高二数学求曲线的方程4
- 格式:ppt
- 大小:185.50 KB
- 文档页数:13
曲线和方程 曲线和方程(1)一、知识小结1.曲线和方程的概念:在直角坐标系中,如果曲线C (看作适合某种条件的点的集合或轨迹)与方程(),0F x y =的实数解集之间具有以下两个关系:(1)曲线C 上的点的坐标都是方程(),0F x y =的解;(2)以方程(),0F x y =的解为坐标的点都是曲线C 上的点,那么曲线C 上的点与方程(),0F x y =的解是一一对应的,此时把方程(),0F x y =叫做曲线C 的方程,曲线C 叫做方程(),0F x y =的曲线.定义中条件(1)说明曲线上没有哪个点的坐标不满足方程,即曲线上所有点都适合这 个条件而毫无例外,即曲线具有纯粹性;条件(2)说明适合条件的点都有在这条曲线上而无一遗漏,也就是说曲线具有完备性.由曲线与方程的关系可以知道,曲线的方程实质就是这条曲线上的任意一点的横坐标x 与纵坐标y 之间的等量关系. 注意点:数形结合分析问题.2.点与曲线的关系的判断:若曲线C 的方程(),0F x y =,则点()()()0000000,,,0P x y C F x y C F x y ∈⇔∈⇔=,即要判断一个点是否在曲线上,只要把点的坐标代入曲线方程,如果满足方程,则点在曲线上;如果不满足方程,则点不在曲线上.注意点:用代入法来解决问题.3.求曲线的方程的一般步骤:(1)建立适当的直角坐标系(建系); (2)设曲线上任意一点的坐标为(),x y (设点);(3)根据曲线上点所适合的条件,写出等式(列式);(4)用坐标x ,y 表示这个等式,并化方程为最简形式(化简);(5)证明以化简后的方程的解为坐标的点都是曲线上的点(证明).注意点:要检验,防止出现增解或失解.4.求曲线的方程的一般方法:(1)直接法:根据题意与条件,设出动点坐标,直接列出相关等式,然后化简得结果;(2)代入法:设出动点坐标,然后找出相关点的了解,利用相关点的规律,从而得出动点之间关系的等式;注意点:过程中要保持等价变形,这样可省略检验环节.5.曲线的交点的求法:如果曲线1C 、2C 的方程分别为()1,0F x y =、()2,0F x y =,则点()00,0P x y =是曲线1C 、2C 交点的充要条件是()()100200,0,0F x y F x y ⎧=⎪⎨=⎪⎩. 由曲线上点的坐标和它的方程的实数解之间的对应关系可知,两条曲线交点的坐标应该是这两条曲线的方程所组成的方程组的实数解.方程组有几组实数解,两条曲线就有几个交点;方程组没有实数解,两条曲线就没有交点.因此,求曲线的交点坐标就是求曲线的方程所组成的方程组的解.注意点:代数与几何方法要结合.6.解析几何的本质:用代数的方法来研究几何问题,具体来说就是用方程的思想来解决曲线的问题.其中会涉及两个主要问题:(1)已知曲线,求相应的方程;(2)已知方程,画出相应的曲线,并研究其相关的性质.二、应用举例:例1、方程()()211y a x b x c =-+-+的曲线过原点的条件是 .例2、到两坐标轴距离的积为2的动点轨迹方程是 .例3、已知定点()4,0Q ,P 为曲线224x y +=上一个动点,那么线段PQ 中点的轨迹方程是_____________.曲线和方程 曲线和方程(2)一、应用举例例4、设P 为曲线2214x y -=上一动点,O 为坐标原点,M 为线段OP 中点,则点M 的轨迹方程是_____________.例5、直线53y x =-被曲线22y x =截得的线段长是___________.例6、已知直线y kx k =-+与曲线22y x x =-. (1程是________________;(2)直线与曲线相交而得交点的中点轨迹方程是____________.例7、长为a 的线段的两端点分别在直线y x =和y x =-上运动,则线段中点的轨迹为 .例8、若直线0mx y m -+=与抛物线243y x x =-+的取值范围为__________.例9、已知两点()()2,02,0M N -、,点P 0MN MP MN NP ⋅+⋅=,则动点P 的轨迹方程为例10、直线2y kx =-交曲线28y x =于A 、B 两点,若弦AB 中点的横坐标为2,则k =________.一、应用举例:1.选择题例11、直线210x y -+=关于直线1x =对称的直线方程是( ). (A )210x y +-= (B )210x y +-= (C )230x y +-= (D )230x y +-=例12、设有一组圆()()()224:1320k C x k y k k k -++-=≠,则下列四个命题中正确的是( ).