号”圆轨道高度相同.已知引力常量为G ,地球半径为R .对接前“天宫二号”的轨道半径为r 、运行周期为T .由此可知( )A .“天舟一号”货运飞船是从与“天宫二号”空间实验室同一高度轨道上加速追上“天宫二号”完成对接的B .地球的质量为4π2r 2GT2C .对接后,“天舟一号”与“天宫二号”组合体的运行周期等于TD .地球的第一宇宙速度为2πRT答案 C解析 根据GMmr 2=m v 2r ,卫星加速,则所需向心力大于万有引力,卫星做离心运动,则“天舟一号”货运飞船是从比“天宫二号”空间实验室轨道低的轨道上加速追上“天宫二号”完成对接的,故A 错误;根据万有引力提供向心力,有GMm r 2=m 4π2T 2r ,可得M =4π2r 3GT 2,故B 错误;对接后“天舟一号”飞行轨道高度与“天宫二号”运行圆轨道高度相同,“天舟一号”与“天宫二号”组合体的运行周期等于T ,故C 正确;根据GMmR 2=m v 12R ,可得v 1=GMR,把M =4π2r 3GT 2代入解得v 1=2πTr 3R,故D 错误. 10.(2023·辽宁省模拟)我国成功地发射“天问一号”标志着我国成功地迈出了探测火星的第一步.已知火星直径约为地球直径的一半,火星质量约为地球质量的十分之一,航天器贴近地球表面飞行一周所用时间为T ,地球表面的重力加速度为g ,若未来在火星表面发射一颗人造卫星,最小发射速度约为( ) A.gT 2π B.5gT10πC.5gT5πD.25gT 5π答案 B解析 由G MmR 2=m v 2R,得第一宇宙速度v =GMR,设地球的第一宇宙速度为v 1,由g =ωv 1=2πT v 1,得v 1=gT2π,设火星的第一宇宙速度为v 2,则v 2v 1=M 2M 1·R 1R 2,代入数据解得v 2=55v 1=5gT10π,B 项正确.11.黑洞是一种密度极大、引力极大的天体,以至于光都无法逃逸,科学家一般通过观测绕黑洞运行的天体的运动规律间接研究黑洞.已知某黑洞的逃逸速度为v =2GMR,其中引力常量为G ,M 是该黑洞的质量,R 是该黑洞的半径.若天文学家观测到与该黑洞相距为r 的天体以周期T 绕该黑洞做匀速圆周运动,光速为c ,则下列关于该黑洞的说法正确的是( )。
避躲市安闲阳光实验学校第五单元 万有引力定律 人造地球卫星『夯实基础知识』1.开普勒行星运动三定律简介(轨道、面积、比值) 2.万有引力定律及其应用(1) 内容:(2)定律的适用条件: (3) 地球自转对地表物体重力的影响。
地面附近:G2R Mm= mg ⇒GM=gR 2 (黄金代换式) (1)天体表面重力加速度问题 (2)计算中心天体的质量 (3)计算中心天体的密度 (4)发现未知天体 3、人造地球卫星。
1、卫星的轨道平面:由于地球卫星做圆周运动的向心力是由万有引力提供的,所以卫星的轨道平面一定过地球球心,球球心一定在卫星的轨道平面内。
2、原理:由于卫星绕地球做匀速圆周运动,所以地球对卫星的引力充当卫星所需的向心力,于是有实际是牛顿第二定律的具体体现3、表征卫星运动的物理量:线速度、角速度、周期等: 应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s , 地球表面半径6.4x103km 表面重力加速度g=9.8 m/s 2月球公转周期30天4.宇宙速度及其意义(1)三个宇宙速度的值分别为(2)当发射速度v 与宇宙速度分别有如下关系时,被发射物体的运动情况将有所不同5.同步卫星(所有的通迅卫星都为同步卫星) ⑴同步卫星。
⑵特点 『题型解析』【例题1】下列关于万有引力公式221r m m GF =的说法中正确的是( )A .公式只适用于星球之间的引力计算,不适用于质量较小的物体B .当两物体间的距离趋近于零时,万有引力趋近于无穷大C .两物体间的万有引力也符合牛顿第三定律D .公式中万有引力常量G 的值是牛顿规定的【例题2】设想把质量为m 的物体,放到地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是( )A .2R GMmB .无穷大C .零D .无法确定【例题3】设想人类开发月球,不断地把月球上的矿藏搬运到地球上.假如经过长时间开采后,地球仍可看成均匀球体,月球仍沿开采前的圆轨道运动则与开采前比较A .地球与月球间的万有引力将变大B .地球与月球间的万有引力将减小C .月球绕地球运动的周期将变长D .月球绕地球运动的周期将变短表面重力加速度:轨道重力加速度:【例题4】设地球表面的重力加速度为g ,物体在距地心4R (R 是地球半径)处,由于地球的引力作用而产生的重力加速度g ,,则g/g ,为( )A 、1;B 、1/9;C 、1/4;D 、1/16。
