数学八年级上浙教版第一章平行线单元测试3.doc
- 格式:doc
- 大小:264.06 KB
- 文档页数:6
浙教版八年级数学上第一章试题班级:两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是6、如图,已知 AB// ED,则/ B+Z C+Z D 的度数是7 .下列说法错误的是8. 平行线之间的距离是指A 从一条直线上一点到另一条直线的垂线段;A 、同位角B 、内错角C 、对顶角D 、同旁内角Z 1=400,Z 2的度数为0 0 2. 如图,直线a//b ,A 140 0B 50C 40D 1003. 如图,Z 1=600, Z 2=600, Z 3=65°。
则Z 4 的度数为 A 60 0 B 65 0C 120D 115B 654、如图,若AB// DC 那么A 、Z 1 = Z 3B 、Z 2=Z 4 C、/ B=Z D D 、/ B=Z35、已知/ 1和/ 2是同旁内角,/ 仁40 A 、160° B 、140° C 、40°,/ 2等于 ----- D、无法确定A 、 180°B 、 270°C 、 360°D 、 450°A 同旁内角互补,两直线平行 C 同位角相等B两直线平行,内错角相等 对顶角相等3分,共36分) (2)、如图,一、选择题:(每题 1、第O(B从一条直线上一点到另一条直线的垂线段长度;C从一条直线上一点到另一条直线的垂线的长度;D;从一条直线上一点到另一条直线上的一点间线段的长度9、一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50 °,那么第二次向右拐------------------------- ( )A、40° B 、50° C 、130° D 、150°10. 如图,直线a、b被直线c所截,现给出下列四个条件:(1)/仁/5; (2)/仁?/ 7;(3)/ 2+Z 3=180°; (4)/ 4=/乙其中能判定 a // b的条件的序号是——(A. (1)、( 2) B . (1)、(3)C. (1)、(4) D . (3)、(4)11.如图,有一条直的宽纸带,按图折叠,A 500B 60C750 D 8512 .若/ A和/ B的两边分别平行,且/ A比/ B的2倍少30°,则/ B的度数为( )A . 30°B . 70 °C.30° 或70°D.100°二、填空题:(每空格3分,共24分)13.如图,图中的同位角有对;14、如图,AD//BC,/ 1 = / 2,/ D=12C°,那么/ CAD= °;15. ____________________________________________ 如图,已知/ 1 = / 2,/ D=78°,则/ BCD= _________________________________________ .16 .如图,a//b,/ 1= (3x+20) :/ 2= ( 2x+10) 0,那么/ 3= 017、如图,一个合格的弯形管道,经过两次拐弯后保持平行(即AB// DQ. ?如果/ C=60°, 那么/ B的度数是.18•如图,要为一段高为5米,水平长为13米的楼梯铺上红地毯,则红地毯至少要米。
《第1章三角形的初步认识》一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.132.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有个.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是.(只填写一个条件)13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 度.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= ,∠C= .15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= .16.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为.17.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于度.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为cm,∠FAN= .三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE的面积会等于10?26.(14分)课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= ;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)《第1章三角形的初步认识》参考答案与试题解析一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.13【考点】三角形三边关系.菁优网版权所有【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于5,而小于13.故选C.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.2.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°【考点】平行线的性质;三角形的外角性质.菁优网版权所有【专题】计算题.