(A )存在一条定直线与所有的圆均相切 (B )所有的圆均不经过原点(C )存在一条定直线与所有的圆均不相交 (D )存在一条定直线与所有的圆均相交例13、设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA =且1OQ AB ⋅=,则点P 的轨迹方程是( ). (A )()223310,02x y x y +=>> (B )()223310,02x y x y -=>> (C )()223310,02x y x y -=>>(D )()223310,02x y x y +=>>例14、直线2y k =与曲线2222918k x y k x +=(),0k k ∈≠R 且且0)k ≠的公共点的个数为( ). (A )1 (B )2(C )3(D )42.解答题例15、(1)求曲线(,)0C f x y =:关于点(),a b 对称的曲线的方程;(2)若直线1y kx =+与曲线220x y x ky ++-=的两个交点的横坐标之和为零,求k 的值.例16、已知动点P 到定点()1,0F 和直线3x =的距离之和等于4,求点P 的轨迹方程.一、应用举例:1.解答题例17、已知△ABC 的两个顶点()8,0B -,()0,0C ,顶点A 在曲线22160x y x +-=上运动,求△ABC 的重心的轨迹方程.例18、过原点作曲线21y x =+的割线12OPP ,求弦12P P 的中点P 的轨迹方程.例19、k 为何值时,直线2y kx =+和曲线22236x y +=有两个公共点?有一个公共点?没有公共点?例20、(1)画出方程1x -(2)曲线)122y x =-≤≤与直线()24y k x =-+有两个交点时,试求出实数k 的取值范围.例21、若两条曲线的方程是()1,0F x y =和()2,0F x y =,交点为()000,P x y , (1)证明:方程()()12,,0F x y F x y λ+=的曲线也经过0P (λ为任意实数); (2)求经过曲线2230x y x y ++-=和22330x y y ++=的交点的直线方程.例22、已知曲线2:1C y x mx =-+-,点()3,0A ,()0,3B ,求曲线C 与线段AB 有两个不同交点的充要条件.曲线和方程(4)一、应用举例:1.解答题例17、已知△ABC 的两个顶点()8,0B -,()0,0C ,顶点A 在曲线22160x y x +-=上运动,求△ABC 的重心的轨迹方程.例18、过原点作曲线21y x =+的割线12OPP ,求弦12P P 的中点P 的轨迹方程.例19、k 为何值时,直线2y kx =+和曲线22236x y +=有两个公共点?有一个公共点?没有公共点?例20、(1)画出方程1x -(2)曲线)122y x =-≤≤与直线()24y k x =-+有两个交点时,试求出实数k 的取值范围.例21、若两条曲线的方程是()1,0F x y =和()2,0F x y =,交点为()000,P x y , (1)证明:方程()()12,,0F x y F x y λ+=的曲线也经过0P (λ为任意实数); (2)求经过曲线2230x y x y ++-=和22330x y y ++=的交点的直线方程.例22、已知曲线2:1C y x mx =-+-,点()3,0A ,()0,3B ,求曲线C 与线段AB 有两个不同交点的充要条件.友情提示:部分文档来自网络整理,供您参考!文档可复制、编制,期待您的好评与关注!。
2.1 曲线与方程2.1.1 曲线与方程2.1.2 求曲线的方程1.结合已学过的曲线与方程的实例,了解曲线与方程的对应关系.(了解)2.理解“曲线的方程”与“方程的曲线”的概念.(重点)3.通过具体的实例掌握求曲线方程的一般步骤,会求曲线的方程.(难点)[基础·初探]教材整理1曲线的方程与方程的曲线阅读教材P34~P35例1以上部分内容,完成下列问题.一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是____________;(2)以这个方程的解为坐标的点都是__________,那么,这个方程叫做________,这条曲线叫做方程的曲线.【答案】这个方程的解曲线上的点曲线的方程设方程f(x,y)=0的解集非空,如果命题“坐标满足方程f(x,y)=0的点都在曲线C上”是不正确的,则下列命题正确的是()A.坐标满足方程f(x,y)=0的点都不在曲线C上B.曲线C上的点的坐标都不满足方程f(x,y)=0C.坐标满足方程f(x,y)=0的点有些在曲线C上,有些不在曲线C上D.一定有不在曲线C上的点,其坐标满足f(x,y)=0【解析】本题考查命题形式的等价转换,所给命题不正确,即“坐标满足方程f(x,y)=0的点不都在曲线C上”是正确的.“不都在”包括“都不在”和“有的在,有的不在”两种情况,故选项A、C错,选项B显然错.