第五章 万有引力与航天第25课时 万有引力定律及应用(重点突破课)[基础点·自主落实][必备知识]1.开普勒行星运动定律(1)开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2)开普勒第二定律(面积定律):对每一个行星来说,它与太阳的连线在相等时间内扫过的面积相等。
(3)开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
2.万有引力定律(1)内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比。
(2)公式:F =G m 1m 2r 2,其中G =6.67×10-11 N·m 2/kg 2,叫万有引力常量。
(3)适用条件公式适用于质点间的相互作用。
当两个物体间的距离远远大于物体本身的大小时,物体可视为质点;r 为两物体间的距离。
3.经典时空观和相对论时空观 (1)经典时空观①物体的质量不随速度的变化而变化。
②同一过程的位移和对应的时间在所有参考系中测量结果相同。
③适用条件:宏观物体、低速运动。
(2)相对论时空观同一过程的位移和对应时间在不同参考系中测量结果不同。
[小题热身]1.判断正误(1)行星在椭圆轨道上运行速率是变化的,离太阳越近,运行速率越小。
(×) (2)德国天文学家开普勒在天文观测的基础上提出了行星运动的三条定律。
(√) (3)地面上的物体所受地球的引力方向指向地心。
(√)(4)两物体间的距离趋近于零时,万有引力趋近于无穷大。
(×)2.(2016·全国丙卷)关于行星运动的规律,下列说法符合史实的是( ) A .开普勒在牛顿定律的基础上,导出了行星运动的规律 B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律解析:选B 开普勒在前人观测数据的基础上,总结出了行星运动的规律,与牛顿定律无联系,选项A 错误,选项B 正确;开普勒总结出了行星运动的规律,但没有找出行星按照这些规律运动的原因,选项C 错误;牛顿发现了万有引力定律,选项D 错误。
一、教案概述本教案旨在通过介绍万有引力定律在天文学上的应用,使学生了解人造卫星的运行原理和轨道计算方法。
通过本章的学习,学生应掌握万有引力定律的基本概念,理解人造卫星的运动规律,并能运用相关公式进行简单的轨道计算。
二、教学目标1. 了解万有引力定律的基本概念及其在天文学上的应用。
2. 掌握人造卫星的运动规律,理解卫星轨道的类型及特点。
3. 学会运用万有引力定律计算人造卫星的轨道参数。
4. 培养学生的实际问题解决能力,提高科学思维方法。
三、教学内容1. 万有引力定律的基本概念及其在天文学上的应用。
2. 人造卫星的运动规律,包括圆轨道、椭圆轨道和双曲线轨道。
3. 卫星轨道的计算方法,如卫星速度、周期、轨道半径等参数的计算。
4. 实例分析:地球同步卫星、月球探测卫星等。
四、教学方法1. 采用讲授法,讲解万有引力定律的基本概念和应用,人造卫星的运动规律及轨道计算方法。
2. 利用多媒体演示,展示人造卫星的运行轨道和关键现象。
3. 案例分析法:分析地球同步卫星、月球探测卫星等实际应用案例,加深学生对知识点的理解。
4. 互动教学法:引导学生提问、讨论,提高学生的参与度和积极性。
五、教学评价1. 课堂问答:检查学生对万有引力定律、人造卫星运动规律的理解程度。
2. 课后作业:布置相关计算题,检验学生对轨道计算方法的掌握。
3. 小组讨论:评估学生在案例分析中的表现,考察分析问题和解决问题的能力。
六、教学准备1. 教学PPT:制作包含万有引力定律、人造卫星运动规律、轨道计算方法的PPT。
2. 教学辅助材料:收集相关的人造卫星应用案例,如地球同步卫星、月球探测卫星等。
3. 计算软件:准备轨道计算所需的软件或工具,如Python、MATLAB等。
4. 疑问解答:准备针对可能出现的问题进行解答,如学生关于万有引力定律的疑问。
七、教学步骤1. 回顾上节课的内容,引导学生复习万有引力定律的基本概念及其在天文学上的应用。
2. 讲解人造卫星的运动规律,包括圆轨道、椭圆轨道和双曲线轨道的性质和特点。