【分析】首先根据平行线的性质得到∠2的同位角∠4的度数,再根据三角形的外角的性质进行求解.【解答】解:根据平行线的性质,得∠4=∠2=50°.∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:C.【点评】本题应用的知识点为:三角形的外角等于与它不相邻的两个内角的和.两直线平行,同位角相等.3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°【考点】全等三角形的性质.菁优网版权所有【分析】根据全等三角形性质求出∠ACB=∠A′CB′,都减去∠A′CB即可.【解答】解:∵△ACB≌A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,∴∠ACA′=∠BCB′,∵∠BCB′=30°,∴∠ACA′=30°,故选B.【点评】本题考查了全等三角形性质的应用,注意:全等三角形的对应角相等.4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种【考点】三角形三边关系.菁优网版权所有【专题】常规题型.【分析】要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.【点评】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具【考点】作图—尺规作图的定义.菁优网版权所有【分析】根据尺规作图的定义作答.【解答】解:根据尺规作图的定义可知:尺规作图是指用没有刻度的直尺和圆规作图.故选C.【点评】尺规作图是指用没有刻度的直尺和圆规作图.6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°【考点】三角形内角和定理;角平分线的定义.菁优网版权所有【分析】根据数据线的内角和定理以及角平分线的定义,可以证明.【解答】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.【点评】注意此题中的∠A和∠BDC之间的关系:∠BDC=90°+∠A.7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°【考点】平行线的性质;三角形内角和定理.菁优网版权所有【分析】根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°【考点】三角形的外角性质;三角形内角和定理.菁优网版权所有【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.【点评】本题利用三角板度数的常识和三角形内角和定理,熟练掌握定理是解题的关键.9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°【考点】旋转的性质.菁优网版权所有【分析】根据两直线平行,内错角相等可得∠ACB=∠CAB,根据旋转的性质可得AC=AE,∠BAC=∠DAE,再根据等腰三角形两底角相等列式求出∠CAE,然后求出∠DAB=∠CAE,从而得解.【解答】解:∵CE∥AB,∴∠ACB=∠CAB=75°,∵△ABC绕点A逆时针旋转到△AED,∴AC=AE,∠BAC=∠DAE,∴∠CAE=180°﹣70°×2=40°,∵∠CAE+∠CAD=∠DAE,∠DAB+∠CAD=∠BAC,∴∠DAB=∠CAE=40°.故选C.【点评】本题考查了旋转的性质,平行线的性质,等腰三角形两底角相等的性质,熟记各性质并求出∠DAB=∠CAE是解题的关键.10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定【考点】全等三角形的判定与性质;等边三角形的性质.菁优网版权所有【分析】本题可通过证△ABE和△CBD全等,来得出AE=CD的结论.两三角形中,已知了AB=BC、BE=BD,因此关键是证得∠ABE=∠CBD;由于△ABC和△BED都是等边三角形,因此∠EBD=∠ABC=60°,即∠ABE=∠CBD=120°,由此可得证.【解答】解:∵△ABC与△BDE都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠EBD=60°;∴∠ACB+∠CBE=∠EBD+∠CBE=120°,即:∠ABE=∠CBD=120°;∴△ABE≌△CBD;∴AE=CD.故选A.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,当出现两个等边三角形时,一般要利用等边三角形的边和角从中找到一对全等三角形.二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有 5 个.【考点】三角形三边关系;一元一次不等式组的整数解.菁优网版权所有【分析】设第三边的长为x,根据三角形的三边关系的定理可以确定x的取值范围,进而得到答案.【解答】解:设第三边的长为x,则4﹣3<x<4+3,所以1<x<7.∵x为整数,∴x可取2,3,4,5,6.故答案为5.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是AB=DE .(只填写一个条件)【考点】全等三角形的判定.菁优网版权所有【专题】开放型.【分析】根据“SSS”添加条件.【解答】解:若加上AB=DE,则可根据“SSS”判断△ABC≌△DEF.故答案为AB=DE.【点评】本题考查了全等三角形的判定:判定方法有“SSS”、“SAS”、“ASA”、“AAS”.13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 30 度.