必修5——31不等关系与不等式
- 格式:ppt
- 大小:1.16 MB
- 文档页数:49
高中数学重点《不等关系与不等式》教案高中数学重点《不等关系与不等式》教案主要关注学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升。
下面就和课件网一起来看看有关高中数学重点《不等关系与不等式》教案。
高中数学必修5《不等关系与不等式》教案1教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的證明二1.若,,則下列不等始終正確的是()2.設a,b為實數,且,則的最小值是()4.求證:對任何式數x,y,z,下述三個不等式不可能同時成立高中数学必修5《不等关系与不等式》教案2整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题(1)回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系(2)在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗(3)数轴上的任意两点与对应的两实数具有怎样的关系(4)任意两个实数具有怎样的关系用逻辑用语怎样表达这个关系活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“ ne;”“ ge;”“ le;”表示,而不等式则是表示两者的不等关系,可用“a>b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,最高气温32 ℃,最低气温26 ℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B 的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x le;6,a+2 ge;0,3 ne;4,0 le;5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃ le;t le;32 ℃.实例3,若用x表示一个非负数,则x ge;0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.实例6,若用v表示速度,则v le;40 km/h.实例7,f ge;2.5%,p ge;2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f ge;2.5%或p ge;2.3%,这是不对的.但可表示为f ge;2.5%且pge;2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b<0 a应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g (x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1 ge;1>0,there4;f(x)>g(x).2.已知x ne;0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x ne;0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a ne;b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=(a+b)2-4ab2(a+b)=(a-b)22(a+b).∵a>0,b>0且a ne;b, there4;a+b>0,(a-b)2>0. there4;(a-b)22(a+b)>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2 ge;0(当且仅当a=b=0时取等号),又a ne;b, there4;(a-b)2>0,2a2+(a+b)2>0. there4;-(a-b)2[2a2+(a+b)2]<0.there4;a4-b4<4a3(a-b).点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y ne;0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y, there4;x-y>0.当y<0时,x-yy<0,即xy-1<0. there4;xy<1;当y>0时,x-yy>0,即xy-1>0. there4;xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m(b-a)b(b+m)>0,于是a+mb+m>ab.又ab ge;10%,因此a+mb+m>ab ge;10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q ne;1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零, there4;q>0,即1+q>0.又∵q ne;1, there4;(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()A.3B.2C.1D.02.比较2x2+5x+9与x2+5x+6的大小.答案:1.C 解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2 ge;0,③x2+y2-2xy=(x-y)2 ge;0.there4;只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3—1A组3;习题3—1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x .4.若x5.