第五章 有机溶剂中的酶催化作用
- 格式:ppt
- 大小:715.00 KB
- 文档页数:46
酶工程思考题汇总第一章P251.何谓酶工程?试述其主要内容和任务.酶的生产,改性与应用的技术过程称为酶工程。
主要内容:微生物细胞发酵产酶,动植物细胞培养产酶,酶的提取与分离纯化,酶分子修饰,酶、细胞、原生质体固定化,酶非水相催化,酶定向进化,酶反应器和酶的应用等。
主要任务:经过预先设计,通过人工操作获得人们所需的酶,并通过各种方法使酶的催化特性得以改进,充分发挥其催化功能。
2.酶有哪些显著的催化特性?专一性强(绝对专一性——钥匙学说、相对专一性——诱导契合学说)、催化效率高、作用条件温和3.简述影响酶催化作用的主要因素.底物浓度、酶浓度、温度、pH、激活剂浓度、抑制剂浓度等诸多因素第二章P635.酶的生物合成有哪几种模式?生长偶联型(同步合成型、中期合成型)、部分生长偶联型(延续合成型)非生长偶联型(滞后合成型)7.提高酶产量的措施主要有哪些?a.添加诱导物(酶的作用底物、酶的催化反应物、作用底物的类似物)b.控制阻遏物的浓度c.添加表面活性剂d.添加产酶促进剂11.固定化微生物原生质体发酵产酶有何特点?1.提高产酶率2.可以反复使用或连续使用较长时间3.基因工程菌的质粒稳定,不易丢失4.发酵稳定性好5.缩短发酵周期,提高设备利用率6.产品容易分离纯化7.适用于胞外酶等细胞产物的生产第三章P843.植物细胞培养产酶有何特点?1.提高产率2.缩短周期3.易于管理,减轻劳动强度4.提高产品质量5.其他4.简述植物细胞培养产酶的工艺过程。
外植体细胞的获取细胞培养分离纯化产物6.动物细胞培养过程中要注意控制哪些工艺条件?1.培养基的组成成分2.培养基的配制3.温度的控制4.ph的控制5.渗透压的控制6.溶解氧的控制第四章P1351.细胞破碎的方法主要有哪些?各有何特点?机械破碎法:通过机械运动产生的剪切力,使组织、细胞破碎(捣碎法,研磨法,匀浆法)物理破碎法:通过物理因素的作用(温度差破碎法,压力差破碎法,超声波破碎法)化学破碎法:通过化学试剂对细胞膜的作用(添加有机溶剂,添加表面活性剂)酶促破碎法:通过细胞本身的酶系或外加酶制剂的催化作用,使细胞外层结构受到破坏(自溶法,外加酶制剂法)2.试述酶提取的主要方法。
第五章第1节降低化学反应活化能的酶一、酶的作用和本质一、教材分析新陈代谢是生物体进行一切生命活动的基础,而新陈代谢的进行又离不开酶的催化作用,因此,了解酶的作用和本质,为理解细胞中复杂的生命活动的顺利进行奠定了基础。
本节内容还与选修模块的相关内容有着内在联系。
例如,选修模块中有关酶的应用等,都是以“酶与代谢”部分的相关内容为基础的。
此外,学生通过有关酶的的探究性学习活动获得的技能,对进一步学习生物技术实践等知识起到保证作用。
二、教学目标1. 知识目标(1)、说明酶在细胞代谢中的作用、本质。
(2)、阐述细胞代谢的概念2. 能力目标(1)、通过自主学习,培养学生推理、比较、分析、归纳总结的能力。
(2)、通过有关的实验和探究,学会控制自变量,观察和检测因变量的变化,以及设置对照组和重复实验。
(3)、在有关实验、资料分析、思考与讨论、探究等的问题讨论中,提高运用语言表达的能力以及分享信息的能力。
3. 情感态度与价值观目标(1)、通过阅读分析“关于酶本质的探索”的资料,认同科学是在不断的观察、实验、探索和争论中前进的,。
认同科学家不仅要继承前人的科研成果,而且要善于吸收不同意见中的合理成分,还要具有质疑、创新和勇于实践的科学精神和态度。
(2)、通过小组间的讨论、合作与交流,培养学生的合作互助精神。