【考点】全等三角形的性质.菁优网版权所有【分析】根据全等三角形的性质得出∠D=∠A=110°,∠C=∠F=40°,进而得出答案.【解答】解:∵△ABC≌△DEF,∠A=110°,∠F=40°,∴∠D=∠A=110°,∠C=∠F=40°,∴∠DEF=180°﹣110°﹣40°=30°.故答案为:30;【点评】此题主要考查了全等三角形的性质,利用其性质得出对应角相等是解题关键.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= 30°.,∠C= 90°..【考点】三角形内角和定理.菁优网版权所有【分析】有三角形内角和180度,又知三角形内各角比,从而求出.【解答】解:由三角形内角和180°,又∵∠A:∠B:∠C=1:2:3,∴∠A=180°×=30°,∠C=180°×=90°.故填:30°,90°.【点评】本题考查三角形内角和定理,结合已知条件,从而很容易知道各角所占几分之几.而解得.15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= 10°.【考点】三角形内角和定理;三角形的外角性质.菁优网版权所有【分析】根据∠B=60°,∠C=40°可得∠BAC的度数,AE平分∠BAC,得到∠BAE和∠CAE 的度数,利用外角的性质可得∠AED的度数,再根据垂直定义,得到直角三角形,在直角△ABD中,可以求得∠DAE的度数.【解答】解:∵∠C=40°,∠B=60°,∴∠BAC=180°﹣40°﹣60°=80°,∵AE平分∠BAC,∴∠BAE=∠CAE=40°,∴∠AED=80°,∵AD⊥BC于D,∴∠ADC=90°,∴∠DAE=180°﹣80°﹣90°=10°,故答案为:10°.【点评】本题主要考查角平分线的定义和垂直的定义,外角性质,三角形内角和定理,综合利用各定理及性质是解答此题的关键.16.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为 1 .【考点】三角形的面积.菁优网版权所有【专题】压轴题.【分析】根据等底等高的三角形的面积相等求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比求出△ACD的面积,然后根据S1﹣S2=S△ACD﹣S△ACE计算即可得解.【解答】解:∵BE=CE,∴S△ACE=S△ABC=×6=3,∵AD=2BD,∴S△ACD=S△ABC=×6=4,∴S1﹣S2=S△ACD﹣S△ACE=4﹣3=1.故答案为:1.【点评】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比,需熟记.17.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于50 度.【考点】三角形内角和定理;翻折变换(折叠问题).菁优网版权所有【分析】根据已知求出∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,根据折叠求出∠ADE+∠AED=×260°=130°,根据三角形内角和定理求出即可.【解答】解:∵∠1+∠2=100°,∴∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,∵将纸片△ABC沿DE折叠,点A落在点P处,∴∠ADE=∠ADP,∠AED=∠AEP,∴∠ADE+∠AED=×260°=130°,∴∠A=180°﹣(∠ADE+∠AED)=50°,故答案为:50.【点评】本题考查了三角形的内角和定理和折叠的性质的应用,注意:三角形的内角和等于180°,题目比较好,难度适中.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为12 cm,∠FAN= 20°.【考点】线段垂直平分线的性质.菁优网版权所有【分析】由EF,MN分别为AB,AC的垂直平分线,可得AF=BF,AN=CN,即可得△FAN的周长等于BC;又由∠BAC=100°,求得∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,继而求得答案.【解答】解:∵EF,MN分别为AB,AC的垂直平分线,∴AF=BF,AN=CN,∴△FAN的周长为:AF+FN+AN=BF+FN+CN=BC=12cm;∴∠BAF=∠B,∠CAN=∠C,∵△ABC中,∠BAC=100°,∴∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,∴∠FAN=∠BAC﹣(∠BAF+∠CAN)=20°.故答案为:12,20°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.【考点】全等三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】根据条件可以求出AD=BC,再证明△AED≌△BFC,由全等三角形的性质就可以得出结论.【解答】证明:∵AC=DB,∴AC+CD=DB+CD,即AD=BC,在△AED和△BFC中,∴△AED≌△BFC.∴DE=CF.【点评】本题考查了线段的数量关系,全等三角形的判定及性质的运用,解答时证明△AED≌△BFC是解答本题的关键.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【考点】全等三角形的判定.菁优网版权所有【专题】证明题.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF 即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.