【答案】 D教材整理2求曲线方程的步骤阅读教材P36“例3”以上部分,完成下列问题.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是____________.【解析】设P(x,y),∵△MPN为直角三角形,∴MP2+NP2=MN2,∴(x+2)2+y2+(x-2)2+y2=16,即x2+y2=4.∵M,N,P不共线,∴x≠±2,∴轨迹方程为x2+y2=4(x≠±2).【答案】x2+y2=4(x≠±2)[小组合作型]对曲线的方程和方程的曲线的定义的理解(1)过点A(2,0)平行于y轴的直线与方程|x|=2之间的关系;(2)到两坐标轴的距离的积等于5的点与方程xy=5之间的关系;(3)第二、四象限角平分线上的点与方程x+y=0之间的关系.【导学号:37792038】【精彩点拨】曲线上点的坐标都是方程的解吗?以方程的解为坐标的点是否都在曲线上?【自主解答】(1)过点A(2,0)平行于y轴的直线上的点的坐标都是方程|x|=2的解,但以方程|x|=2的解为坐标的点不一定都在过点A(2,0)且平行于y轴的直线上.因此|x|=2不是过点A(2,0)平行于y轴的直线的方程.(2)到两坐标轴的距离的积等于5的点的坐标不一定满足方程xy=5,但以方程xy=5的解为坐标的点与两坐标轴的距离之积一定等于5.因此到两坐标轴的距离的积等于5的点的轨迹方程不是xy=5.(3)第二、四象限角平分线上的点的坐标都满足x+y=0,反之,以方程x+y =0的解为坐标的点都在第二、四象限角平分线上.因此第二、四象限角平分线上的点的轨迹方程是x+y=0.1.分析此类问题要严格按照曲线的方程与方程的曲线的定义.2.定义中有两个条件,这两个条件必须同时满足,缺一不可.条件(1)保证了曲线上所有的点都适合条件f (x ,y )=0;条件(2)保证了适合条件的所有点都在曲线上,前者是说这样的轨迹具有纯粹性,后者是说轨迹具有完备性.两个条件同时成立说明曲线上符合条件的点既不多也不少,才能保证曲线与方程间的相互转化.[再练一题]1.已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上;(2)若点M ⎝ ⎛⎭⎪⎫m 2,-m 在此方程表示的曲线上,求实数m 的值. 【解】 (1)因为12+(-2-1)2=10,(2)2+(3-1)2=6≠10,所以点P (1,-2)在方程x 2+(y -1)2=10表示的曲线上,点Q (2,3)不在方程x 2+(y -1)2=10表示的曲线上.(2)因为点M ⎝ ⎛⎭⎪⎫m 2,-m 在方程x 2+(y -1)2=10表示的曲线上, 所以x =m 2,y =-m 适合方程x 2+(y -1)2=10,即⎝ ⎛⎭⎪⎫m 22+(-m -1)2=10. 解得m =2或m =-185.故实数m 的值为2或-185.由方程研究曲线(1)(x +y -1)x -1=0;(2)2x 2+y 2-4x +2y +3=0;(3)(x -2)2+y 2-4=0.【精彩点拨】 (1)方程(x +y -1)x -1=0中“x +y -1”与“x -1”两式相乘为0可作怎样的等价变形?(2)在研究形如Ax 2+By 2+Cx +Dy +E =0的方程时常采用什么方法?(3)由两个非负数的和为零,我们会想到什么?【自主解答】 (1)由方程(x +y -1)x -1=0可得 ⎩⎪⎨⎪⎧ x -1≥0,x +y -1=0或x -1=0, 即x +y -1=0(x ≥1)或x =1.故方程表示一条射线x +y -1=0(x ≥1)和一条直线x =1.(2)对方程左边配方得2(x -1)2+(y +1)2=0.∵2(x -1)2≥0,(y +1)2≥0,∴⎩⎪⎨⎪⎧ 2(x -1)2=0,(y +1)2=0,解得⎩⎪⎨⎪⎧x =1,y =-1. 从而方程表示的图形是一个点(1,-1).(3)由(x -2)2+y 2-4=0,得⎩⎪⎨⎪⎧ x -2=0,y 2-4=0,∴⎩⎪⎨⎪⎧ x =2,y =2或⎩⎪⎨⎪⎧x =2,y =-2.因此,原方程表示两个点(2,2)和(2,-2).1.判断方程表示什么曲线,就要把方程进行同解变形,常用的方法有:配方法、因式分解或化为我们熟悉的曲线方程的形式,然后根据方程、等式的性质作出准确判定.2.方程变形前后应保持等价,否则,变形后的方程表示的曲线不是原方程代表的曲线,另外,当方程中含有绝对值时,常借助分类讨论的思想.[再练一题]2.方程xy2-x2y=2x所表示的曲线()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于x-y=0对称【解析】同时以-x代替x,以-y代替y,方程不变,所以方程xy2-x2y=2x所表示的曲线关于原点对称.