设a>0,b>0,且a ne;b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,there4;(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2 ge;0, there4;(m2-2m+5)-(-2m+5) ge;0. there4;m2-2m+5 ge;-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2 ge;0, there4;a2+2 ge;2>0.there4;a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0, there4;x24>0.there4;(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y<0.there4;-2xy(x-y)>0.there4;(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a ne;b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abb a.综上所述,对于不相等的正数a、b,都有aabb>abba.。
不等关系与不等式知识集结知识元不等关系与不等式知识讲解1.不等关系与不等式【不等关系与不等式】不等关系就是不相等的关系,如2和3不相等,是相对于相等关系来说的,比如与就是相等关系.而不等式就包含两层意思,第一层包含了不相等的关系,第二层也就意味着它是个式子,比方说a>b,a﹣b>0就是不等式.【不等式定理】①对任意的a,b,有a>b⇔a﹣b>0;a=b⇒a﹣b=0;a<b⇔a﹣b<0,这三条性质是做差比较法的依据.②如果a>b,那么b<a;如果a<b,那么b>a.③如果a>b,且b>c,那么a>c;如果a>b,那么a+c>b+c.推论:如果a>b,且c>d,那么a+c>b+d.④如果a>b,且c>0,那么ac>bc;如果c<0,那么ac<bc.例题精讲不等关系与不等式例1.设a、b、c是互不相等的正数,则下列等式中不恒成立的是()A.|a-b|≤|a-c|+|b-c|B.C.D.例2.已知a,b,c,d∈R,则下列命题中必然成立的是()A.若a>b,c>b,则a>cB.若a>b,c>d,则C.若a2>b2,则a>bD.若a>-b,则c-a<c+b例3.若a,b∈R下列说法中正确的个数为()①(a+b)2≥a2+b2;②若|a|>b,则a2>b2;③a+b≥2A.0B.1C.2D.3不等式比较大小知识讲解1.不等式比较大小【知识点的知识】不等式大小比较的常用方法(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法.其中比较法(作差、作商)是最基本的方法.【典型例题分析】方法一:作差法典例1:若a <0,b <0,则p =与q =a +b 的大小关系为()A .p <qB .p ≤qC .p >qD .p ≥q解:p ﹣q =﹣a ﹣b ==(b 2﹣a 2)=,∵a <0,b <0,∴a +b <0,ab >0,若a =b ,则p ﹣q =0,此时p =q ,若a ≠b ,则p ﹣q <0,此时p <q ,综上p ≤q ,故选:B方法二:利用函数的单调性典例2:三个数,,的大小顺序是()A .<<B .<<C .<<D .<<解:由指数函数的单调性可知,>,由幂函数的单调性可知,>,则>>,故<<,故选:B.例题精讲不等式比较大小例1.已知-1<a<0,b<0,则b,ab,a2b的大小关系是()A.b<ab<a2b B.a2b<ab<bC.a2b<b<ab D.b<a2b<ab例2.a=80.7,b=0.78,c=log0.78,则下列正确的是()A.b<c<a B.c<a<bC.c<b<a D.b<a<c例3.三个数a=,b=()2020,c=log2020的大小顺序为()A.b<c<a B.b<a<cC.c<a<b D.c<b<a当堂练习单选题练习1.已知t=a+4b,s=a+b2+4,则t和s的大小关系是()A.t>s B.t≥sC.t<s D.t≤s练习2.已知a=,b=,c=,则()A.a>b>c B.a>c>bC.b>a>c D.c>b>a练习3.设a=,b=2,c=log32,则()A.b>a>c B.a>b>cC.c>a>b D.b>c>a练习4.设a=(),b=(),c=(),则a,b,c的大小关系为()A.a<b<c B.b<c<aC.a<c<b D.c<a<b练习5.若a=(),b=(),e=log,则下列大小关系正确的是()A.c<a<b B.c<b<aC.a<b<c D.a<c<b填空题练习1._____.不等式≤3的解集是__________练习2.于实数a、b、c,有下列命题①若a>b,则ac<bc;②若ac2>bc2,则a>b;③若a<b<0,则a2>ab>b2;④若c>a>b>0,则;⑤若a>b,,则a>0,b<0.其中正确的是______.练习3.已知a,b∈R,且>1,则下列关系中①②a3<b3③ln(a2+1)<ln(b2+1)④若c>d>0,则其中正确的序号为_____。
之前,我们已经学过了相等关系.5210⨯=a a 2a +=回顾知识大小相等相等的性质:(1)a=a(自反性);(2)若a=b,则b=a(对称性);(3)如果a =b ,且b =c ,那么a =c (传递性 ).新课导入但是,我们知道,现实生活中,存在着很多不等关系.如:线段的长短不同.人们还经常用长与短,高与矮,轻与重,大与小,不超过或不少于来描述某种客观事物在数量上存在的不等关系.a≤c 3x+2>6教学目标知识与能力1.通过具体情境建立不等观念,并能用不等式或不等式组表示不等关系;2.了解不等式或不等式组的实际背景;3.能用不等式或不等式组解决简单的实际问题.过程与方法1.采用探究法,按照阅读、思考、交流、分析,抽象归纳出数学模型,从具体到抽象再从抽象到具体的方法进行启发式教学;2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用 .情感态度与价值观1.