【考点】作图—复杂作图.菁优网版权所有【分析】(1)利用直角三角板一条直角边与BC重合,沿BC平移使另一直角边过A 画BC边上的高AD即可;再根据角平分线的做法作∠A的角平分线AE;(2)首先计算出∠BAE的度数,再计算出∠BAD的度数,利用角的和差关系可得答案.【解答】解:(1)如图所示:(2)在△ABC中,∠BAC=180°﹣11°﹣40°=30°,∵AE平分∠BAC,∴∠BAE=∠BAC=15°,在Rt△ADB中,∠BAD=90°﹣∠B=50°,∴∠DAE=∠DAB﹣∠BAE=35°.【点评】此题主要考查了复杂作图,以及角的计算,关键是正确画出图形.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.【考点】作图—基本作图.菁优网版权所有【分析】(1)根据过直线外一点作已知直线平行线的方法作图即可;(2)利用直角三角板,一条直角边与BC重合,沿BC平移,使另一条直角边过点P 画垂线即可.【解答】解:如图所示:.【点评】此题主要考查了基本作图,关键是掌握利用直尺做平行线的方法.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.【考点】线段垂直平分线的性质.菁优网版权所有【专题】证明题.【分析】EF垂直平分AD,则可得AF=DF,进而再转化为角之间的关系,通过角之间的平衡转化,最终得出结论.【解答】证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAF=∠B.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.【考点】全等三角形的判定与性质;角平分线的性质.菁优网版权所有【专题】证明题.【分析】在AB上截取ME=BN,证得△BND≌△EMD,进而证得∠DBN=∠MED,BD=DE,从而证得BD平分∠ABC.【解答】解:如图所示:在AB上截取ME=BN,∵∠BMD+∠DME=180°,∠BMD+∠BND=180°,∴∠DME=∠BND,在△BND与△EMD中,,∴△BND≌△EMD(SAS),∴∠DBN=∠MED,BD=DE,∴∠MBD=∠MED,∴∠MBD=∠DBN,∴BD平分∠ABC.【点评】本题考查了三角形全等的判定和性质,等腰三角形的判定和性质.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE的面积会等于10?【考点】一元一次方程的应用;三角形的面积.菁优网版权所有【专题】几何动点问题.【分析】分为三种情况讨论,如图1,当点P在AB上,即0<t≤4时,根据三角形的面积公式建立方程求出其解即可;如图2,当点P在BC上,即4<t≤7时,由S△APE=S﹣S△PCE﹣S△PAB建立方程求出其解即可;如图3,当点P在EC上,即7<t≤9四边形AECB时,由S△APE==10建立方程求出其解即可.【解答】解:如图1,当点P在AB上,即0<t≤4时,∵四边形ABCD是矩形,∴AD=BC=6,AB=CD=8.∵AP=2t,∴S△APE=×2t×6=10,∴t=.如图2,当点P在BC上,即4<t≤7时,∵E是DC的中点,∴DE=CE=4.∵BP=2t﹣8,PC=6﹣(2t﹣8)=14﹣2t.∴S=(4+8)×6﹣×(2t﹣8)×8﹣(14﹣2t)×4=10,解得:t=7.5>7舍去;当点P在EC上,即7<t≤9时,PE=18﹣2t.∴S△APE=(18﹣2t)×6=10,解得:t=.总上所述,当t=或时△APE的面积会等于10.【点评】本题考查了矩形的性质的运用,三角形的面积公式的运用,梯形的面积公式的运用.解答时灵活运用三角形的面积公式求解是关键.26.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= 50°;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A .3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)【考点】三角形的外角性质;三角形内角和定理.菁优网版权所有【专题】探究型.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB ,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB ,再根据角平分线的定义求出∠PBC+∠PCB ,然后利用三角形内角和定理列式整理即可得解;(4)延长BA 、CD 相交于点Q ,先用∠Q 表示出∠P ,再用(1)的结论整理即可得解.【解答】解:(1)∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB )=360°﹣(180°﹣∠A )=180°+∠A ;(2)∵∠1+∠2=∠180°+∠C ,∴130°+∠2=180°+∠C ,∴∠2﹣∠C=50°;(3)∠DBC+∠ECB=180°+∠A ,∵BP 、CP 分别平分外角∠DBC 、∠ECB ,∴∠PBC+∠PCB=(∠DBC+∠ECB )=(180°+∠A ),在△PBC 中,∠P=180°﹣(180°+∠A )=90°﹣∠A ;即∠P=90°﹣∠A ;故答案为:50°,∠P=90°﹣∠A ;(4)延长BA、CD于Q,则∠P=90°﹣∠Q,∴∠Q=180°﹣2∠P,∴∠BAD+∠CDA=180°+∠Q,=180°+180°﹣2∠P,=360°﹣2∠P.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并读懂题目信息是解题的关键.。