【答案】 C[探究共研型]求曲线的方程探究1【提示】建立坐标系的基本原则:(1)让尽量多的点落在坐标轴上;(2)尽可能地利用图形的对称性,使对称轴为坐标轴.建立适当的坐标系是求曲线方程的首要一步,应充分利用图形的几何性质,如中心对称图形,可利用对称中心为原点建系;轴对称图形以对称轴为坐标轴建系;条件中有直角,可将两直角边作为坐标轴建系等.探究2求曲线方程时,有些点的条件比较明显,也有些点的条件要通过变形或转化才能看清,有些点的运动依赖于另外的动点,请你归纳一下求曲线方程的常用方法?【提示】一般有三种方法:一直接法;二定义法;三相关点法,又称为代入法.在解题中,我们可以根据实际题目选择最合适的方法.求解曲线方程过程中,要特别注意题目内在的限制条件.在Rt△ABC中,斜边长是定长2a(a>0),求直角顶点C的轨迹方程.【导学号:37792039】【精彩点拨】(1)如何建立坐标系?(2)根据题意列出怎样的等量关系?(3)化简出的方程是否为所求轨迹方程?【自主解答】取AB边所在的直线为x轴,AB的中点O为坐标原点,过O与AB垂直的直线为y轴,建立如图所示的直角坐标系,则A(-a,0),B(a,0),设动点C为(x,y).由于|AC|2+|BC|2=|AB|2,所以((x+a)2+y2)2+((x-a)2+y2)2=4a2,整理得x2+y2=a2.由于当x=±a时,点C与A或B重合,故x≠±a.所以所求的点C的轨迹方程为x2+y2=a2(x≠±a).1.求曲线方程的一般步骤(1)建系设点;(2)写几何点集;(3)翻译列式;(4)化简方程;(5)查漏排杂:即证明以化简后方程的解为坐标的点都是曲线上的点.2.一般情况下,化简前后方程的解集是相同的,步骤(5)可以省略不写,如有特殊情况,可适当予以说明,另外,根据情况,也可以省略步骤(2),直接列出曲线方程.3.没有确定的坐标系时,要求方程首先必须建立适当的坐标系,由于建立的坐标系不同,同一曲线在坐标系的位置不同,其对应的方程也不同,因此要建立适当的坐标系.[再练一题]3.已知一曲线在x轴上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程.【解】设曲线上任一点的坐标为M(x,y),作MB⊥x轴,B为垂足,则点M属于集合P={M||MA|-|MB|=2}.由距离公式,点M适合的条件可表示为x2+(y-2)2-y=2.化简得x2=8y.∵曲线在x轴上方,∴y>0.∴(0,0)是这个方程的解,但不属于已知曲线.∴所求曲线的方程为x2=8y(y≠0).1.已知直线l:x+y-3=0及曲线C:(x-3)2+(y-2)2=2,则点M(2,1)()A.在直线l上,但不在曲线C上B.在直线l上,也在曲线C上C.不在直线l上,也不在曲线C上D.不在直线l上,但在曲线C上【解析】将M(2,1)代入直线l和曲线C的方程,由于2+1-3=0,(2-3)2+(1-2)2=2,所以点M既在直线l上,又在曲线C上.【答案】 B2.在直角坐标系中,方程|x|·y=1的曲线是()【解析】 当x >0时,方程为xy =1,∴y >0,故在第一象限有一支图象;当x <0时,方程为-xy =1,∴y >0,故在第二象限有一支图象.【答案】 C3.已知两点M (-2,0),N (2,0),点P 满足PM →·PN →=4,则点P 的轨迹方程为________.【解析】 设点P 的坐标为P (x ,y ),由PM →·PN →=(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2=4,得x 2+y 2=8,则点P 的轨迹方程为x 2+y 2=8.【答案】 x 2+y 2=84.设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦,求所作弦的中点的轨迹方程.【导学号:37792040】【解】 法一:如图所示,设OQ 为过O 的一条弦,P (x ,y )为其中点,连接CP ,则CP ⊥OQ .OC 的中点为M ⎝ ⎛⎭⎪⎫12,0,连接MP ,则|MP |=12|OC |=12,得方程⎝ ⎛⎭⎪⎫x -122+y 2=14. 由圆的范围,知0<x ≤1.即所求弦中点的轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14,0<x ≤1.法二:如图所示,由垂径定理,知∠OPC =90°,所以动点P 在以M ⎝ ⎛⎭⎪⎫12,0为圆心,OC 为直径的圆上. 由圆的方程,得⎝ ⎛⎭⎪⎫x -122+y 2=14, 由圆的范围,知0<x ≤1.即所求弦中点的轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14,0<x ≤1.。
