(经典1)中考数学同步复习 第三章 函数 第二节 一次函数的图象与性质训练
- 格式:doc
- 大小:248.00 KB
- 文档页数:6
中考数学复习之一次函数的图象与性质(含答案)1.一个正比例函数的图象经过点(2,-1),则它的表达式为 ( )A. y =-2xB. y =2xC. y =-12xD. y =12x 2.若b >0,则一次函数y =-x +b 的图象大致是 ( )3.一次函数y =x +2的图象与y 轴的交点坐标为( )A. (0,2)B. (0,-2)C. (2,0)D. (-2,0)4. 将直线y =2x -3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A. y =2x -4B. y =2x +4C. y =2x +2D. y =2x -2 5.等腰三角形底角与顶角之间的函数关系是( )A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数 6.如图,直线y =kx +b (k ≠0)经过点A (-2,4),则不等式kx +b >4的解集为 ( )A. x >-2B. x <-2C. x >4D. x <47. 一次函数y =kx -1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A. (-5,3)B. (1,-3)C. (2,2)D. (5,-1)8.如图,直线l 是一次函数y =kx +b 的图象,如果点A (3,m )在直线l 上,则m 的值为 ( )A. -5B. 32C. 52 D. 79. 点A (x 1,y 1),B (x 2,y 2)在一次函数y =12x +b 的图象上,且x 1>x 2,则y 1与y 2的大小关系是_____________.10.已知点A 是直线y =x +1上一点,其横坐标为-12.若点B 与点A 关于y 轴对称,则点B 的坐标为_____________.11. 如图,一次函数l 1∶y =k 1x +b 1与l 2∶y =k 2x +b 2的图象交于P 点,则方程组⎩⎨⎧y =k 1x +b 1y =k 2x +b 2的解为_____________.12.如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (-2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图象相交于点C ,点C 的横坐标为1. (1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.13. 如图,在平面直角坐标系中,直线y =-43x +4与x 轴、y 轴分别交于A 、B 两点,点C 在第二象限,若BC =OC =OA ,则点C 的坐标为 ( )A. (-5,2)B. (-3,5)C. (-2,2)D. (-3,2)14. 如图,在平面直角坐标系中,点A (0,4)、B (3,0),连接AB ,将△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A ′处,折痕所在的直线交y 轴正半轴于点C ,则直线BC 的解析式为_______________.15.如图,在平面直角坐标系中,直线y=-x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点C.过点C且与y=2x平行的直线交y轴于点D.(1)求直线CD的解析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.16.问题:探究函数y=|x|-2的图象与性质.小华根据学习函数的经验,对函数y=|x|-2的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)在函数y=|x|-2中,自变量x可以是任意实数;(2)下表是y与x的几组对应值.①m=________;②若A(n,8),B(10,8)为该函数图象上不同的两点,则n=________;(3)如图,在平面直角坐标系xOy中,描出以上表中各对应值为坐标的点,并根据描出的点,画出该函数的图象;根据函数图象可得:①该函数的最小值为________;②已知直线y1=12x-12与函数y=|x|-2的图象交于C、D两点,当y1≥y时x的取值范围是_____________.17.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是__________(写出一个即可).18.当-2≤x≤2时,函数y=kx-k+1(k为常数且k<0)有最大值3,则该函数的解析式为_______________.参考答案:1-4 CCAA 5-8 BACC 9. y 1>y 2 10. (12,12) 11. ⎩⎨⎧x =-1y =-212. 