高三物理总复习-一轮复习教学案-万有引力与航天编制教师:贾培清一、开普勒行星运动三定律(1)所有行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
(2)对于每一个行星而言,太阳和行星的连线在相等的时间内扫过相同的面积。
(3)所有行星轨道的长半轴R 的三次方跟公转周期T 的二次方的比值都相等,即常量=23TR 。
二、万有引力定律 1.内容自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们距离的二次方成反比,用公式表示为:221rm m GF =。
式中的G 叫万有引力常量,通常取G =6.67×10-11N•m 2/kg 2。
2.万有引力的适用条件:适用于两个质点或均匀球体之间万有引力的计算。
当两个物体之间的距离远远大于物体本身的大小时,可看作质点,r 就是两个质点之间的距离;对于质量均匀分布的球体,r 为两球心之间的距离。
思考:设想把一个质量为m 的物体放在地球的中心,这时它受到的万有引力为(A) A.零 B.mg C.无限大 D.无法确定 3.两个物体之间的万有引力是一对作用力和反作用力. 4.引力常量的测定——卡文迪许实验卡文迪许实验的巧妙在于通过两次“放大”,将非常微小的力测出来。
一是利用了较长的“┴”型架,并在两端附近对称地放上两个大质量金属球,使微弱的力有了明显的力矩;二是在悬挂“┴”型架的金属丝上安装了一面平面镜,将入射光反射到远处的刻度尺上,金属丝的微小转动使反射光点在刻度尺上有较大距离的移动。
三、利用万有引力定律分析天体的运动1.基本方法:把天体(包括人造星体)运动看成是匀速圆周运动,所需向心力由万有引力提供。
2222⎪⎭⎫ ⎝⎛==T mr r mv r GMm π由以上公式可以推出:r GM v =,GMr T 32π= 所以对人造卫星来说,r 越大时,r ↑→v ↓;r ↑→T ↑。
人造卫星的轨道半径r 、线速度大小v 和周期T 是一一对应的,其中一个量确定后,另外两个量也就唯一确定了,离地面越高的人造卫星,线速度越小而周期越大。
考点二 人造地球卫星基础点知识点1 宇宙速度 1.第一宇宙速度(环绕速度)(1)第一宇宙速度:人造地球卫星在地面附近环绕地球做匀速圆周运动时具有的速度,其大小为v 1=7.9 km/s 。
(2)第一宇宙速度的求法:①GMm R 2=m v 21R ,所以v 1= GMR。
②mg =mv 21R,所以v 1=gR 。
(3)第一宇宙速度既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度。
2.第二宇宙速度(脱离速度):使物体挣脱地球引力束缚的最小发射速度,其大小为v 2=11.2 km/s 。
3.第三宇宙速度(逃逸速度):使物体挣脱太阳引力束缚的最小发射速度,其大小为v 3=16.7 km/s 。
知识点2 人造地球卫星1.人类发射的绕地球运行的所有航天器均可称为人造地球卫星,它们的轨道平面一定通过地球球心。
2.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,极地卫星可以实现全球覆盖。
(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径。
3.地球同步卫星(1)轨道平面一定:轨道平面和赤道平面重合。
(2)周期 一定:与地球自转周期相同,即T =24 h =86400 s 。
(3)高度一定:离地面高度h =r -R ≈6R (R 为地球半径)。
(4)绕行方向一定:与地球自转的方向一致。
知识点3 时空观 1.经典时空观(1)在经典力学中,物体的质量是不随运动状态的改变而改变的。
(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的。
2.相对论时空观(1)在狭义相对论中,物体的质量是随物体运动速度的增大而增大的,用公式表示为m=m 01-v 2c2。
(2)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是不同的。
3.狭义相对论的两条基本假设(1)相对性原理:在不同的惯性参考系中,一切物理规律都是不同的。
(2)光速不变原理:不管在哪个惯性系中,测得的真空中的光速都是不变的。
重难点一、卫星的运动规律1.卫星的轨道特点:一切卫星轨道的圆心与地心重合。
因为万有引力提供向心力,故地心和轨道的圆心重合。