4-4第二章 参数方程【知识点梳理】一、参数方程的概念:一般地,在取定的坐标系中,如果曲线上任意一点的坐标(x ,y )都是某个变数t的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t )①,并且对于t 取的每一个允许值,由方程组①所确定的点P (x ,y )都在这条曲线上,那么方程组①就叫作这条曲线的参数方程,联系x ,y 之间关系的变数t 叫作参变数,简称 参数 . 相对于参数方程,我们把直接用坐标(x ,y )表示的曲线方程f (x ,y )=0叫作曲线的普通方程.说明:(1)一般来说,参数的变化范围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
二、几种常见的参数方程1.直线的参数方程过定点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 0≤α<π.2.圆的参数方程圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).3.圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数,0≤θ≤2π).(2)双曲线x 2a 2-y 2b2=1(a >0,b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =btan θ(θ为参数,0≤θ≤2π且2π3θ,2πθ≠≠).,则{,有sec 2θ-tan 2θ=1(3)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).三、参数方程与普通方程的互化将参数方程化成普通方程的常用方法有: (1)代数法消去参数①代入法:从参数方程中选出一个方程,解出参数,然后把参数的表达式代入另一个方程,消去参数,得到曲线的普通方程.②代数运算法:通过乘、除、乘方等运算把参数方程中的方程适当地变形,然后把参数方程中的两个方程进行代数运算,消去参数,得到曲线的普通方程. (2)利用三角恒等式消去参数如果参数方程中的x ,y 都表示为参数的三角函数,那么可以考虑用三角函数公式中的恒等式消去参数,得到曲线的普通方程. (3)注意事项① 互化中必须使,x y 的取值范围保持一致. ② 同一个普通方程可以有不同形式的参数方程.几种常见的参数方程例1:(1)过点(0,0)且倾斜角为60°的直线的参数方程是________.【答案】 (1)⎩⎨⎧x =12t ,y =32t【解析】⎩⎪⎨⎪⎧x =t cos 60°,y =t sin 60°,即⎩⎨⎧x =12t ,y =32t(t 为参数).(2)过点P (-4,0),倾斜角为5π6的直线的参数方程为________.【答案】 ⎩⎨⎧x =-4-32t ,y =t2【解析】∵直线l 过点P (-4,0),倾斜角α=5π6,所以直线的参数方程为⎩⎨⎧x =-4+t cos 5π6,y =0+t sin 5π6,即(t 为参数)⎩⎨⎧x =-4-32t ,y =t2.(3)参数方程⎩⎪⎨⎪⎧x =1+t cos 20°,y =2+t sin 20°(t 为参数)表示的直线的倾斜角是________. 【解析】方程符合直线参数方程的标准形式,易知倾斜角为20°.(4)直线⎩⎪⎨⎪⎧x =-2+t cos 50°,y =3-t sin 40°(t 为参数)的倾斜角α等于( ) A.40° B.50° C.-45° D.135°【答案】 D 【解析】 根据tan α=-sin 40°cos 50°=-1,因此倾斜角为135°.例2:(1)圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),则圆的圆心坐标为( )A.(0,2)B.(0,-2)C.(-2,0)D.(2,0)【答案】 D 【解析】 由圆的参数方程知,圆心为(2,0). (2)圆心在点(-1,2),半径为5的圆的参数方程为( )A.⎩⎪⎨⎪⎧x =5-cos θ,y =5+2sin θ(0≤θ<2π) B.⎩⎪⎨⎪⎧x =2+5cos θ,y =-1+5sin θ(0≤θ<2π) C.⎩⎪⎨⎪⎧ x =-1+5cos θ,y =2+5sin θ(0≤θ<π) D.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π) 【答案】 D 圆心在点C (a ,b ),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ∈[0,2π)).故圆心在点(-1,2),半径为5的圆的参数方程为⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π).