数学建模线性方程组构建房价预测模型
- 格式:doc
- 大小:783.00 KB
- 文档页数:24
2010年—2011年学期数学模型期末论文组队成员:指导教师:评语成绩威海房价预测【摘要】 (1)【关键词】 (1)一、问题重述和分析 (1)二、模型假设与符号说明 (1)三、模型的建立和房价和各因素之间的关系分析 (2)1.模型分析 (2)2.模型求解 (6)四、模型结果的检验与分析 (7)五、利用已建立的模型对威海市房价的各个变量的预测 (8)1.影响威海市房价的各个变量的的预测 (8)2.利用上面所建模型对威海房价进行预测求解,带入各变量2012—2013年的预测数据得 (10)3.房价分析与建议 (10)六、模型的优缺点分析与改进方向 (10)参考文献 (11)附录一 (11)附录二 (11)附录三 (13)1.求威海人均可支配收入与房价的拟合关系 (13)2.用回归分析法求人均可支配与房价的线性关系 (13)3.用回归分析法求人均可支配与房价的线性关系 (14)4.分别求人均GDP,人均储蓄存款,人均可支配收入与年份的拟合方程,并画关系图 (14)5.用拟合法观察房价与人均GDP,人均储蓄存款,人均可支配收入的总体上的关系 (15)6.求房价与三变量线性拟合的系数 (15)7.求2004—2011年模拟的房价及与实际的误差 (15)8.预测2012到2013年各变量及房价模拟数据 (16)【摘要】本文以威海从2004年到2010年各年平均房屋销售价格作为分析对象,根据各个因素与价格之间的关系确立了模型,利用一次线性拟合和多次拟合进行改进,并对各因素与价格之间的影响作出了分析,从而利用所建模型对未来几年威海房价作出预测。
【关键词】房价影响因素 线性模拟 多项式模拟 房价预测 误差分析比较一、问题重述和分析随着中国经济的飞速发展,中国市场经济体制的不断完善,人民生活水平的提高,各种商品的价格不断升高。
由于人口高峰期的到来,人们对房屋的不断需求,使得商品房的价格不断提高。
尤其是对于威海这个均价上涨一千元用时最短的城市,威海因为卫生城市屡屡上榜,三线滨海,空行海航的便利,西海岸的重点开发,与烟台合拢的交通建设,威海对国内外的吸引力,均将使得威海的房地产发生质变,预期均价突破新的高峰点。
合肥市二手房价多元线性回归预测模型合肥作为中国的四大国家中心城市之一,其房地产市场一直备受关注。
在房地产市场中,二手房的价格是一个关键的指标,对于购房者和投资者来说,了解二手房价的走势和预测未来的价格变化至关重要。
建立一种可以预测合肥市二手房价的多元线性回归模型是非常有意义的。
本文将介绍关于合肥市二手房价多元线性回归预测模型的制作过程和应用。
一、收集数据要建立多元线性回归模型,我们需要收集一系列的数据。
我们需要收集的数据包括合肥市不同区域的二手房价格、房屋面积、户型结构、楼层情况、装修情况、所在小区的配套设施等多个因素。
这些因素都可能对二手房价产生影响,因此需要收集充分的数据来进行分析和建模。
在收集数据的过程中,需要特别注意数据的准确性和完整性。
由于二手房市场的复杂性,一份完整且准确的数据对于建立可靠的预测模型至关重要。
二、数据预处理收集完数据之后,接下来需要对数据进行预处理。
数据预处理是数据分析的第一步,其目的是清洗数据、填补缺失值、处理异常值、标准化数据等。
对于二手房价预测模型来说,数据预处理尤为重要。
由于二手房市场的不确定性和复杂性,数据中常常存在缺失值和异常值,需要对其进行合理处理,以保证建立的模型能够反映真实的市场情况。
三、建立多元线性回归模型在完成数据预处理之后,接下来可以开始建立多元线性回归模型了。
多元线性回归模型是一种用于预测因变量与多个自变量之间关系的统计模型。
在合肥市二手房价预测中,可以将二手房价格视为因变量,房屋面积、户型结构、楼层情况、装修情况、所在小区的配套设施等多个因素视为自变量,通过这些自变量来预测二手房价格。
建立多元线性回归模型首先需要确定自变量和因变量之间的关系。
可以通过计算各自变量之间的相关系数来初步判断自变量与因变量之间的关系。
然后,可以利用最小二乘法来估计回归系数,得到多元线性回归方程。
在建立多元线性回归模型时,还需要考虑自变量之间是否存在共线性。