浙教版初中数学七年级下册第一单元《平行线》单元测试卷(困难)(含答案解析)考试范围:第一单元; 考试时间:120分钟;总分:120分,学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有( )A. 2个B. 3个C. 4个D. 5个2. 下列说法错误的是( )A. 在同一平面内,不相交的两条线段必然平行B. 在同一平面内,不相交的两条直线必然平行C. 在同一平面内,垂直于同一条直线的两条直线互相平行D. 过直线外一点,有且仅有一条直线与这条直线平行3. 给出下列判断:①两条不相交的直线叫做平行线;②不相等的两个角一定不是对顶角;③若两个角的一边在同一直线上,另一对边互相平行,则这两个角相等;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,其中正确的有( )A. 1个B. 2个C. 3个D. 4个4. 如图所示,与∠α构成同位角的角的个数为( )A. 1B. 2C. 3D. 45. 如图所示的四个图形中,∠1和∠2是同位角的是( )A. ②③B. ①②③C. ①②④D. ①④6. 以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( )A. 如图1所示,展开后测得∠1=∠2B. 如图2所示,展开后测得∠1=∠2且∠3=∠4C. 如图3所示,测得∠1=∠2D. 如图4所示,展开后再沿CD折叠,两条折痕的交点为点O,测得OA=OB,OC=OD7. 下列说法中正确的个数有()①两点之间的所有连线中,线段最短;②过一点有且只有一条直线与已知直线垂直;③平行于同一直线的两条直线互相平行;④直线外一点到这条直线的垂线段叫做点到直线的距离.A. 4个B. 3个C. 2个D. 1个8. 如图,已知∠1=∠2,那么( )A. AB//CD,根据两直线平行,内错角相等B. AD//BC,根据两直线平行,内错角相等C. AB//CD,根据内错角相等,两直线平行D. AD//BC,根据内错角相等,两直线平行9. 如图1是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是( )A. 165°B. 150°C. 135°D. 120°10. 如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=1CD.点E,F分别在2边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF//AB,则CM的长为( )A.2√33B. 3√34C. 5√36D. √311. 如图,AB//CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°,②OF平分∠BOD,③∠POE=∠BOF,④∠POB=2∠DOF.其中正确的个数为( )A. 4B. 3C. 2D. 112. 如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,将△ABC沿直线BC向右平移2个单位得到△DEF,连接AD,则下列结论:①AC//DF,AC=DF②ED⊥DF③四边形ABFD的周长是16④点B到线段DF的距离是4.2其中正确的个数有( )A. 1B. 2C. 3D. 4第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 平面上不重合的四条直线,可能产生交点的个数为______个.14. 如图,△ABC为等腰直角三角形,∠C=90°,将△ABC按如图方式进行折叠,使点A与BC 边上的点F重合,折痕分别与AC、AB交于点D、点E.下列结论:①∠1=∠2;②∠1+∠2=90°;③∠3+∠B=90°;④DF//AB.其中一定正确的结论有______.(填序号)15. 已知∠1的两边分别平行于∠2的两边,若∠1=40°,则∠2的度数为______.16. 如图,多边形ABCDEFGHIJ的相邻两边互相垂直,要求出它的周长,至少需要知道条边的边长.三、解答题(本大题共9小题,共72分。
数学八年级上册知识点及典型例题第一章平行线1.1同位角、内错角、同旁内角所截,构成了八个角。
如图:直线l , l被直线l321L3 a3L1 14a12358L2 a267的同旁,并且分别位于直线l , ll 的相同一侧,这样的一51. 观察∠1与∠的位置:它们都在第三条直线231对角叫做“同位角”。
2. 观察∠3与∠5的位置:它们都在第三条直线l的异侧,并且都位于两条直线l , l 之间,这样的一对213角叫做“内错角”。
3. 观察∠2与∠5的位置:它们都在第三条直线l的同旁,并且都位于两条直线l , l之间,这样的一对角231叫做“同旁内角”。
想一想问题1.你觉得应该按怎样的步骤在“三线八角”中确定关系角?确定前提(三线)寻找构成的角(八角)确定构成角中的关系角问题2:在上面同位角、内错角、同旁内角中任选一对,请你看看这对角的四条边与“前提”中的“三线”有什么关系?结论:两个角的在同一直线上的边所在直线就是前提中的第三线。
1.2 平行线的判定(1)复习画两条平行线的方法:A A L12L1o抽象成几何图形(图形的平移变换)L1oL B2B.21)怎样用语言叙述上面的图形?提问:(1 被AB所截)(直线l,l 21(2)画图过程中,什么角始终保持相等?2)(同位角相等,即∠1=∠位置关系如何?,3)直线ll (21)l∥l (21(4)可以叙述为:2∵∠1=∠)(∥∴ll ? 1 2。