例3:(1)椭圆⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ的长轴长和短轴长分别为( )A.3 2B.6 2C.3 4D.6 4【答案】 D 【解析】 由方程可知a =3,b =2,∴2a =6,2b =4.(2)曲线C :⎩⎨⎧x =3cos φ,y =5sin φ(φ为参数)的离心率为________.【答案】 23 【解析】由曲线C 的参数方程可以看出a =3,b =5,得a 2=9,b 2=5,⇒c 2=4,所以e=c a =23. 例4:双曲线C :⎩⎪⎨⎪⎧x =3sec φ,y =4tan φ(φ为参数)的焦点坐标为________.【答案】 (-5,0),(5,0)【解析】 曲线C 的普通方程为x 29-y 216=1,得焦点坐标为F 1(-5,0),F 2(5,0)参数方程与普通方程的互化例1:(1)将参数方程⎩⎪⎨⎪⎧x =t ,y =2t(t 为参数)化为普通方程是________.【解析】 把t =x 代入②得y =2x 即普通方程为y =2x .(2)将参数方程⎩⎪⎨⎪⎧x =2t 2,y =t +1(t 为参数)化为普通方程是________.【解析】由②得t =y -1,代入①得x =2(y -1)2.(3)将参数方程⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)化为普通方程是________.【解析】由sin 2 θ+cos 2 θ=1得x 2+y 2=1.(4)将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数)化为普通方程是________【解析】由y =-1+cos 2θ,可得y =-2sin 2θ, 把sin 2θ=x -2代入y =-2sin 2θ,可得y =-2(x -2), 即2x +y -4=0. 又∵2≤x =2+sin 2θ≤3,∴所求的方程是2x +y -4=0(2≤x ≤3),它表示的是一条线段. (5)将(x -2)2+y 2=1化为参数方程是 【解析】令x -2=cos α,y =sin α,∴C 1的一个参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数,α∈R ).【练一练】1.曲线⎩⎪⎨⎪⎧x =2cos θ-1,y =2sin θ+2(θ为参数)的一条对称轴的方程为( )A.y =0B.x +y =0C.x -y =0D.2x +y =0【答案】 D 【解析】 曲线⎩⎪⎨⎪⎧x =2cos θ-1,y =2sin θ+2(θ为参数)的普通方程为(x +1)2+(y -2)2=4,圆心C的坐标为(-1,2),过圆心的直线都是圆的对称轴,故选D.2.与普通方程x 2+y -1=0等价的参数方程为( )A.⎩⎪⎨⎪⎧x =sin t ,y =cos 2t (t 为参数) B.⎩⎪⎨⎪⎧ x =cos t ,y =sin 2t (t 为参数) C.⎩⎨⎧x =1-t ,y =t(t 为参数) D.⎩⎪⎨⎪⎧x =tan t ,y =1-tan 2t (t 为参数) 【答案】 D【解析】 A 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1]. B 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1]. C 化为普通方程为x 2+y -1=0,x ∈[0,+∞),y ∈(-∞,1]. D 化为普通方程为x 2+y -1=0,x ∈R ,y ∈(-∞,1].参数方程的应用【例1】(1)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t (t 为参数)⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________. 【答案】 (1,1) 【解析】 C 1的普通方程为y 2=x (x ≥0,y ≥0),C 2的普通方程为x 2+y 2=2.由⎩⎪⎨⎪⎧ y 2=x ,(x ≥0,y ≥0),x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1.∴C 1与C 2的交点坐标为(1,1).(2)在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧ x =t ,y =t -a ,(t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.