通过具体情境,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系,鼓励学生用数学观点进行观察、归纳、抽象,使学生感受数学、走进数学、改变学生的数学学习态度;2.学习过程中,通过对问题的探究思考、广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量.了解常用的不等关系,初步了解不等式的概念;学会判断不等关系.掌握常用的不等关系,学会现实生活像数学中的转化. 教学重难点重点难点例如,限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度不超过40km/h ,写成不等式是什么呢?关键词“不超过”答:汽车的速度应不超过40km/h,不等式应为v≤40.数学中的不等关系某品牌酸奶的质量规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%,写成不等式是什么?答:根据题意,上题写成不等式应为:f≥2.5%p≥2.3%多喝酸奶身体棒!!1、现实生活中很多量的不等关系可以用数学中量的不等关系表示;2、同学们在学习过程中应多于实际相结合,在现实中寻找不等关系.具体问题1.设点A与平面a的距离为d,B为平面a上任一点,则可以得到什么不等关系?答:应为d≤︱AB︱.AdB2.某种杂志原以2.5元的价格销售,可以售关键词“不低于”出8万本.据调查,每提高0.1元,销量减少2000本.那么,如把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元?分析:若杂志的定价为x元,则销售的总收入为(8-(x-2.5)/0.1×0.2) ×x万元.那么不等关系“销售的总收入不低于20万元”可以表示成(8-(x-2.5)/0.1×0.2) ×x≥20.答:不等式为(8-(x-2.5)/0.1×0.2) ×x≥20.3.某钢铁厂要把长度为4000mm的钢管结成500mm和600mm两种.根据生产的要求,600mm 钢管的数量不能超过500mm钢管的3倍.分析:假设截得500mm钢管x根,截得600mm的钢管y根.根据题意,应有如下关系:(1)截得两种钢管的总长度不能超过4000mm;(2)截得600mm钢管的数量不能超过500mm钢管数量的三倍;(3)截得两种钢管的数量不能为负.要同时满足上述三个条件,可以用下面不等式组来表示:500x+600Y≤4003x≥yx≥0y≥01、同学们在现实生活中,应注重寓所学数学知识的结合;2、运用数学知识解决实际问题,可以使实际问题变得简化.我们知道,等式有一些基本性质,如“等式的两边加(减)同一个数,结果不变”.不等式知否也有类似的性质呢?从实数的基本性质(任意两个数的和与积都是正数)出发,我们可以证明常用的不等式的基本性质:()⇒1a >b,b >c a >c()c b c a b a 2+>+⇒>()bcac 0c b,a 3>⇒>>()bcac 0c b,a 4<⇒<>怎么证呢??()ca 0c -a 0c -b b a 0c b 0b a 1>∴>⇒>+-∴--,〉,〉()c b c a 0c)(b c a 0b a b a 2+>+∴>+-+⇒>->,证明:()bcac 0bc ac b)c (a 0c 0,b a 0c b,a 3>⇒>-=-⇒>>-⇒>>()().类似与34要自己思考啊!>>⇒>>⇒+>+>>⇒>><⇒<(1)a b,b c a c(2)a b a c b c(3)a b,c 0ac bc(4)a b,c 0ac bc利用上述基本性质,可证明下述性质吗? ()()()n n nn b a ,b a N n 0,b a 3bdac 0d c 0,b a 2db c a d c b,a 1>>⇒∈>>>⇒>>>>+>+⇒>>()d b c a 0d -c b -a 0d -c 0,b -a d c b,a d-c b -a d)(b c a 1+>+⇒>+∴>>∴>>+=+-+ ()bdac 0d)-b(c 0,b)-c(a 0;b 0,c 0,d -c 0,b -a d c b,a d)-b(c b)-c(a bd-cb cb ac bdac 2>∴>>⇒>>>>∴>>+=+-=- 证明:()()().b a .b,a )b (a ,b a .b a .b a n n n n n n n n n n n n >∴<<<>>矛盾假设用反证法证再根据数学归纳法得2由3() () ()>>⇒+>+ >>>>⇒>>>∈⇒>>n n n n1a b,c d a c b d2a b0,c d0ac bd3a b0,n N a b,a b某旅游团旅游,共80人.已知有甲乙两种客车,甲型号比乙型号少5辆;若只选甲型,则每辆车10人,车不够;若只选乙型车,则每辆9人,车多余.设甲型车x辆,用不等式表示题中的不等关系.解:设甲型车x辆,则有10x<809(x+5)>801a >b >0ab >0,>0ab 1111a >b ,ab ab b ac c c <0,>.a b因,所以于是即××>解: c c a >b >0,c <0,>.a b已知求:证课堂小结1、代数式的大小比较或证明通常用作差比较法;2、比较大小或证明的一般过程为:作差,化积,判断,结论;3、常用不等式:()c a c b b,a >⇒>>1()c b c a b a +>+⇒>2()bc ac 0c b,a >⇒>>3()bcac 0c b,a <⇒<>4()()()n n n n b a ,b a N n 0,b a bdac 0d c 0,b a d b c a d c b,a >>⇒∈>>>⇒>>>>+>+⇒>>765高考链接A.a 2 b 2B.ab 2a 2b (2007 上海)已知a, b 为非零实数,且a b ,则下列命题成立的是( )<<<<1122ab a b b a a b <C. D. C解析:若a<b<0,则a 2> b 2 ,A 不成立;若ab>0,a<b, a 2b<ab 2,B 不成立;若a=1,b=2,则D 不成立,故选C. 122,,,b a b a a b a b ∴==>课堂练习1、用不等关系表示下面的不等关系.(1)a与b的和是非正数;a+b≤0(2)在一个矩形地基上建造一个仓库,四周是绿地。