如果存在共线性,会影响到模型的解释性和预测准确性。
一、问题重述1.1背景分析自1998年我国实行住房改革以来,房地产行业已经逐渐成长为拉动中国经济增长的龙头产业。
近几年在国家积极的财政政策刺激下,我国房地产市场处于不断发展阶段。
然而,与美国等发达国家住房市场进入成熟期不同,我国正处在城市化和工业化进程加速阶段,住房水平低和需求比较旺盛,这是我国住房市场快速发展的重要基础。
中国房地产一方面在快速发展之时,在总体上对经济社会的发展确实起到了促进作用;另一方面由于不规范的房的销售价格行为、地价的上升造成放的开发成本提高等因素造成房价不断上涨,严重超出了普通居民的购买能力,给其造成了巨大的购房压力。
1.2问题重述根据近几年中国沈阳房地产市场现状,解决以下四个问题:(1)结合对房地产的了解,收集近几年沈阳房地产的价格走势,预测未来沈阳房价的状况。
(2)结合对上海市近几年来房价的了解,分析并建立合理的数学模型,得出“国五条”具体怎样影响房价。
二、问题分析2.1对于问题一的分析问题一要求根据近几年上海房地产的价格走势,来预测未来三年上海房价的情况。
首先,通过在《沈阳统计年鉴》找到上海近几年的房价, 为得到较为准确的预测,我们选取了最近十年上海的房价,因为长时间的数据能反映更多更合理的问题,不会太过片面对结果造成较大偏差。
历时十年,期间政府的宏观调控或制定的稳定物价等等措施必然会对房价造成影响,如果考虑政策措施和其他因素的影响,问题将变得非常复杂。
反而,我们可以将这些因素看作市场经济的调控,房价因受到这些因素影响而产生变化。
那么,实际呈现出来的房价变化就应该是有效的房价变化。
我们在模型的假设部分阐述了不考虑政府的政策措施对近几年房价的影响。
综合了以上分析,我们将搜集到的数据整理制成表格,绘制出年份-房价变化折线图,可以发现随着年份的增长,上海房价也在不断增长,且在一条直线周围上下波动,因此我们建立一元线性回归模型,来寻求上海房价与年份的线性关系。
然后根据最小二乘法来确定其中参数(一次项系数和常数项)的值,最终确定此回归方程。
住房的合理定价问题摘要房价的合理性已成为当今社会的热门话题。
本文依照题中所给出的数据,对3个问题分别建立模型并求解。
针对问题1,首先利用Excel建立图表,绘制出历年房价走势图。
然后,对原始数据进行拟合,得出指数型及多项式型拟合方程,并在原图上绘制出趋势线。
同时,求出确定性系数R2,依据R2是否接近于1判断拟合程度好坏,即检验拟合方程的有效性。
计算得出的指数型及二阶多项式型拟合方程:x,(i) =678.8le0.1281i、x2(i) =12.59i2 50.274i 716.38,由此预测出2010 年房价分别为4080元/平米、3888元/平米。
为了增加预测的可靠性,再结合二次指数平滑法对2010年房价进行预测。
通过比较实际值与预测值的平均偏差值ME的大小,选择出合适的o预测出2010年的房价为3800元/平米。
最后,建立三元线性回归模型,将上述三种方法对历年房价的预测值分别作为自变量x1、x2、X3的原始数据,以实际房价P(i)作为因变量,用Matlab软件拟合出多元线性方程:P f1(i) =—0.0202 —0.1389 刘⑴ 1.1319 X2(i) 0.0084 X3(i)。
代入相关数据,求出历年的最终房价预测值为3866元/平米。
针对问题2,通过Excel绘制出历年平均房价与人均GDP的关系走势图,且自动生成对原始数据进行拟合后的指数型和自变量为2阶、3阶、4阶的多项式型拟合方程及各自的确定性系数R2o R2的值分别为:0.8673; 0.9929 ; 0.9982; 0.9986。
由此判断,因2阶多项式型拟合方程的R2不仅十分接近于1,且相对于3阶、4阶的多项式方程更为简便,故选择:A 2P(i) =(_7E _06) [G(i)] 0.3236 G(i) -177.06 为平均房价与人均GDP 的关系方程。
最后,在联系当下实际状况的基础上对建立的模型进行研究,分析出平均房价与人均GDP的关系。
西安邮电学院第九届大学生数学建模竞赛参赛作品参赛队编号: 016赛题类型代码: A题2 房价问题摘 要随着我国房地产市场的不断升温,居民买房难愈来愈严重。
