单片机指令系统
- 格式:doc
- 大小:50.50 KB
- 文档页数:11
单片机指令系统及其执行过程的详解单片机是现代电子设备中不可或缺的组成部分,其指令系统和执行过程对于单片机的工作和性能起着至关重要的作用。
本文将详细介绍单片机指令系统的组成和执行过程,并探讨其在实际应用中的意义。
一、单片机指令系统的组成单片机的指令系统由指令集、寄存器和地址计算单元组成。
1. 指令集指令集是单片机能够执行的所有指令的集合。
它包含了各种不同类型的指令,如算术指令、逻辑指令、数据传输指令等。
不同的单片机具有不同的指令集,但通常都包括基本的算术和逻辑运算指令,以及控制流指令(如条件分支和循环)。
2. 寄存器寄存器是单片机内部用于存储数据和执行运算的存储器组件。
常见的寄存器包括通用寄存器、标志寄存器、程序计数器等。
通用寄存器用于存储临时数据,标志寄存器用于存储运算结果的状态信息,程序计数器用于存储当前正在执行的指令地址。
3. 地址计算单元地址计算单元用于计算指令中的操作数的地址。
它根据指令中的寻址方式和地址模式,将指令中的操作数地址计算出来,并将其传递给存储器或寄存器。
二、单片机指令执行过程单片机的指令执行过程包括指令取指、指令译码和指令执行三个阶段。
1. 指令取指在指令取指阶段,程序计数器(PC)从存储器中读取下一条指令的地址,并将其存储在指令寄存器(IR)中。
同时,PC的值自动递增,准备读取下一条指令。
2. 指令译码在指令译码阶段,单片机将指令寄存器中的指令译码为对应的操作。
根据指令的类型和操作码,单片机确定需要执行的具体操作,如运算、数据传输或控制流操作。
3. 指令执行在指令执行阶段,单片机根据译码结果执行具体的操作。
这包括算术和逻辑运算、数据传输等。
执行结果可以存储在寄存器中,也可以写入存储器。
同时,单片机还会根据程序的控制流进行条件分支或循环。
三、单片机指令系统的应用意义单片机指令系统的优化对于提高单片机的执行效率和性能至关重要。
通过合理设计指令集,可以充分发挥单片机的计算和控制能力,提高其运算速度和响应能力。
单片机第4章8051单片机指令系统在单片机的世界里,指令系统就如同指挥官手中的指令手册,指引着单片机完成各种复杂的任务。
8051 单片机的指令系统更是其中的重要组成部分,它为我们提供了丰富多样的指令,让我们能够灵活地控制单片机的运行。
8051 单片机的指令系统可以分为五大类,分别是数据传送指令、算术运算指令、逻辑运算指令、控制转移指令和位操作指令。
数据传送指令是指令系统中的基础,就像是在战场上调配物资一样。
它能够实现寄存器之间、寄存器与存储器之间、立即数与寄存器或存储器之间的数据传递。
比如 MOV 指令,它可以将一个数据从源地址传送到目的地址。
假设我们要将立即数 50H 传送到累加器 A 中,就可以使用指令“MOV A, 50H”。
这样,累加器 A 就存储了 50H 这个数值。
算术运算指令则像是在进行战斗中的兵力计算。
它包括加法、减法、乘法和除法等运算。
ADD 指令用于加法运算,SUBB 指令用于带借位的减法运算。
例如,我们要将累加器 A 中的值与寄存器 B 中的值相加,并将结果存放在累加器 A 中,就可以使用指令“ADD A, B”。
如果要进行带借位的减法运算,比如从累加器 A 中减去寄存器 B 中的值以及借位标志位 CY 的值,可以使用指令“SUBB A, B”。
逻辑运算指令就像是在制定战略时的思考逻辑。
AND 指令用于逻辑与操作,ORL 指令用于逻辑或操作,XRL 指令用于逻辑异或操作。
以 AND 指令为例,如果我们要将累加器 A 中的值与立即数 80H 进行逻辑与操作,并将结果存放在累加器 A 中,就可以使用指令“AND A, 80H”。
控制转移指令则是指挥战斗中的战略部署调整。
它可以改变程序的执行顺序,使单片机能够根据不同的条件执行不同的程序段。
比如 JZ 指令,如果累加器 A 的值为 0,则程序跳转到指定的地址;JC 指令,如果进位标志位 CY 为 1,则程序跳转到指定的地址。
位操作指令则专注于对单个位的操作,就像是在精细地调整战斗中的某个关键环节。