解:(1)∵点C 的横坐标为1,且在y =3x 的图象上,∴C 点坐标为(1,3),将A 、C 点的坐标代入y =kx +b , 得⎩⎨⎧6=-2k +b 3=k +b ,解得⎩⎨⎧k =-1b =4; (2)由(1)知直线AC 的函数解析式为y =-x +4,当y =0时,解得x =4, ∴B 点坐标为(4,0),即OB =4, ∴S △BOC =12×4×3=6,∴S △COD =13×6=2,△COD 边OD 上的高为C 点的横坐标1, 则S △COD =12×1×|y D |=2,∴|y D |=4,∵点D 在y 轴负半轴上,∴y D =-4,故D 点的坐标为(0,-4). 13. A14. y =-12x +3215. 解:(1)∵直线y =-x +3过点A (5,m ),∴m =-5+3=-2, ∴点A 的坐标为(5,-2), 由平移可得点C 的坐标为C (3,2), 设直线CD 的解析式为y =kx +b (k ≠0), ∵直线CD 与直线y =2x 平行, ∴k =2,∵点C (3,2)在直线CD 上,∴2×3+b =2, 解得b =-4,∴直线CD 的解析式为y =2x -4; (2)∵直线y =-x +3与y 轴的交点为B , ∴点B 的坐标为(0,3),∵直线CD 的解析式为y =2x -4, 令y =0,则x =2,∴直线CD 与x 轴的交点为(2,0);设直线CD 平移到经过点B (0,3)时的解析式为y =2x +b 1, ∴3=2×0+b 1,解得b 1=3,∴此时直线CD 的解析式为y =2x +3, 令y =0,则x =-32,∴平移后的直线CD 与x 轴的交点为(-32,0),∴直线CD 沿EB 方向平移,平移到经过点B 的位置时,直线CD 在平移过程中与x 轴交点的横坐标的取值范围为-32≤x ≤2. 16. 解:(2)①1;②-10;(3)该函数的图象如解图;①-2;②-1≤x ≤3. 17. -1(答案不唯一) 18. y =-23x +53。
(东营专版)2019年中考数学复习第三章函数第二节一次函数的图象与性质练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((东营专版)2019年中考数学复习第三章函数第二节一次函数的图象与性质练习)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(东营专版)2019年中考数学复习第三章函数第二节一次函数的图象与性质练习的全部内容。
第二节一次函数的图象与性质姓名:________ 班级:________ 用时:______分钟1.(2017·垦利模拟)一次函数y=kx+b(k≠0)在平面直角坐标系内的图象如图所示,则k 和b的取值范围是( )A.k>0,b>0 B.k<0,b<0C.k<0,b>0 D.k>0,b<02.(2019·易错题)直线y=3x向下平移1个单位长度再向左平移2个单位长度,得到的直线是()A.y=3(x+2)+1 B.y=3(x-2)+1C.y=3(x+2)-1 D.y=3(x-2)-13.(2017·泰安中考)已知一次函数y=kx-m-2x的图象与y轴的负半轴相交,且函数值y 随自变量x的增大而减小,则下列结论正确的是( )A.k<2,m>0 B.k<2,m<0C.k>2,m>0 D.k<0,m〈04.(2018·南通中考)函数y=-x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限5.(2018·陕西中考)如图,在矩形AOBC中,A(-2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.-错误!B。
第二节一次函数姓名:________班级:________ 限时:______分钟1.(2018·曲靖二模)若函数y=kx的图象经过点A(-1,2)和点B(k,m),则m=______. 2.(2018·昭通昭阳区模拟)一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是____________.3.(2018·邵阳)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是__________.4.(2018·宜宾)已知点A是直线y=x+1上一点,其横坐标为-错误!未定义书签。