(3)、通过让学生了解酶的发现过程,使学生体会实验在生物学研究中的作用和地位;通过讨论酶在生产、生活中的应用,使学生认识到生物科学技术与社会生产、生活的关系。
三、教学重点和难点1、教学重点:酶的作用、本质2、教学难点:酶降低化学反应活化能的原理四、学情分析学生通过初三、高一阶段化学的学习,对于纯化学反应已比较熟悉,但是对于细胞内部的化学反应及生物催化剂──酶的认识有限。
工业制氨的化学反应是在高温高压并且催化剂作用下进行的,细胞内部却是常温常压的温和状态,而细胞代谢包括一系列的化学反应,这些化学反应的进行应该有生物催化剂──酶的参与,才能使其高效有序的进行,由此从学生熟悉的知识引入对酶相关知识的学习。
高一生物必修一第五章知识点高一生物必修一第五章(一)第五章细胞的能量供给和利用第一节降低反响活化能的酶一、细胞代谢的概念:细胞内每时每刻进行着许多化学反响,统称为细胞代谢。
特点:1、一般都需要酶的催化 2、在水环境中进行3、反响条件温和4、一般伴随着能量的释放和储存二、实验:比拟过氧化氢酶在不同条件下的分解无机催化剂:三价铁离子(生锈的铁钉)有机催化剂:过氧化氢酶(肝脏研磨液、土豆浸出液)1号试管:2ml过氧化氢溶液2号试管:2ml过氧化氢溶液水浴加热到90摄氏度3号试管:2ml过氧化氢溶液+三价铁离子4号试管:2ml过氧化氢溶液+过氧化氢酶实验结论:1、加热促使过氧化氢分解,是因为加热使过氧化氢分子得到能量,从常态转化为容易分解的活泼状态。
2、Fe3+和过氧化氢酶促使过氧化氢分解,是降低了过氧化氢分解的活化能。
3酶具有催化作用,并且催化效率要比无机催化剂Fe3+高得多活化能:分①没有酶催化的反响曲线是b②有酶催化的反响曲线是a③AC段的含义是在无机催化剂的条件下,反响所需要的活化能④BC段的含义是酶降低的活化能⑤假设将酶催化改为无机催化剂催化该反响,那么B点在纵轴上将向上移动三、控制变量法:变量、自变量(人为改变的变量)、因变量(随着自变量的变化而变化的变量)、无关变量的定义。
对照实验:除一个因素外,其余因素都保持不变的实验。
原那么:对照原那么,单一变量的原那么。
四、酶的概念:酶是活细胞产生的具有催化作用的有机物,绝大多数是蛋白质,少数是RNA。
1、酶的特性:专一性(脲酶分解尿素成氨和二氧化碳、蛋白质分解蛋白质)高效性(酶的催化效率高于无机催化剂)作用条件较温和(最适温度,最适pH)2、影响酶活性的条件(要求用控制变量法,自己设计实验)建议用淀粉酶探究温度对酶活性的影响,用过氧化氢酶探究PH对酶活性的影响。
探究温度对唾液淀粉酶活性的影响子从常态转变为容易发生化学反响的活泼状态所需要的能量。
注意:①不能用过氧化氢酶探究温度对酶的影响,因为过氧化氢高温分解②探究温度对酶的影响不能用斐林试剂,斐林试剂检测复原糖需要加热③斐林试剂和碘液不可检测pH,斐林试剂和酸反响,碘液和碱反响五、影响酶促反响的因素1、温度:高温使酶失活。
第五章细胞的能量供应和利用第一节降低反应活化能的酶1、细胞代谢:细胞内每时每刻进行着许多化学反应,统称为细胞代谢.2、活化能:分子从常态转变为容易发生化学反应的活跃状态所需要的能量。
3、酶的作用:催化作用4、使化学反应加快的方法:加热:通过提高分子的能量来加快反应速度;加催化剂:通过降低化学反应的活化能来加快反应速度;同无机催化相比,酶能更显著地降低化学反应的活化能,因而催化效率更高。
5、酶的概念:酶是活细胞产生的具有催化作用的有机物,绝大多数是蛋白质,少数是RNA。
6、酶的特性:高效性:酶的催化效率是无机催化剂的107-1013 倍专一性:每一种酶只能催化一种或一类化学反应酶的作用条件较温和:酶在最适宜的温度和PH条件下,活性最高。
7、影响酶促反应的因素(1)酶浓度对酶促反应的影响:酶促反应的速率与酶浓度成正比,如图1 所示。