单片机第3章 AT89S51单片机的指令系统在单片机的世界里,指令系统就像是指挥单片机工作的“语言”,它决定了单片机能够完成哪些任务以及如何高效地完成这些任务。
AT89S51 单片机的指令系统丰富多样,为我们实现各种功能提供了强大的支持。
首先,让我们来了解一下指令的基本格式。
AT89S51 单片机的指令通常由操作码和操作数两部分组成。
操作码指明了要执行的操作,比如加法、减法、数据传送等;操作数则提供了操作所需的具体数据或者数据的地址。
AT89S51 单片机的指令可以分为数据传送类指令、算术运算类指令、逻辑运算类指令、控制转移类指令等几大类。
数据传送类指令是最为基础和常用的指令之一。
比如 MOV 指令,它可以实现将一个数据从一个位置传送到另一个位置。
例如 MOV A,50H ,就是将十六进制数 50H 传送到累加器 A 中。
算术运算类指令用于进行加、减、乘、除等运算。
例如 ADD A, R0 ,就是将累加器 A 的内容和寄存器 R0 的内容相加,结果存放在累加器A 中。
逻辑运算类指令则用于对数据进行与、或、异或等逻辑操作。
比如ANL A, 0FH ,就是将累加器 A 的内容和十六进制数 0FH 进行与运算。
控制转移类指令在程序的流程控制中起着关键作用。
比如JZ label ,如果累加器 A 的内容为 0 ,则程序跳转到指定的 label 处执行。
在实际编程中,我们需要根据具体的需求灵活运用这些指令。
比如,当我们要实现一个简单的加法运算时,可以使用算术运算类指令;当需要在不同的程序段之间跳转时,就需要用到控制转移类指令。
为了更好地理解和运用 AT89S51 单片机的指令系统,我们还需要了解一些指令的执行周期和寻址方式。
指令的执行周期决定了指令执行的速度。
不同的指令执行周期可能不同,这会影响程序的运行效率。
而寻址方式则决定了如何获取操作数。
AT89S51 单片机支持直接寻址、寄存器寻址、寄存器间接寻址、立即寻址等多种寻址方式。
指令系统数据传送指令数据传送指令包括数据的传送、交换、堆栈数据的压入与弹出,是最基本、使用率最高的一类指令。
助记符有MOV、MOVX、MOVC、XCH、XCHD、SWAP、PUSH、POP共八种。
1.MOV类指令及功能(16条)这类指令的功能是从源操作数到目的操作数的数据传送。
MOV A, Rn ;Rn→A,寄存器Rn的内容送到累加器AMOV A, direct ;(direct)→A,直接地址中的内容送AMOV A, @Ri ;(Ri)→A,Ri间址的内容送AMOV A, #data ;data→A,立即数送AMOV Rn,, A ;A→Rn,累加器A中的内容送寄存器RnMOV Rn, direct ;(direct)→Rn;直接地址中的内容送RnMOV Rn, #data ;data→Rn;立即数送RnMOV direct, A ;A→(direct),A中的内容送入直接地址中MOV direct, Rn ;Rn→(direct),寄存器内容送入直接地址中MOV direct, direct ;(dir ect) →(direct),源操作数直接地址的内容送入;目的操作数的直接地址中MOV direct, @Ri ;(Ri)→(direct),Ri间址内容送入直接地址中MOV direct, #data ;data→(direct),立即数送入直接地址中MOV @Ri, A ;A→(Ri),A中内容送到Ri间址单元中MOV @Ri, direct ;(direct)→(Ri),直接地址中内容送入Ri间址单元中MOV @Ri, #data ;data→(Ri),立即数送入Ri间址单元中MOV DPTR, #data16 ;data16→DPTR,16位常数送入数据指针DPTR 中,高8;位送入DPH,低8位送入DPH,低8位送入DPL中从上述指令可以看出目的操作数有A累加器、Rn寄存器、直接地址direct 及间接地址@Ri,源操作数除此之外还多一种立即数data。
例1 R0中有常数30H,而30H地址中有常数50H执行MOV A, R0后,A=30H,R0不变。