,若点B与点A关于y轴对称,则点B的坐标为________.5.(2018·济宁)在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P1(x1,y1),P2(x2,y2)两点,若x1<x2,则y1______y2.(填“>"“<"或“=”)6.(2018·长春)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3).若直线y=2x与线段AB有公共点,则n的值可以为_____________.(写出一个即可)7.(2018·深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )A.(2,2) ﻩﻩB.(2,3)C.(2,4)ﻩﻩﻩD.(2,5)8.(教材改编)若一次函数y=(k+3)x-k的图象经过第一、二、三象限,则k的取值范围是( )A.k〉-3ﻩB.0<k≤3ﻬC.-3<k<0 D.0<k<39.(2018·曲靖罗平三模)已知一次函数y=kx+b,y随着x的增大而增大,且kb<0,则在直角坐标系内它的大致图象是( )10.(2018·遵义)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是( )A.x>2B.x<2 C.x≥2ﻩﻩD.x≤211.(2018·枣庄)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.-5ﻩﻩB.错误!C.错误!未定义书签。
课时训练(十)一次函数的图象与性质(限时:40分钟)|夯实基础|1.对于正比例函数y=-2x,当自变量x的值增加1时,函数y的值增加()A.-2B.2C.-D.2.[2019·扬州]若点P在一次函数y=-x+4的图象上,则点P一定不在()A.第一象限B.第二象限C.第三象限D.第四象限3.关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.点(0,k)在l上B.l经过定点(-1,0)C.当k>0时,y随x的增大而增大D.l经过第一、二、三象限4.[2019·梧州]直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3B.y=3x-2C.y=3x+2D.y=3x-15.[2019·大庆]正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,则一次函数y=x+k的图象大致是()图K10-16.[2019·荆门]如果函数y=kx+b(k,b是常数)的图象不经过第二象限,那么k,b应满足的条件是 ()A.k≥0且b≤0B.k>0且b≤0C.k≥0且b<0D.k>0且b<07.[2019·苏州]若一次函数y=kx+b(k,b为常数,且k≠0)的图象过点A(0,-1),B(1,1),则不等式kx+b>1的解集为()A.x<0B.x>0C.x<1D.x>18.在同一平面直角坐标系中,直线y=4x+1与直线y=-x+b的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9.[2018·贵阳] 一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标为()A.(-5,3)B.(1,-3)C.(2,2)D.(5,-1)10.[2019·聊城]如图K10-2,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为 ()图K10-2A.(2,2)B.,C.,D.(3,3)11.[2019·天津]直线y=2x-1与x轴的交点坐标为.12.[2018·眉山] 已知点A(x1,y1)、B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为.13.[2018·邵阳] 如图K10-3所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是x= .图K10-314.[2019·鄂州]在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=,则点P(3,-3)到直线y=-x+的距离为.15.[2019·滨州]如图K10-4,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.图K10-416.[2017·杭州] 在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当-2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.17.[2017·连云港] 如图K10-5,在平面直角坐标系xOy中,过点A(-2,0)的直线交y轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x轴、y轴交于点D,C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.图K10-5|拓展提升|18.[2019·江西] 如图K10-6,在平面直角坐标系中,点A,B的坐标分别为-,0,,1,连接AB,以AB为边向上作等边三角形ABC.(1)求点C的坐标;(2)求线段BC所在直线的解析式.图K10-619.[2019·北京节选] 在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=-k分别交于点A,B,直线x=k与直线y=-k交于点C.