图一图二图1 图2(2)底物浓度对酶促反应的影响:刚开始反应速度随底物浓度增加而加快,之后再增加底物浓度,反应速率也几乎不变,如图2所示。
(3)pH值对酶促反应影响:刚开始反应速度随着pH值升高而加快,达到最大值后反应速度随着pH值升高而下降。
反应速率最大时的pH值称为这种酶的最适pH 值。
如图3所示。
图三图四图3 图4(4)温度对酶促反应的影响:刚开始反应速率随温度的升高而加快;但当温度高到一定限度时,反应速率随着温度的升高而下降,最终,酶因高温使空间结构遭到破坏失去活性,失去了催化能力。
如图4所示。
8、实验:比较过氧化氢在不同条件下的分解比较过氧化氢酶在不同条件下的分解(1)实验分析:1号与2号比较自变量为水浴加热,1号与3号、4号比较自变量为3号加入三氯化铁、4号加入肝脏研磨液(即催化剂种类)(2)实验结论:酶具有催化作用,并且催化效率要比无机催化剂Fe3+高得多(3)控制变量:自变量(实验中人为控制改变的变量)因变量(随自变量而变化的变量)、无关变量(除自变量外,实验过程中还会存在一些可变因素,对实验结果造成影响)。
药 物 生 物 技 术Pharmaceutical Biotechnology 2002,9(6):374~377酶在有机溶剂中的生物催化性能及其固定化技术Ξ刘建国1,程克棣1,欧阳藩2(1.中国医学科学院、中国协和医科大学药物研究所,北京100050;2.中国科学院过程工程研究所生化工程国家重点实验室,北京100080)摘 要 在有机相中,酶具有与其在水相中相同的晶体结构,能够正确折叠和恢复活性,其活性严重依赖于干燥前水相的pH值,并受有机溶剂中水含量的影响。
有机介质中水分子的存在对于保持天然蛋白质的活性构象和控制蛋白质表面基团的离子化状态具有重要作用。
盐种类及有机介质对有机相中酶催化反应的对映体选择性有重要的影响。
酶经固定化后,底物在酶分子间的传质阻力减少,酶活得以增大。
固定化酶介质对固定化酶活具有较大的有影响。
文章还介绍了有机相中固定化酶的新方法。
关键词 酶;有机溶剂;生物催化;固定化中图分类号:Q55 文献标识码:A 文章编号:1005-8915(2002)06-0374-04 最近几年,无水介质中生物催化剂的问题吸引了世界各地研究工作者的注意,使这一领域的研究获得了巨大的进展。
在生物催化反应中以有机溶剂作为反应介质证明是一种非常有效的扩大生物催化实际的应用范围和效率的方法。
因为这样可以增加亲脂性底物的溶解性,使一些在水相中无法进行的反应在有机相中得以进行。
有机相中酶学研究的不断深入,大大推动了酶化学技术在药学、有机合成化学等学科中的应用和发展。
1 酶在有机溶剂中的催化性能及影响因素1.1 有机溶剂对酶结构的影响有机相中酶学的一个重要问题是酶接触的有机溶剂是如何影响酶分子的结构的。
S chm itke等[1]利用X2射线晶体图谱的方法研究了轻度交联的枯草杆菌素在无水介质中的晶体结构,结果发现,无水介质中的全酶结构及活性位点与在水、其它有机溶剂及无水乙腈中完全一致。
利用傅立叶转换红外光谱(FTIR)波谱图的研究结果与X衍射研究结果完全吻合[2]。
第五章酶第一节概述一、酶的概念酶是由活性细胞产生的、具有高效催化能力和催化专一性的蛋白质,又叫生物催化剂。
酶(enzyme) 是由生物细胞合成的,以蛋白质为主要成分的生物催化剂。
不同生物体所含的酶在种类和数量上各有不同,这种差异决定了生物的代谢类型。
二、酶催化作用的特点1、酶与非生物催化剂的共性:1) 用量少、催化效率高。
2) 都能降低反应的活化能。
3) 能加快反应的速度,但不改变反应的平衡点。
4) 反应前后不发生质与量的变化。