执行MOV A, @R0后A=50H,而不是30H,这条指令的功能是把R0中内容为地址的单元的书送入A,R0中是30H也就是把30H地址中内容50H送入A。
例2 若(40H)=20H,(50H)=30H执行MOV 40H, 50H; (50H) →(40H)结果:(40H)=30H,50H地址中内容仍为30H。
例3 若A=40H,R0=30H,执行MOV @R0, A ;A→(R0)结果:(30H)=40H,A与R0皆不变,即A=40H,R0=30H。
该指令功能是把A中内容送入R0间址单元即R0中内容为地址的单元。
例4 执行MOV DPTR, #2040H ;2040H→DPTR结果:DPH=20H, DPL=40HDPTR是片外RAM地址指针,只有这一条指令是传送16位数据。
2.MOVC类指令及功能(2条)MOVC A, @A+PC ;PC+1→PC, (A+PC) →AMOVC A, @A+DPTR ;(A+DPTR) →A功能:该类属于查表指令,利用这两条指令很方便地查找放在程序存储器中数据表格的内容。
例1 程序1000H MOV A, #10H ;10H→A1002H MOVC A, @A+PC ;PC+1→PC,PC=1003H,(A+PC)=(10H+1003H)→A...1010H 02H1011H 04H1012H 06H1013H 08H程序执行结果:A=08H用MOVC A, @A+PC指令需注意两点:1)指令中的PC是执行完本条指令后的PC值,即PC等于本条指令地址加1。
2)A是修正值,它等于查表指令和欲查数据相间隔字节数。
A的范围是0~255,一次该指令只能查找本指令后的256B范围内的表格,故称为近程查表。
例2 程序1000H MOV A, #01H ;01H→A1002H MOV DPTR, #6000H ;6000H→DPTR1005H MOVC A,@A+DPTR ;(A+DPTR)=(01H+6000H)=(6001H) →A ...6001H 0AH6002H 0BH6003H 0CH6004H 0DH程序执行结果:A=0AH,查到了地址为6001H单元中的数据。
用MOVC A, @A+DPTR指令查表特点:A, DPTR都可以改变,因此可在64KB 范围内查表,故称为远程查表。
这条指令更方便。
3.MOVX类指令(4条)MOVX A, @DPTR ;(DPTR) →A,DPTR间址单元内容送AMOVX @DPTR, A ;A→(DPTR), A 中内容送入DPTR间址单元MOVX A, @Ri ;(Ri) →A,Ri间址单元内容送AMOVX @Ri, A ;A→(Ri), A中内容送Ri间址单元MOVX类指令功能:这四条指令专门用来与外部数据存储区传送数据。
CPU与外部RAM传送数据时只能用间接寻址方式。
例1 把外部数据存储单元2000H中的数据送到4000H单元中,设2000H中有数据30H。
程序各条指令执行结果MOV DPTR, #2000H ;2000H DPTR, DPTR=2000HMOVX A, @DPTR ;(DPTR) A即(2000) A,A=30HMOV DPTR, #4000H ;4000H→DPTR, DPTR=4000HMOVX @DPTR, A ;A→(DPTR)即A→(4000H),(4000H)=30H例2 把内部RAM50H单元数据送到片外20H单元,设50H中单元存有数据10H。
程序各条指令执行结果MOV A,50H ;(50H) 各条指令执行结果A, A=10H MOV R0,#20H ;20H→R0, R0=20HMOVX @R0, A ;A→(R0)即A→(20H)则20H=10H注意:与外部RAM传送数据时,地址小于256B用Ri间址,大于256B时用DPTR间址。