定一个合适的房价既照顾到居民的需求也满足方差开发商的盈利需要是十分必要的,要达到这些目的都要用到数学模型来进行量化。
在本文中,我们经研究解决了城市房价模型,找出了影响房价的主要因素,建立预测下一阶段的房产均价的一个模型,同时也对政策对调控房价所起的作用作了详细的分析说明。
在解决房价模型问题时,我们用了多元线性回规模型和蛛网模型同时对相关变量进行分析和处理,最终找出了影响房价的主要因素为生产成本和供需关系。
并对房价的形成、演化机理和房地产投机进行了深入细致的分析。
模型一,我们通过比较西安房价近11年来的变化及城镇居民收入变化情况,找到买房难的根结。
模型二,在房价预测方面,我们选用多元线性回归,蛛网模型同时对相关变量进行分析和处理,最终找出影响房价的主要因素为生产成本和供需关系,求出房价预测的计算表达式。
模型三,我们取定一个时间段内某几个房价新政,结合新政出台时间前后某地房价的变化情况分析了房价新政对房价的调控作用。
我们选取房价新政的标准是根据政策内容对相关经济指标有直接作用效果。
最终我们发现,新政出台后,虽然房价依然是居高不下,但房价上涨速率得到了一定的控制,变化渐缓。
关键字:楼市 预测 蛛网模型 线性回归一、问题重述住房问题关系国计民生,既是经济问题,更是影响社会稳定的重要民生问题。
2008年受国际金融危机的影响,部分购房需求受到抑制,2009年在国家税收、土地等调控政策作用下,一度受到抑制的需求得到释放,适度宽松的货币政策使信贷规模加大,为房地产开发和商品房购买提供了比较充裕的资金,房地产市场供求大增,带动了整体回升。
但有的城市房价过高,上涨过快,加大了居民通过市场解决住房问题的难度,另一方面,部分投机者也通过各种融资渠道买入房屋囤积,期望获得高额利润,也是导致房价居高不下的原因之一。
一 问题重述和分析房地产价格问题一直是引起广泛争论的热点问题。
关于目前中国的房地产价格,老百姓普遍认为太贵、天价,所以,当地产商华远集团总裁任志强在博鳌论坛上抛出“30年间,和工资收入相比,房子等于没有涨价”的所谓“房价没涨论”后,立即激起舆论围攻。
有人号召全国的老百姓联合起来,不买任志强们的房子,让房地产商们的房子闲着、烂着、空置着,看他们能挺到什么时候?看他们还忽悠房价上涨不?高房价厌恶者反对一切看涨。
中国社科院日前日发布2009房地产蓝皮书认为,今年上半年房价总体下行,下半年市场有回暖可能。
“回暖”观点一出,毫无疑问地遭到网友一致炮轰,认为其“言过其实”。
只有倾听更多理性的声音,才能帮助百姓理性地理解房价、最终准确地判断房价的走势。
下文中,我们收集全国房地产的相关数据和长春市房地产的相关数据,分析确定影响房屋销售价格的主要因素,并建立全国房地产价格预测模型。
利用本模型对长春市房价做了预测。
二 模型假设与符号说明影响房价的因素很多,如人口数量、建房成本、GDP 、储蓄存款、人均可支配收入、消费者需求因素、房地产的住宅总投资、房地产每年的竣工面积、银行利率、供需关系等因素有关。
1) 假设房价与建房成本、人均GDP 、人均储蓄存款、人均可支配收入呈线性关系;2) 房屋建造成本用全国每年住宅的投资额与房地产竣工面积或者房地产总投资及每年开工面积来衡量;3) 全国经济发展用人均GDP 来衡量;4) 房价购买能力用人均储蓄存款、人均可支配收入来表示5) 消费者心理因素如对房价的期望忽略;消费者对房屋无偏好,如无学校、公园等; 6) 假设银行利率每年保持稳定,房屋供需处于平衡状态;7) 忽略一些配套设施对建房成本的影响,忽略人为的炒作和政府调控。
本文遇到的符号说明符号 符号表示的意义符号 符号表示的意义1ix第一个自变量,表示第i 年的人均可支配收入(元) 1iw ,. 自变量1ix 的系数参数2i x 第二个影响房价的自变量,表示第i 年的人均GDP (元).2iw自变量2i x,,的系数参数3i x 第三个影响房价的自变量,表示第i 年的房屋造价(元/平)3i w自变量3i x 的系数参数4i x第四个影响房价的自变量,表示第i 年的人均储蓄额(元)4iw自变量4i x的系数参数1x为一年的人均可支配收入(元)。
关于房价问题的数学模型一.问题简述房价问题事关民生,对国家经济发展和社会稳定有重大影响,一直是各国政府大力关注的问题。