【答案】 3 【解析】 直线l :⎩⎪⎨⎪⎧x =t ,y =t -a 消去参数t 后得y =x -a .椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1.又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.【例2】已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 是参数,a ∈R ),点M (5,4)在该曲线上.(1)求常数a ;(2)求曲线C 的普通方程.【解】 (1)由题意,可知⎩⎪⎨⎪⎧1+2t =5,at 2=4,故⎩⎪⎨⎪⎧t =2,a =1,所以a =1. (2)由已知及(1)可得,曲线C 的方程为⎩⎪⎨⎪⎧x =1+2t ,y =t 2,由第一个方程,得t =x -12,代入第二个方程,得y =⎝⎛⎭⎫x -122,即(x -1)2=4y 为所求.【例3】已知直线l 的参数方程:⎩⎪⎨⎪⎧x =t ,y =1+2t (t 为参数)和圆C 的极坐标方程:ρ=22sin ⎝⎛⎭⎫θ+π4(θ为参数). (1)将直线l 的参数方程和圆C 的极坐标方程化为直角坐标方程; (2)判断直线l 和圆C 的位置关系.解:(1)消去参数t ,得直线l 的直角坐标方程为y =2x +1;ρ=22sin ⎝⎛⎭⎫θ+π4即ρ=2(sin θ+cos θ).两边同乘以ρ得ρ2=2(ρsin θ+ρcos θ), 消去参数θ,得圆C 的直角坐标方程为:(x -1)2+(y -1)2=2. (2)圆心C 到直线l 的距离d =|2-1+1|22+12=255<2,所以直线l 和圆C 相交.【例4】在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线 C 1:ρ2-4ρcos θ+3=0,θ∈[0,2π],曲线C 2:ρ=34sin ⎝⎛⎭⎫π6-θ,θ∈[0,2π].(1)求曲线C 1的一个参数方程;(2)若曲线C 1和曲线C 2相交于A ,B 两点,求|AB |的值. 解 (1)由ρ2-4ρcos θ+3=0,可得x 2+y 2-4x +3=0. ∴(x -2)2+y 2=1.令x -2=cos α,y =sin α,∴C 1的一个参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数,α∈R ).(2)C 2:4ρ⎝⎛⎭⎫sin π6cos θ-cos π6sin θ=3, ∴4⎝⎛⎭⎫12x -32y =3,即2x -23y -3=0.∵直线2x -23y -3=0与圆(x -2)2+y 2=1相交于A ,B 两点,且圆心到直线的距离d =14,∴|AB |=2× 1-⎝⎛⎭⎫142=2×154=152.。
高二年级数学科辅导讲义(第讲) 学生姓名:授课教师:授课时间:第一部分、基础知识梳理(1)双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
2((3)双曲线的渐近线:①求双曲线12222=-b y a x 的渐近线,可令其右边的1为0,即得02222=-b y a x ,因式分解得到0x y a b±=。
②与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222by a x ;(4)等轴双曲线为222t y x =-,其离心率为2(5)常用结论:双曲线)0,0(12222>>=-b a by a x 的两个焦点为21,F F ,过1F 的直线交双曲线的同一支于B A ,两点,线段AB 的长度为AB ,则2ABF ∆的周长=设双曲线)0,0(12222>>=-b a by a x 左、右两个焦点为21,F F ,过1F 且垂直于对称轴的直线交双曲线于Q P ,两点,则例 例考点二、运用双曲线的定义求轨迹方程例3:已知两点()051,-F 、()052,F 例4:在ABC ∆中,2=BC ,且B C 21sin sin =-例5:求下列动圆圆心M 的轨迹方程:(1)与⊙()2222=++y x C :内切,且过点()02,A 。
(2)与⊙()11221=-+y x C :和⊙()41222=++y x C :都外切。
(3)与⊙()93221=++y x C :外切,且与⊙()13222=+-y x C :内切。
考点三、双曲线定义的运用例6、已知双曲线116922=-y x 的左、右焦点分别为1F 、2F ,点P 在双曲线的右支上,且3221=PF PF ,求21PF F ∠的大小。
例7、已知1F 、2F 是双曲线1422=-y x 的两个焦点,点P 在双曲线上,且满足 9021=∠PF F ,求21PF F ∆的面积。