4.交换指令XCH A, Rn ;Rn A, Rn与A内容交换XCH A,direct ;(direct) A, 直接地址内容与A内容交换XCH A, @Ri ;(Ri) A,Ri间址内容与A内容交换XCHD A, @Ri ;(Ri.3~Ri.0) A.3~A.0, Ri间址内容低4位与A中低4 位内容交换SWAP A ;A.3~A.0 A.7~A.4, A中高4位与低4位交换例若R0=30H, A=F0H, (30H)=46H执行 XCH A, R0 ;结果:A=30H,R0=F0H, R0与A 内容交换执行 XCH A, @R0 ;结果:A=46H, (30H)=F0H, R0中不变,;实际上是(R0) A即(30H) A若执行 XCHD A, @R0 ;结果:A=F6H,(30)H=40H;A与(30H)中低4位交换,高4位不变执行 SWAP A ;结果:A=0FH, 高低4位互换5.堆栈操作指令(2条)PUSH、POP属堆栈操作指令,其功能是把直接地址中的内容压入堆栈保存,或从堆栈中取出(弹出)数据到直接地址中。
PUSH direct ;SP+1→SP, (direct)→(SP);直接地址内容压入堆栈顶POP direct ;(SP)→(direct), SP-1→SP;堆栈栈顶内容弹出到直接地址注意:堆栈是用户自己设定的内部RAM中的一块专用存储区,使用堆栈时一定先设堆栈指针。
堆栈遵循后进先出的原则安排数据。
压入数据时SP先加1,再压入;弹出时,先弹出数据,SP再减1。
例设堆栈指针为30H,为保护现场把A和B中的内容压入堆栈保护,然后根据需要再把两者弹出。
设A中为30H,B中为01H。
程序执行结果MOV SP, #30H ;30H→SP, SP=30H设堆栈指针为30HPUSH ACC ;SP+1→SP=31H, A→(SP)即A→(31H),(31H)=30HPUSH B ;SP+1→SP=32H, B→(SP)即B→(32H),(32H)=01HPOP B ;SP→B即(32H)→B, B=01H, SP-1→SP=31HPOP ACC ;SP→A即(31H)→A, A=30H, SP-1→SP=30H从此例可以看出压入、弹出过程SP的变化规律算术运算指令算术运算指令的主要功能是实现算术加、减、乘、除等运算。
1.ADD类指令是不带进位的加法运算指令(4条)。
ADD A,Rn ;A+Rn→A, A与Rn寄存器内容相加,结果送到A中ADD A,direct ;(direct)+A→A, A与直接地址内容相加,和送A ADD A, @Ri ;(Ri)+A→A, A与Ri间址内容相加,和送AADD A, #data ;data+A→A, A与立即数相加,和送A注意:ADD类指令相加结果均在A中,相加后源操作数不变。
若A中最高位有进位,Cy置1;若半加位有进位,AC置1。
A的结果还影响奇偶标志位P。
例 A=30H, R0=10H执行 ADD A,R0 结果:A=40H, R0=10H,标志位 P=1, Cy=0, OV=0, AC=0 2.ADDC类指令(带进位加法4条)ADDC A, Rn ;A+Rn+Cy→A, A与R n内容、进位状态相加,和送到A中ADDC A, direct ;(direct)+Cy+A→A, A与直接地址中内容、进位状态相加,和送AADDC A, @Ri ;(Ri)+Cy+A→A, A与Ri间址单元中内容、进位状态相加,和送AADDC A, #data ;data+Cy+A→A, A与立即数、进位状态相加,和送A与ADD类指令的区别是,ADDC指令相加时连同进位标志Cy内容一起相加,主要用于多字节加法中的高位字节的相加,而最低位字节相加用ADD指令。
进位位Cy加到字节的最低位。
例编写计算1234H+0FE7H的程序,将结果存入内部RAM的41H和40H单元,40H存低8位,41H存高8位。
程序MOV A, #34H ;被加数低8位数34H送AADD A, #0E7H ;加数低8位数E7H与之相加,A=1BH,Cy=1MOV 40H, A ;A→40H即34H+E7H结果存入40H中(40H=1BH) MOV A, #12H ;被加数高8位数12H送AADDC A, #0FH ;加数高8位0FH和Cy与A相加,A=22HMOV 41H, A ;高8位与进位位之和存入41H中(41H)=22H ;总和为221BH,总结果在41H,40H单元中3.SUBB类指令(4条)SUBB类指令是带借位减法指令,其功能是将A中被减数减去源操作数指出的内容,再减去借位标志Cy(原进位标志)状态,差值在A中。