随着房价的不断飙升,房价问题已经成为全民关注的焦点议题之一。
现在就以下几个方面的问题进行讨论:1通过对影响房价因素的分析并建立房价的数学模型,对房价的合理性进行定量分析。
2根据分析结果,预测房价的未来走势。
3通过对模型的求解,进一步探讨使得房价合理的具体措施。
二模型假设引起房地产市场波动的因素有很多,居民收入、供求比例、房贷利率、容积率、建设成本和人口结构及变化趋势等众多因素。
我们从中提取重要因素对次要因素作出如下假设:1政府宏观调控政策,仅考虑税收政策、货币政策、土地政策的影响。
忽略其他政策的影响。
2忽略消费成本如交通费用、物业费用、停车费用等对住房价格的影响。
3城市消费状况用人均收入来代替。
4令房价为销售均价,忽略地域差异。
5忽略房屋质量对房价的影响。
三、符号说明四、问题分析与基本思路1.1房地产价格上涨的影响因素(1)居民收入与房地产价格居民收入的增加是影响房价上涨的首要原因。
改革开放以来,我国居民收入大幅度增加,恩格尔系数——食品占总支出的比重明显下降,消费结构不断升级,投资能力越来越强。
随着居民收入的大幅度上升,居民的消费观念在一定程度上从储蓄转化为投资,而购置房产则是居民较理性的投资选择,因而对房屋的需求显著增加。
尤其在在住房制度改革的推动下,住房的有效需求得以更大程度地释放,家庭结构的变化和城镇化的推进又扩大了住房需求。
这是房价保持上涨态势最显而易见的原因。
根据市场导向原则,需求的增加必然会导致投资的增加,投资力度的加大必然是在给房地产行业升温,房价被进一步拉高。
当房价超出与居住需求相符的水平时,投机就会出现,进而导致空置率偏高。
这样,房价就在消费需求、投资需求、投机需求的共同推动下不断攀升,早买房、买大房的住房消费行为成为居民应对房价快速上涨的选择。
另外,随着居民收入的增加,人均可支配收入也会相应增加,就会在一定程度上刺激消费。
2010—2011学年第二学期数学建模海市房价预测模型摘要威海地处山东半岛东北角,地理位置特殊。
作为一个沿海城市,威海市积极响应国家政策,经济发展水平不断提高,威海作为最适宜人类居住的城市吸引了一大批人们来这里定居。
同时威海与韩国、日本交流频繁,留学生、外国友人也在这座城市里留下了足迹。
作为一个发展中的城市,房价是影响人们在此定居的一个很重要的因素。
加之全国房价一直在高速上升,在这几年过程,一直有关于房价拐点的争论。
是否楼市的拐点真的到来?我们决定建立数学模型,分析一下威海市的房价发展趋势,给相关机构提供参考。
我们都知道影响房价的因素众多,大的方面有,国家的宏观经济环境,国家的宏观调控,地方政府对宏观调控的执行力,人民的住房需求,热钱的投机。
而宏观调控的手段众多,如廉租房建设,经济适用房建设,提高税收,打击投机,企业房贷资金紧缩,提高准备金率,不批准房地产企业上市圈钱等等。
影响房价的因素不同地区各不相同,影响威海市房价的主要因素是什么?是怎样影响房价的?我们希望通过这次建模找到答案。
关键字:线性模型居民人均年收入建房成本房价一、问题重述全国房价一直在高速上升,威海市也是如此,在这几年过程,一直有关于房价拐点的争论。
是否楼市的拐点真的到来?需要建立模型进行推测。
影响房价的因素众多,大的方面有,国家的宏观经济环境,国家的宏观调控,地方政府对宏观调控的执行力,人民的住房需求,热钱的投机。
而宏观调控的手段众多,如廉租房建设,经济适用房建设,提高税收,打击投机,企业房贷资金紧缩,提高准备金率,不批准房地产企业上市圈钱等等。
除去宏观调控政策,还有城市的自身因素,比如建材价格水平,城市发展水平,GDP总量等等,都会对房价产生影响。
找出影响房价的主要因素对于建立房价短期预测模型尤为重要。
二、问题分析数据收集:影响建模的因素众多,需要忽略次要因素,提取出主要因素建立模型,经过数据分析,我们得出影响房价水平的三个因素,一个是人均存储,一个是GDP水平,,最后一个是建房成本。
基于线性回归的房价预测模型构建及应用研究随着城市化进程的不断加快,房地产的发展已经成为当今经济发展的重要支柱。
因此,房价的预测模型也成为了一项非常重要的研究课题。
在这方面,基于线性回归的房价预测模型已被广泛应用,并取得了明显的效果。