语言叙述:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单地说:同位角相等,两直线平行。
21=∠几何叙述:∵∠l∥l(同位角相等,两直线平行)∴ 2 1想一想c a21b若a⊥b,b⊥c则a c2在同一平面内,垂直于同一条直线的两条直线互相平行。
平行线判定方法的特殊情形:2)1.2 平行线的判定(CDAB与=180°,则AB与CD平行吗?②若∠2+∠4图中,直线AB 与CD被直线EF所截,①若∠3=∠4,则平行吗?E1A B432 C DF°42+∠=180°,∠2+∠3=180 ,∠①∵∠3=∠41=∠4 ②∵∠=∠4 ∴∠3 1∴∠=∠3)()∴AB∥CD (∥∴ABCD内错角相等,两直线平行两条直线被第三条直线所截,如果内错角相等,则两条直线平行。
第1章三角形的初步知识1.3 证明第1课时平行线的性质与判定【教学内容】浙教版八年级上册第1.3证明第1课时平行线的性质与判定.【教材分析】推理与证明在初中数学教学中是一个重要内容,里面包含很强的逻辑思维和重要的数学思想.掌握好推理与证明,不但是学生应掌握的数学知识,也是延伸数学应用的一个内容.本节课内容是在已学过的定义、命题、定理、性质、基本事实等基础上开展的,并为后期几何知识的相关证明和推理奠定了基础,在整个初中数学学习阶段具有举足轻重的地位.【学情分析】对数学严谨性的认识具有相对性,而实际上数学的严谨性本身也具有相对性.初中数学教学只能帮助学生认识数学的最基本的内容和方法,因此对数学严谨性也有一个逐步适应和提高的过程.鉴于这个层面,平面几何启蒙阶段的初中生对于推理证明还不太适应,不理解证明的意义,不太懂证明的方法和格式,这些都是需要老师和学生共同克服的问题.推理与证明是在已学过的定义、定理、性质、基本事实等基础上开展的新的知识,而这些对于初中生来说,还是比较抽象的,要学生会正确地应用这些知识来进行新的推理与证明,就要让学生在课堂上能完全明白这些定义、定理、性质、基本事实的意义和用法.【教学目标】1.了解证明的含义;2.体验、理解证明的意义和必要性;3.会根据平行线的性质与判定进行简单的推理论证.【教学重难点】简单的推理证明.【教学方法】自主学习、合作交流、大胆猜想、启发式教学.【教学过程】一、证明的必要性问题1、观察下面图形,你有什么感觉?如上图所示,一组直线a、b、c、d是否都互相平行?问题2、动手测量一下线段AB与线段CD,哪条长?三、证明的步骤已知:如图,DE∥BC,∠1=∠E.求证:BE平分∠ABC.出示例题,先让学生独立思考,然后教师引导学生共同写出证明过程,在此期间,强调证明过程必须有理有据总结归纳:证明几何命题的思路分析根据已知依据所学步步递推证实判断四、题型总结类型一、平行线的判定例1 已知:如图,在四边形ABCD中,AC平分∠BAD,∠1=∠2.证明:AB∥CD.变式跟进1如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.类型二、平行线的性质例2 已知:如图,AB∥CD,EP、FP分别平分∠BEF、∠DFE.求证:∠PEF+∠PFE=90°.变式跟进2 已知:如图所示,直线AB//CD,∠AEP=∠CFQ.求证:∠EPM=∠FQM.类型之三平行线的性质与判定的综合例3 已知:如图,∠A=∠C,∠1和∠2互补.求证:AB∥CD.变式跟进3请将下列证明过程补充完整.已知:如图,AD⊥BC,EF⊥BC,垂足分别为DF,∠EGA=∠E.求证:AD平分∠BAC.证明:∵AD⊥BC,EF⊥BC(已知),∴∠EFC=∠ADC=90°(垂直的定义).∴AD∥EF (____________________) .∴ _____= _____(两直线平行,内错角相等),_____= _____(两直线平行,同位角相等).∵ _____= _____(已知),∴ _____________________,∴AD平分∠BAC(____________________).(注重推理过程和理由)。
浙教版八年级数学训练试卷(一)一、选择题1、如图,在△ABC中,BD,BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH垂直于BE,交BD于点G,交BC于点H.下列结论正确的有()个.①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠FEB=∠ABE+∠C;④2∠F=∠BAC﹣∠C.A.1B.2 C.3D.42、如图,AD和BE是△ABC的中线,AD与BE交于点O,下列结论正确的有()个.(1)S△ABE=S△ABD(2)连接CO并延长交AB于点F,则AF=BF (3)S△ABO=S四边形DOEC3、下列命题中,是假命题的是()A.内错角相等B.对顶角相等C.等角的余角相等D.平行于同一直线的两条直线平行4、如图,△AOB的外角∠CAB,∠DBA的平分线AP,BP相交于点P,PE⊥OC于E,PF⊥OD于F,下列结论:(1)PE=PF;(2)点P在∠COD的平分线上;(3)∠APB=90°﹣∠O,其中正确的有()A.0个B.1个C.2个D.3个5、如图,在△ABC中,∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM⊥AC于点M,连接MD,过点D作DN⊥MD,交BM于点N.CD与BM相交于点E,若点E 是CD的中点,下列结论:①∠AMD=45°;②NE﹣EM=MC;③EM:MC:NE=1:2:3;④S△ACD=2S△DNE.其中正确的结论为()A.①③B.①②③C.①③④D.①②③④6、如图,AD为△ABC的中线,BE为△ABD的中线.