2.卫星的动力学特点:卫星绕地球的运动近似看成圆周运动,万有引力提供向心力,类比行星绕太阳的运动规律,同样可得:G Mm r 2=m v 2r =m ω2r =m 4π2T2r =ma ,可推导出:GMm r 2=⎩⎪⎪⎨⎪⎪⎧⎦⎥⎥⎥⎥⎤ma →a =GM r 2→a ∝1r2m v2r →v =GM r →v ∝1r m ω2r →ω= GM r 3→ω∝1r 3m 4π2T 2r →T = 4π2r 3GM →T ∝r 3越高越慢特别提醒轨道半径r 一旦确定,a 、v 、ω、T 就确定了,与卫星的质量无关。
同时可以看出,在a 、v 、ω、T 这四个物理量中,只有T 随r 增大而增大,其他三个物理量都随r 的增大而减小。
这一结论在很多定性判断中很有用。
3.同步卫星的特点相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星,又叫通信卫星。
同步卫星有以下“七个一定”的特点:(1)轨道平面一定:轨道平面与赤道平面共面。
(2)周期一定:与地球自转周期相同,即T =24 h 。
(3)角速度一定:与地球自转的角速度相同。
(4)高度一定:由GMmR +h2=m 4π2T 2(R +h )得地球同步卫星离地面的高度h = 3GMT 24π2-R ≈6R =3.6×107m 。
(5)速率一定:v =GM R +h=3.1×103m/s 。
(6)向心加速度一定:由G Mm R +h2=ma 得a =GM R +h2=g h =0.23 m/s 2,即同步卫星的向心加速度等于轨道处的重力加速度。
(7)绕行方向一定:运行方向与地球自转方向一致。
特别提醒其他卫星的绕行方向可以不与地球自转方向一致。
4.同步卫星、近地卫星和赤道上物体的比较如图所示,用A 代表同步卫星,B 代表近地卫星,C 代表赤道上的物体。
用M 代表地球质量,R 代表地球半径,h 代表同步卫星离地表的高度。
(1)同步卫星A 与近地卫星B 的比较:同步卫星A 和近地卫星B 都是卫星,绕地球运行的向心力由地球对它们的万有引力提供,所以卫星的运动规律都适用。
由v =GMr,T =2π r 3GM ,a = GM r 2,可得v Av B = RR +h ,T AT B=R +h 3R 3,a A a B =R 2R +h2。
(2)同步卫星A 与赤道上物体C 的比较:赤道上的物体C 随地球自转的向心力由万有引力的一个分力提供,所以卫星的运动规律对赤道上的物体不适用。
但因C 和A 的周期T 相同,故可用圆周运动的知识分析。
由v =2πr T ,a =4π2r T 2可得,v A v C =R +h R ,a A a C =R +hR。
综上可知,对同步卫星A 、近地卫星B 和赤道上的物体C 而言,有T A =T C >T B ,v B >v A>v C ,a B >a A >a C 。
特别提醒极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖。
所以常用于军事上面的侦察卫星,它的运行规律同其他卫星相同。
二、宇宙速度1.第一宇宙速度的理解和推导(1)在人造卫星的发射过程中火箭要克服地球的引力做功,所以将卫星发射到越高的轨道,在地面上所需的发射速度就越大,故人造卫星的最小发射速度对应将卫星发射到贴近地面的轨道上运行。
故有:G Mm R 2=m v 21R ,v 1= GMR=7.9 km/s 。
或mg =m v 21R,v 1=Rg =7.9 km/s 。
(2)第一宇宙速度的两个表达式,不仅适用于地球,也适用于其他星球,只是M 、R 、g 应是相应星球的质量、半径和表面的重力加速度。
2.三种宇宙速度的比较特别提醒(1)当卫星的发射速度7.9 km/s <v <11.2 km/s 时,物体绕地球做椭圆运动,发射速度越大,轨迹椭圆越“扁”。
当11.2 km/s <v <16.7 km/s 时,物体绕太阳运行,同理发射速度越大,轨迹椭圆也越“扁”。
(2)理论分析表明,逃逸速度是环绕速度的2倍,即v ′= 2GMR。
这个关系对于其他天体也是正确的。
(3)对于一个质量为M 的球状物体,当其半径R 不大于2GMc2时,即是一个黑洞。
三、卫星的变轨、能量及追赶(对接) 1.卫星的变轨 (1)变轨原理及过程人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示。