本文将介绍如何构建基于线性回归的房价预测模型以及其应用研究。
一、线性回归模型简介线性回归模型是一种常用的统计学习方法,用于分析自变量与因变量之间的关系。
它通过建立一个关于自变量和因变量的线性方程,来对未知数据进行预测。
线性回归模型的基本形式为:y = β₀ + β₁x₁+ β₂x₂ + ⋯ + βₖxₖ其中,y 表示因变量,x₁~xₖ 表示自变量,β₀~βₖ 表示各自变量的系数。
线性回归模型假设自变量与因变量之间的关系是线性的,即自变量的每次单位变化都相应地以β₁, β₂, ⋯, βₖ 的速度影响因变量 y 的变化。
二、构建线性回归的房价预测模型在进行房价预测模型的构建之前,首先需要确定一组自变量,这些自变量通常包括房屋面积、位置、楼层数、周围环境等因素。
这些因素中,房屋面积往往是最为重要的因素,因为它直接影响着房屋的价值。
因此,在这里,我们以房屋面积作为自变量,以房价作为因变量,来构建一组简单的房价预测模型。
首先,我们需要先确定一组数据集,用于作为模型的训练数据。
这些数据包括若干组已知的房屋面积和对应的房价值。
假设我们已经确定了一组数据集,现在我们就可以使用Scikit-Learn库来进行线性回归模型的训练了。
在Scikit-Learn库中,线性回归模型的训练可以通过以下步骤完成:1. 导入必要的库```from sklearn.linear_model import LinearRegressionimport numpy as np```2. 准备训练数据```X_train = np.array([[1], [2], [3], [4], [5]]) #房屋面积数据集Y_train = np.array([[100], [200], [300], [400], [500]]) #房价数据集```3. 构建线性回归模型并进行训练```model = LinearRegression()model.fit(X_train, Y_train)```4. 输出模型参数```print("系数:", model.coef_) #输出自变量系数print("截距:", model.intercept_) #输出截距```通过以上步骤,我们就可以得到一个基于线性回归的房价预测模型。
数学建模线性方程组构建房价预测模型作者:龚鹏(1212408014)向鹏(1212408060)张旭栋(1212408077)目录题目............................................................首页摘要............................................................首页关键词.........................................................首页问题的重述与分析 (1)模型假设与符号说明 (1)模型建立与求解 (2)模型结果的检验与分析 (6)利用已建立的模型对长春市房价讨论 (7)模型的优缺点分析与改进方向 (11)参考文献 (11)附录一:长春市房地产价格报告 (12)附录二:全国房产数据 (14)附录三:长春市房地产数据 (16)附录四:mathematics解线性方程组算法 (18)附录五:对长春市房价预测 (21)线性方程组构建房价预测模型龚鹏向鹏张旭栋(东北师范大学数学与统计学院2008级,学号:1212408014 12124080601212408077)摘要本文说明了影响房价的众多因素,并利用假设对其中的一些因素进行了忽略处理,从中分析了影响房价的主要因素,利用最小二乘法对数据进行了拟合,阐释了房价与建房成本、人均GDP、人均储蓄存款、人均可支配收入等四个因素之间的相关性,从而建立多元线性方程的模型。
利用已知年份的数据,构建了线性方程组。
利用mathematics 软件对模型进行求解并对所求得的结果进行了合理的取舍,再取平均,得出模型的解。
之后,利用已知数据对模型进行了检测。
将检测结果与实际值对比,得出差值,取平均,即对所建模型加一常数,使模型更精确。
对结果再次检验分析。
对长春市关于房价的各个因素,我们利用最小二乘法对数据进行了1次或2次多项式逼近处理。