(1)求直线l与y轴的交点坐标.(2)横、纵坐标都是整数的点叫做整点.记线段AB,BC,CA围成的区域(不含边界)为W.当k=2时,结合函数图象,求区域W内的整点个数.【参考答案】1.A2.C[解析]∵-1<0,4>0,∴一次函数y=-x+4的图象经过第一、二、四象限,即不经过第三象限.∵点P在一次函数y=-x+4的图象上,∴点P一定不在第三象限.故选C.3.D4.D[解析]直线y=3x+1向下平移2个单位,所得直线的解析式是:y=3x+1-2=3x-1.故选D.5.A[解析]因为正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,所以k<0,所以一次函数y=x+k的函数值y随着x增大而增大,图象与y轴交于负半轴,故选A.6.A[解析]y=kx+b(k,b是常数)的图象不经过第二象限,当k=0,b≤0时成立;当k>0,b≤0时成立.综上所述,k≥0,b≤0.故选A.7.D[解析]如图所示:不等式kx+b>1的解集为x>1.故选D.8.D[解析]因为直线y=4x+1只经过第一、二、三象限,所以其与直线y=-x+b的交点不可能在第四象限.故选D.9.C[解析]∵一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,∴k>0.由y=kx-1得k=.分别将选项中坐标代入该式,只有当(2,2)时k==>0.10.C[解析]由题可知:A(4,4),D(2,0),C(4,3),点D关于AO的对称点D'坐标为(0,2),设l D'C:y=kx+b,将D'(0,2),C(4,3)代入,可得y=x+2,解方程组得∴P,.故选C.11.,012.y1>y2[解析]∵一次函数图象经过第二、四象限,∴k<0,y随x的增大而减小,∴当x1<x2时,y1>y2.13.2[解析]考查一元一次方程与一次函数的关系,即关于x的方程ax+b=0的解就是一次函数y=ax+b的图象与x轴交点(2,0)的横坐标2.14.[解析]∵y=-x+,∴2x+3y-5=0,∴点P(3,-3)到直线y=-x+的距离为:=.故答案为.15.x>3[解析]当x=3时,x=×3=1,∴点A在一次函数y=x的图象上,且一次函数y=x的图象经过第一、三象限,∴当x>3时,一次函数y=x的图象在y=kx+b的图象上方,即kx+b<x.16.解:(1)由题意知y=kx+2,∵图象过点(1,0),∴0=k+2,解得k=-2,∴y=-2x+2.当x=-2时,y=6.当x=3时,y=-4.∵k=-2<0,∴函数值y随x的增大而减小,∴-4≤y<6.(2)根据题意知--解得-∴点P的坐标为(2,-2).17.解:(1)因为OB=4,且点B在y轴正半轴上, 所以点B的坐标为(0,4).设直线AB的函数关系式为y=kx+b,将点A(-2,0),B(0,4)的坐标分别代入,得-解得所以直线AB的函数关系式为y=2x+4.(2)设OB=m,因为△ABD的面积是5,所以AD·OB=5.所以(m+2)m=5,即m2+2m-10=0.解得m=-1+或-1-(舍去).因为∠BOD=90°,所以点B的运动路径长为×2π×(-1+)=-π.18.解:(1)如图所示,作BD⊥x轴于点D,∵点A,B的坐标分别为-,0,,1,∴AD=--=,BD=1,∴AB===2,tan∠BAD===, ∴∠BAD=30°.∵△ABC是等边三角形,∴∠BAC=60°,AC=AB=2,∴∠CAD=∠BAD+∠BAC=30°+60°=90°,∴点C的坐标为-,2.(2)设线段BC所在直线的解析式为y=kx+b,∵点C,B的坐标分别为-,2,,1,∴-解得-∴线段BC所在直线的解析式为y=-x+.19.解:(1)令x=0,则y=1,∴直线l与y轴交点坐标为(0,1).(2)当k=2时,直线l:y=2x+1,把x=2代入直线l,则y=5,∴A(2,5).把y=-2代入直线l得:-2=2x+1,∴x=-,∴B-,-2,C(2,-2),∴区域W内的整点有(0,-1),(0,0),(1,-1),(1,0),(1,1),(1,2)共6个点.。
——教学资料参考参考范本——数学一轮复习第三章函数及其图象第2节一次函数的图象与性质试题______年______月______日____________________部门课标呈现 指引方向1.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式。
2.会利用待定系数法确定一次函数的表达式。
3.能面出一次函数的图象,根据一次函数的图象和表达式()探索并理解和时,图象的变化情况。
b kx y +=0≠k 0>k 0<k 4.理解正比例函数。
5.体会一次函数与二元一次方程的关系。
考点梳理 夯实基础 1.一次函数的定义(1)一次函数的一般形式是( 。
正比例函数的一般形式是() 。
b kx y +=0≠k kx y =0≠k(2)正比例函数是特殊的一次函数,一次函数包含正比例函数。