①为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。
②在A 点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅱ。
③在B 点(远地点)再次点火加速进入圆形轨道Ⅲ。
④过程简图: 较低圆轨道近地点向后喷气近地点向前喷气椭圆轨道远地点向后喷气远地点向前喷气较高圆轨道(2)三个运行物理量的大小比较①速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点速率分别为v A 、v B 。
在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B 。
②加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,经过B 点加速度也相同。
③周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律r 3T2=k 可知T 1<T 2<T 3。
2.卫星运行中的能量问题(1)卫星(或航天器)在同一圆形轨道上运动时,机械能不变。
(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。
卫星速率增大(发动机做正功)会做离心运动,轨道半径增大,万有引力做负功,卫星动能减小,由于变轨时遵从能量守恒,稳定在圆轨道上时需满足G Mm r 2=m v 2r,致使卫星在较高轨道上的运行速率小于在较低轨道上的运行速率,但机械能增大;相反,卫星由于速率减小(发动机做负功)会做向心运动,轨道半径减小,万有引力做正功,卫星动能增大,同样原因致使卫星在较低轨道上的运行速率大于在较高轨道上的运行速率,但机械能减小。
特别提醒如果卫星的轨道半径r 减小,线速率v 将增大,周期T 将减小,向心加速度a 将增大,动能E k 将增加,势能E p 将减少,卫星总机械能E 机必将减少;若要使轨道半径增大,则必须为其提供机械能。
3.卫星的追及和相遇问题(1)典型问题卫星运动中的“追及问题”研究的是“两个在不同的圆周轨道上运动的物体,何时相距最近(即相遇)或最远”的问题。
相距最近的含义是:两个卫星(或物体)和圆周轨道的圆心三点在同一条直线上,且两个卫星(或物体)在圆心同侧;相距最远的含义是:两个卫星(或物体)和圆周轨道的圆心三点在同一条直线上,且两个卫星(或物体)在圆心异侧。
(2)解决办法某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上。
由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们初始位置在同一直线上,实际上内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻。
特别提醒航天飞机与宇宙空间站的“对接”实际上就是两个做匀速圆周运动的物体追赶问题,本质仍然是卫星的变轨运行问题。
要使航天飞机与宇宙空间站成功“对接”,必须让航天飞机在较低轨道上加速,通过速度v 的增大→所需向心力增大→做离心运动→轨道半径r 增大→升高轨道的系列变速,从而完成航天飞机与宇宙空间站的成功对接。
1.思维辨析(1)同步卫星可以定点在北京市的正上方。
( )(2)不同的同步卫星的质量不同,但离地面的高度是相同的。
( ) (3)第一宇宙速度是卫星绕地球做匀速圆周运动的最小速度。
( ) (4)第一宇宙速度的大小与地球质量有关。
( ) (5)月球的第一宇宙速度也是7.9 km/s 。
( )(6)同步卫星的运行速度一定小于地球第一宇宙速度。
( )(7)若物体的速度大于第二宇宙速度而小于第三宇宙速度,则物体可绕太阳运行。
( ) (8)人造地球卫星绕地球运动,其轨道平面一定过地心。
( )(9)在地球上,若汽车的速度达到7.9 km/s ,则汽车将飞离地面。
( )(10)“嫦娥三号”探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则周期较小的轨道半径一定较小。
( )答案 (1)× (2)√ (3)× (4)√ (5)× (6)√ (7)√ (8)√ (9)√ (10)√ 2.物体脱离星球引力所需要的最小速度称为第二宇宙速度,第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1。