从而利用多项式对未知的数据进行预测。
最后利用所建立的房价预测模型,将有关房价数据的预测值带入所建模型中,对长春市房价进行了预测。
预测结果与多项式逼近结果进行了对比,并给予合理的解释,给消费者提供了合理的购房价格区间。
关键词:房价、建房成本、人均GDP、人均储蓄存款、人均可支配收入、曲线拟合、最小二乘法、mathematics一问题重述和分析房地产价格问题一直是引起广泛争论的热点问题。
关于目前中国的房地产价格,老百姓普遍认为太贵、天价,所以,当地产商华远集团总裁任志强在博鳌论坛上抛出“30年间,和工资收入相比,房子等于没有涨价”的所谓“房价没涨论”后,立即激起舆论围攻。
有人号召全国的老百姓联合起来,不买任志强们的房子,让房地产商们的房子闲着、烂着、空置着,看他们能挺到什么时候?看他们还忽悠房价上涨不?高房价厌恶者反对一切看涨。
中国社科院日前日发布2009房地产蓝皮书认为,今年上半年房价总体下行,下半年市场有回暖可能。
“回暖”观点一出,毫无疑问地遭到网友一致炮轰,认为其“言过其实”。
只有倾听更多理性的声音,才能帮助百姓理性地理解房价、最终准确地判断房价的走势。
下文中,我们收集全国房地产的相关数据和长春市房地产的相关数据,分析确定影响房屋销售价格的主要因素,并建立全国房地产价格预测模型。
利用本模型对长春市房价做了预测。
二模型假设与符号说明影响房价的因素很多,如人口数量、建房成本、GDP、储蓄存款、人均可支配收入、消费者需求因素、房地产的住宅总投资、房地产每年的竣工面积、银行利率、供需关系等因素有关。
1)假设房价与建房成本、人均GDP、人均储蓄存款、人均可支配收入呈线性关系;2)房屋建造成本用全国每年住宅的投资额与房地产竣工面积或者房地产总投资及每年开工面积来衡量;3)全国经济发展用人均GDP来衡量;4)房价购买能力用人均储蓄存款、人均可支配收入来表示5)消费者心理因素如对房价的期望忽略;消费者对房屋无偏好,如无学校、公园等;6)假设银行利率每年保持稳定,房屋供需处于平衡状态;7)忽略一些配套设施对建房成本的影响,忽略人为的炒作和政府调控。
1x为一年的人均可支配收入(元)。
1w以上求得的所有1i w的平均值。
2x为一年的人均GDP (元)2w 以上求得的所有2i w的平均值。
3x为一年的房屋造价(元/平)3w以上求得的所有3iw 的平均值。
4x 为一年的人均储蓄额(元)4w以上求得的所有4i w的平均值y模型中的房价值i y因变量,表示第i 年的均衡房价三 模型的建立及求解1. 模型建立由于房价与建房成本、人均GDP 、人均储蓄存款、人均可支配收入呈线性关系,而它们的线性的组合仍为线性,故我们选用多元线性方程来建立此模型。
用最小二乘法对房价和影响房价的各个因素进行线性拟合,得到结果如下:1) 房价(y )与人均可支配的收入(x )之间的关系回归方程: y=0.217768930943126x+560.281739835455 相关系数: r=0.985976555753154 正相关很强. 相关指数: R^2=0.972149768494852 回归效果很好. 残差平方和: 106958.4444469952) 房价(y )与建房成本(x )之间的关系回归方程: y=1.18755704262472x+196.667792349022相关系数: r=0.975832723618541 正相关很强.相关指数: R^2=0.952249504484779 回归效果很好.残差平方和: 183385.1442469013)房价(y)与人均GDP(x)之间的关系回归方程: y=0.149389268710064x+768.705072529862 相关系数: r=0.993657979366149 正相关很强.相关指数: R^2=0.987356179958018 回归效果很好.残差平方和: 48558.42305325574) 房价(y)与人均人均储蓄存款(x)之间的关系回归方程: y=0.182737648189139x+978.33595734182相关系数: r=0.974188714322151 正相关很强.相关指数: R^2=0.949043651112645 回归效果很好.残差平方和: 195697.181572166根据以上结果,我们建立以下模型,具体表达式为:y = 1w *1x +2w *2x +3w *3x +4w *4x利用各年数据, 通过解线性方程组,确定自变量的系数,即求1w 、2w 、3w 、4w ,的值。