2.一次函数的图象及性质(1)正比例函数()的图象是经过点(0,0)和(1,) 的一条直线;一次函数()的图象是经过(,)和(,)两点的一条直线。
kxy =0≠k k b kx y +=0≠k kb-00b (2) -次函数()的图象与性质b kx y +=0≠k3.两直线的位置关系(设两直线,):111b x k y +=222b x k y += (1)两直线平行: ();21k k =21b b ≠ (2)两直线垂直:。
121-=⋅k k 4.用待定系数法求一次函数解析式:(1)关键:确定一次函数()中的字母与的值。
b kx y +=0≠k k b (2)步骤:①设一次函数表达式;②根据已知条件将,的对应值代人表达式;x y ③解关于,的方程或方程组;k b ④确定表达式。
5.一次函数与一元一次方程,一元一次不等式和二元一次方程组的关系(1) -次函数与一元一次方程:一次函数()的图象与轴交点的横坐标是时一元一次方程的解,与轴交点的纵坐标是时一元一次方程的解。
b kx y +=0≠k x 0=y y 0=x (2) -次函数与一元一次不等式:()或()的解集即一次函数图象位于轴上方或下方时相应的取值范围,反之也成立。
第三章 函 数
第二节 一次函数的图象与性质
姓名:________ 班级:________ 用时:______分钟
1.若k≠0,b >0,则y =kx +b 的图象可能是( )
2.(2019·易错题)直线y =3x 向下平移1个单位长度再向左平移2个单位长度,得到的直线是( ) A .y =3(x +2)+1 B .y =3(x -2)+1 C .y =3(x +2)-1 D .y =3(x -2)-1
3.(2017·泰安中考)已知一次函数y =kx -m -2x 的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,则下列结论正确的是( )
A .k<2,m >0
B .k<2,m<0
C .k >2,m >0
D .k<0,m<0
4.(2018·南通中考)函数y =-x 的图象与函数y =x +1的图象的交点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
5.(2018·陕西中考)如图,在矩形AOBC 中,A(-2,0),B(0,1).若正比例函数y =kx 的图象经过点C ,则k 的值为( )
A .-1
2
B.12
C .-2
D .2
6.(2019·原创题)一次函数y =x +6的图象与坐标轴的交点坐标为____________________________.
7.(2018·眉山中考)已知点A(x 1,y 1),B(x 2,y 2)在直线y =kx +b 上,且直线经过第一、二、四象限,当x 1<x 2时,y 1与y 2的大小关系为______________.
8.(2018·邵阳中考)如图所示,一次函数y =ax +b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4).结合图象可知,关于x 的方程ax +b =0的解是__________.
9.(2019·改编题)一次函数y =kx +b 的图象与两坐标轴围成的三角形的面积是16,且过点(0,4),求此一次函
数的表达式.
10.(2018·娄底中考)将直线y =2x -3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )
A .y =2x -4
B .y =2x +4
C .y =2x +2
D .y =2x -2
11.(2019·创新题)已知一系列直线y =a k x +b(a k 均不相等且不为零,a k 同号,k 为大于或等于2的整数,b >0)分别与直线y =0相交于一系列点A k ,设A k 的横坐标为x k ,则对于式子a i -a j
x i -x j (1≤i≤k,1≤j≤k,i≠j),下列一
定正确的是( )
A .大于1
B .大于0
C .小于-1
D .小于0
12.(2018·连云港中考)如图,一次函数y =kx +b 的图象与x 轴、y 轴分别相交于A ,B 两点,⊙O 经过A ,B 两点,已知AB =2,则k
b
的值为________.
13.(2018·长春中考)如图,在平面直角坐标系中,点A ,B 的坐标分别为(1,3),(n ,3),若直线y =2x 与线段AB 有公共点,则n 的值可以为____________________.(写出一个即可)
14.(2018·重庆中考B 卷)如图,在平面直角坐标系中,直线l 1:y =1
2x 与直线l 2交点A 的横坐标为2,将直线
l 1沿y 轴向下平移4个单位长度,得到直线l 3,直线l 3与y 轴交于点B ,与直线l 2交于点C ,点C 的纵坐标为-2.直线l 2与y 轴交于点D. (1)求直线l 2的表达式; (2)求△BDC 的面积.