若△BDE的面积为10,则△ABC的面积为()A.40B.30C.20D.157、如图,在△ABC中,,直线l经过边AB的中点D,与BC交于点M,分别过点A、C作直线l的垂线,垂足为E、F,则AE+CF的最大值为()A.B.C.D.8、如图在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积是4,则△BEF的面积是()A.1B.2C.3D.3.59、如图所示是地球截面图,其中AB,EF分别表示南回归线和北回归线,CD表示赤道,点P表示某市的位置.现已知地球南回归线的纬度是南纬23°26′(∠BOD=23°26′),某个城市的纬度是北纬37°32′(∠POD=37°32′),而冬至正午时,太阳光(太阳光线都是互相平行的)直射南回归线(光线MB的延长线经过地心O),则这个城市冬至正午时,太阳光线NP与地面水平线PQ的夹角α的度数是()A.27°2′B.28°2′C.29°2′D.30°2′10、如图,用四颗螺丝将不能弯曲的木条围成一个木框,不计螺丝大小,其中相邻两颗螺丝的距离依次为3、4、6、8,且相邻两根木条的夹角均可以调整,若调整木条的夹角时不破坏此木框,则任意两颗螺丝的距离的最大值是()A.7B.10C.11D.1411、如图,由9个完全相同的小正方形拼接而成的3×3网格,图形ABCD中各个顶点均为格点,设∠ABC=α,∠BCD=β,∠BAD=γ,则α﹣β﹣γ的值为()A.30°B.45°C.60°D.75°12、如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点.设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=24,则S△ADF﹣S△BEF=()A.2B.4C.3D.5二、填空题1、如图是∠α与∠β在5×5的网格上的位置,则∠α+∠β=.2、三角形的三边长分别为3,5,x,化简式子|x﹣2|+|x﹣9|=.3、如图,点D是△ABC的重心,连接AD并延长交BC于点E,AB=4,△ABE的周长比△ACE的周长大1.8,则AC=.4、如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2=36°,AE与BD交于点O,则∠BDE=.5、如图,三角形ABC的面积为15平方厘米,AD与BF交于点E,且AE=ED,BD=CB,求图中阴影部分的面积和是平方厘米.6、如图Rt△ACB中,∠ACB=90°,AD平分∠CAB交BC于D,点E在AB的延长线上,满足∠ADE+∠CAB=180°,若AC=6,BE=2,则线段AB的长为.7、如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,直线l经过点C且与边AB相交.动点P从点A出发沿A→C→B路径向终点B运动;动点Q从点B出发沿B→C→A 路径向终点A运动.点P和点Q的速度分别为1cm/s和2cm/s,两点同时出发并开始计时,当点P到达终点B时计时结束.在某时刻分别过点P和点Q作PE⊥l于点E,QF ⊥l于点F,设运动时间为t秒,则当t=秒时,△PEC与△QFC 全等.8、添加辅助线是很多同学感觉比较困难的事情.如图1,在Rt△ABC中,∠ABC=90°,BD是高,E是△ABC外一点,BE=BA,∠E=∠C,若DE=BD,AD=16,BD=20,求△BDE的面积.同学们可以先思考一下…,小颖思考后认为可以这样添加辅助线:在BD上截取BF=DE,(如图2).同学们,根据小颖的提示,聪明的你可以求得△BDE的面积为.35.在△ABC中,∠ABC,∠ACB的平分线交于点O,∠ACB的外角平分线所在直线与∠ABC的平分线相交于点D,与∠ABC的外角平分线相交于点E,则下列结论一定正确的是.(填写所有正确结论的序号)①;②;③∠E=∠A;④∠E+∠DCF=90°+∠ABD.三、解答题1、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,BF=AC.(1)求证:△BDF≌△ADC;(2)若∠CAD=20°则∠ABE=°.(直接写出结果)2、如图,AD=DE=EC,F是BC中点,G是FC中点,如果三角形ABC的面积是72平方厘米,则阴影部分是多少平方厘米?3‘’如图,在梯形ABCD中,AB=DC=12cm,BC=15cm,∠B=∠C,点E为边AB上一点,且AE=5cm.点P在线段BC上以每秒3cm的速度由点B向点C运动,点Q是线段CD上一点.设点P运动时间为t秒,请回答下列问题:(1)线段BP的长为cm,CP的长为cm;(用含t的代数式表示)(2)要使以点C,Q,P为顶点的三角形与△BPE全等,求满足条件的t的值和线段BP 的长.4、综合与实践.主题:探究平行线的性质与判定.素材:一副三角尺(一块含30°,一块含45°)、两根相同的长木棒.步骤1:如图,摆放两根木棒使MN∥PQ(可上下平移调节距离).步骤2:将一副三角尺按如图方式进行摆放,恰好满足∠NAC=20°,∠MAE=∠CBQ.(1)∠ABQ的度数为,∠CBQ的度数为;(2)试判断AB与DE的位置关系,并说明理由.5、如图,已知AC=BC,点D是BC上一点,∠ADE=∠C.(1)如图1,若∠C=90°,∠DBE=135°,求证:①∠EDB=∠A;②DA=DE.(2)如图2,请直接写出∠DBE与∠C之间满足什么数量关系时,总有DA=DE成立.6、如图所示的图形,像我们常见的符号——箭号.我们不妨把这样图形叫做“箭头四角形”.探究:(1)观察“箭头四角形”,试探究图1中∠BDC与∠A,∠B,∠C之间的关系,并说明理由;应用:(2)请你直接利用以上结论,解决以下两个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B,C,若∠A=60°,则∠ABX+∠ACX=°;②如图3,∠ABE,∠ACE的二等分线(即角平分线)BF,CF相交于点F,若∠BAC=60°,∠BEC=130°,求∠BFC的度数.7、如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为t s.(1)如图①,当t=时,△APC的面积等于△ABC面积的一半;(2)如图②,在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A 停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度。