2.模型求解年份 1ix2ix3ix4ixiy1997 5160.3 6388.1 1235.0 3743.5 1790 1998 5425.1 6765.1 1473.6 4280.8 1854 1999 5888.8 7188.0 1495.7 4739.9 1857 2000 6279.9 7828.0 1607.5 5075.8 1948 2001 6907.1 8591.8 1544.4 5779.5 2017 2002 7702.8 9367.8 1607.4 6765.9 2092 2003 8472.2 10510.4 1634.4 8018.2 2197 2004 9500.5 12299.5 2081.0 9197.4 2608 2005 10493.6 14002.0 2033.2 10787.3 2937 2006 11769.5 16042.2 2442.8 12292.9 3119 200713785.818885.32970.913058.03645注:以上数据来自中国统计年鉴,国家统计局和中国人民银行网站全国平均房价与各量的关系如下图所示将以上数据分组,带入如下公式iy =1iw *1ix +2iw *2ix +3iw *3ix +4iw *4i xi 的取值年份 1iw2i w3iw4i w1997——2000 0.793836 -0.205155 1.20755 -0.664405 1998——2001 3.85287 0.607445 -3.25961 -4.28758 1999——2002 0.898125 -0.134543 0.0898133 -0.548348 2000——2003 0.0436314 0.255788 0.378429 -0.184529 2001——2004 0.0971718 0.277489 0.201285 -0.233439 2002——2005 -0.0130777 0.658785 -0.365051 -0.501317 2003——2006 0.182179 4.33713 -4.49986 -4.68644 2004——20070.703143-0.180224-0.633811-0.0583408从上表中分析数据,1i w 、2i w 、3iw 、和i y呈正相关。
4iw 和i y的值呈负相关。
对1i w的处理,去掉其中偏差最大的数据和最小的那个值;对2i w 的处理,舍弃偏差最大的数值,之后取平均;对3iw 的处理,舍弃负值和偏差较大的值;对4i w的处理,舍弃偏差较大的值和绝对值最小的值。
从而解得:1w = 0.4530142w = 0.182798 3w = 0.289857 4w = -0.426408于是,房价与建房成本、人均GDP 、人均储蓄存款、人均可支配收入的关系为:y= (0.453014)*1x + (0.182798)*2x+ (0.289857)*3x- (0.426408)*4x3.模型的修正对偏差处理,去掉最大的和最小的取平均值,得常数b = 588.55 经过修正后的模型结果为:y= (0.453014)*1x + (0.182798)*2x+ (0.289857)*3x- (0.426408)*4x+ 588.55四 模型结果的检验与分析1)模型结果的检验误差0.0620.0790.0280.0210.0380.0490.0120.0140.0760.0070.2072)模型结果的分析利用修正后的模型求解,比较接近真实值。
产生误差的原因是房价还受其他很多因素影响,如银行利率、供需关系、人的心理、城市化、国家对房价的调控等,在建模过程中,忽略了这些因素影响。
此外,数据波动不一定全部符合线性模型。
五利用已建立的模型对长春市房价讨论1.影响长春市房价的各个变量的预测1)对长春市人均可支配收入的预测对长春市人均可支配收入的预测,采用最小二乘法对房价进行2次多项式逼近,进而预测以后各年房价。