15.(2018·河北中考)如图,直角坐标系xOy 中,一次函数y =-1
2x +5的图象l 1分别与x ,y 轴交于A ,B 两点,
正比例函数的图象l 2与l 1交于点C(m ,4). (1)求m 的值及l 2的表达式; (2)求S △AOC -S △BOC 的值;
(3)一次函数y =kx +1的图象为l 3,且l 1,l 2,l 3不能围成三角形,直接写出k 的值.
16.(2019·改编题)一次函数y =kx +b 的图象是一条直线,而y =kx +b 经过恒等变形可化为直线的另一种表达形式:Ax +By +C =0(A ,B ,C 是常数,且A ,B 不同时为0).如图1,点P(m ,n)到直线l :Ax +By +C =0的距
离(d)计算公式是:d =|A·m+B·n+C|A 2+B 2
.如图2,已知直线y =-4
3x -4与x 轴交于点A ,与y 轴交于点B ,点M(3,2),连接MA ,MB ,求△MAB 的面积.
参考答案
【基础训练】
1.C 2.C 3.A 4.B 5.A
6.(0,6)和(-6,0) 7.y 1>y 2 8.x =2
9.解:设坐标原点为O ,一次函数图象与x 轴交于点B.
∵一次函数的图象y =kx +b 与两坐标轴围成的三角形的面积是16, ∴1
2OB×4=16,解得OB =8,∴B(8,0)或B(-8,0). ①当y =kx +b 的图象过点(0,4),(8,0)时,则
⎩⎪⎨⎪
⎧8k +b =0,b =4,解得⎩⎪
⎨
⎪⎧k =-1
2,b =4,
∴一次函数的表达式为y =-1
2
x +4.
②当y =kx +b 的图象过点(0,4),(-8,0)时,则
⎩⎪⎨⎪⎧-8k +b =0,
b =4,解得⎩⎪
⎨⎪⎧k =1
2,b =4,
∴一次函数的表达式为y =1
2
x +4.
综上所述,一次函数的表达式为y =12x +4或y =-1
2x +4.
【拔高训练】 10.A 11.B 12.-
2
2
13.2(答案不唯一) 14.解:(1)把x =2代入y =1
2x 得y =1,
∴点A 的坐标为(2,1).
∵将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3, ∴直线l 3的表达式为y =1
2x -4.
将y =-2代入y =1
2x -4得x =4,
∴点C 的坐标为(4,-2). 设直线l 2的表达式为y =kx +b. ∵直线l 2过A(2,1),C(4,-2),
∴⎩⎪⎨⎪⎧2k +b =1,4k +b =-2,解得⎩⎪
⎨
⎪⎧k =-3
2,b =4,
∴直线l 2的表达式为y =-3
2
x +4.
(2)∵直线l 2的表达式为y =-3
2x +4,
∴x=0时,y =4,∴D(0,4). ∵l 3的表达式为y =1
2
x -4,
∴x=0时,y =-4,∴B(0,-4),∴BD=8, ∴S △BDC =1
2
×8×4=16.
15.解:(1)把C(m ,4)代入一次函数y =-1
2x +5可得
4=-1
2
m +5,解得m =2,∴C(2,4).
设l 2的表达式为y =ax ,则4=2a ,解得a =2, ∴l 2的表达式为y =2x.
(2)如图,过C 作CD⊥AO 于点D ,CE⊥BO 于点E ,则CD =4,CE =2. ∵y=-1
2x +5,令x =0,则y =5;
令y =0,则x =10,
∴A(10,0),B(0,5),∴AO=10,BO =5, ∴S △AOC -S △BOC =12×10×4-1
2
×5×2=20-5=15.
(3)k 的值为32或2或-1
2.
【培优训练】
16.解:由题意得A(-3,0),B(0,-4),则OA =3,OB =4, 由勾股定理得AB =5.
如图,过点M 作ME⊥AB 于点E ,则ME =d.
y =-4
3x -4可化为4x +3y +12=0,
由上述距离公式得
d =|4×3+3×2+12|32+42
=305=6, 即ME =6,∴S △MAB =1
2×5×6=15.。