2、酶作为生物催化剂的特性1) 催化效率极高(immense catalytic power )可用分子比(molecular ratio)来表示,即每摩尔的酶催化底物的摩尔数。
酶反应的速度比无催化剂高108-1020倍,比其他催化剂高107-1013倍酶作为催化剂比一般催化剂更显著地降低活化能,催化效率更高。
通常用酶的转换数(turnover number,TN,或催化常数K cat)来表示酶的催化效率。
它们是指在一定条件下,每秒钟每个酶分子转换底物的分子数,或每秒钟每微摩尔酶分子转换底物的微摩尔数。
Kcat:103~1062) 高度的专一性(highly specific )∶所谓酶的专一性是酶对反应物(底物)的选择性绝对专一性:一种酶只能作用于特定的底物。
发生特定的反应,对其他任何物质都没有作用。
相对专一性:有些酶的专一性较低,对具有相同化学键或成键基团的底物都具有催化性能。
立体异构专一性(光学专一性):几乎所有酶对立体异构物的作用都具有高度专一性。
内肽酶胃蛋白酶R1,R1:芳香族氨基酸及其他疏水氨基酸(NH2端及COOH端胰凝乳蛋白酶R1:芳香族氨基酸及其他疏水氨基酸(COOH端)弹性蛋白酶R2:丙氨酸,甘氨酸,丝氨酸等短脂肪链的氨基酸(COOH端胰蛋白酶R3:碱性氨基酸(COOH端)外肽酶羧肽酶A R m:芳香族氨基酸羧肽末端的肽键羧肽酶B Rm:碱性氨基酸羧肽末端的肽键氨肽酶氨肽末端的肽键二肽酶要求相邻两个氨基酸上的α-氨基和α-羧基同时存在3) 反应条件温和4) 酶的催化活性是受调节控制的5) 酶不稳定,容易失活2. 酶的分类(1) 氧化-还原酶Oxidoreductase氧化-还原酶催化氧化-还原反应。
第五章非水酶学非水相酶催化的优点:1、增强难溶于水的反应物的溶解度。
2、在有机介质中改变反应平衡。
3、酶制剂易于回收再利用。
4、在有机溶剂中可增强酶的稳定性。
5、在有机溶剂中可改变酶的选择性。
6、不会或很少发生微生物污染。
第一节酶催化反应的介质水是酶促反应最常用的反应介质。
但对于大多数有机化合物来说,水并不是一种适宜的溶剂。
因为许多有机化合物(底物)在水介质中难溶或不溶。
由于水的存在,往往有利于如水解、消旋化、聚合和分解等副反应的发生。
是否存在非水介质能保证酶催化??1984年,克利巴诺夫等人在有机介质中进行了酶催化反应的研究,他们成功地在利用酶有机介质中的催化作用,获得酯类、肽类、手性醇等多种有机化合物,明确指出酶可以在水与有机溶剂的互溶体系中进行催化反应。
酶非水相催化的几种类型有机介质中的酶催化有机介质中的酶催化是指酶在含有一定量水的有机溶剂中进行的催化反应。
适用于底物、产物两者或其中之一为疏水性物质的酶催化作用。
气相介质中的酶催化酶在气相介质中进行的催化反应。
适用于底物是气体或者能够转化为气体的物质的酶催化反应。
由于气体介质的密度低,扩散容易,因此酶在气相中的催化作用与在水溶液中的催化作用有明显的不同特点。
超临界介质中的酶催化酶在超临界流体中进行的催化反应。
超临界流体是指温度和压力超过某物质超临界点的流体。
离子液介质中的酶催化酶在离子液中进行的催化作用。
离子液(ionic liquids)是由有机阳离子与有机(无机)阴离子构成的在室温条件下呈液态的低熔点盐类,挥发性低、稳定性好。
酶在离子液中的催化作用具有良好的稳定性和区域选择性、立体选择性、键选择性等显著特点。
第二节有机介质酶反应体系一、有机介质反应体系非极性有机溶剂−酶悬浮体系(微水介质体系)用非极性有机溶剂取代所有的大量水,使固体酶悬浮在有机相中。
但仍然含有必需的结合水以保持酶的催化活性(含水量一般小于2%)。
酶的状态可以是结晶态、冻干状态、沉淀状态,或者吸附在固体载体表面上。