2024-2025学年八年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟试卷满分:120分)考前须知:1.本卷试题共24题,单选10题,填空6题,解答8题。
2.测试范围:第一章~第二章(浙教版)。
第Ⅰ卷一.选择题(共10小题)1.(3分)围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是( )A.B.C.D.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A,B,C选项中的图案都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项中的图案能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D.2.(3分)某三角形的三边长分别为3,6,x,则x可能是( )A.3B.9C.6D.10【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边,先求出x的取值范围,再根据取值范围选择.【解答】解:∵3+6=9,6﹣3=3,∴3<x<9.故选:C.3.(3分)对于命题“如果∠1+∠2=90°,那么∠1=∠2”,能说明它是假命题的反例是( )A.∠1=45°,∠2=45°B.∠1=50°,∠2=50°C.∠1=50°,∠2=40°D.∠1=40°,∠2=40°【分析】根据反例满足条件,不满足结论可对各选项进行判断.【解答】解:当∠1=50°,∠2=40°时,有∠1+∠2=90°,但∠1≠∠2”,所以∠1=50°,∠2=40°可作为说明原命题是假命题的反例.故选:C.4.(3分)等腰三角形一边长等于5,一边长等于10,它的周长是( )A.20B.25C.20或25D.15【分析】此题先要分类讨论,已知等腰三角形的一边等于5,另一边等于10,先根据三角形的三边关系判定能否组成三角形,若能则求出其周长.【解答】解:当5为腰,10为底时,∵5+5=10,∴不能构成三角形;当腰为10时,∵5+10>10,∴能构成三角形,∴等腰三角形的周长为:10+10+5=25.故选:B.5.(3分)如图,在△ABC中,∠BAC=90°,AC=6,AB=8,过点A的直线DE∥BC,∠ABC与∠ACB的平分线分别交DE于E,D,则DE的长为( )A.14B.16C.18D.20【分析】由平行线的性质、角平分线的性质推知∠E=∠ABE,则AB=AE.同理可得,AD=AC,所以线段DE的长度转化为线段AB、AC的和即可得到答案.【解答】解:∵DE∥BC,∴∠E=∠EBC.∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠ABE,∴AB=AE.同理可得:AD=AC,∴DE=AD+AE=AB+AC=14.故选:A.6.(3分)如图,∠A=100°,∠D=80°,则∠1+∠2等于( )A.100°B.200°C.180°D.210°【分析】根据三角形内角和定理,对顶角以及三角形外角的性质进行解答即可.【解答】解:如图,∵∠1=∠B+∠BMC,∠2=∠F+∠FNE,∴∠1+∠2=∠B+∠BMC+∠F∠FNE,∵∠BMC=∠AMN,∠FNE=∠ANM,∠AMN+∠ANM=180°﹣∠A,∴∠1+∠2=∠B+∠F+∠AMN+∠ANM=(180°﹣∠D)+(180°﹣∠A)=360°﹣∠A﹣∠D=360°﹣100°﹣80°=180°.故选:C.7.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=12,BF =9,EF=6,则AD的长为( )A.9B.15C.18D.21【分析】设AB分别交CE、CD于点G、H,由AB⊥CD,CE⊥AD,BF⊥AD,得AHC=∠AEC=∠CED=∠AFB=90°,可证明∠A=∠C,而AB=CD,即可根据“AAS”证明△ABF≌△CDE,得AF=CE=12,BF=DE=9,则DF=DE﹣EF=3,求得AD=AF+DF=15,于是得到问题的答案.【解答】解:设AB分别交CE、CD于点G、H,则∠AGE=∠CGH,∵AB⊥CD,CE⊥AD,BF⊥AD,∴AHC=∠AEC=∠CED=∠AFB=90°,∴∠A=90°﹣∠AGE=90°﹣∠CGH=∠C,在△ABF和△CDE中,∠A=∠C∠AFB=∠CED AB=CD,∴△ABF≌△CDE(AAS),∵CE=12,BF=9,EF=6,∴AF=CE=12,BF=DE=9,∴DF=DE﹣EF=9﹣6=3,∴AD=AF+DF=12+3=15,故选:B.8.(3分)如图,直线l上有三个正方形a,b,c,若正方形a,c的面积分别为5和11,则正方形b 的边长为( )A.55B.16C.6D.4【分析】先根据同角的余角相等证明∠ACB=∠EBD,而∠CAB=∠BED=90°,CB=BD,即可根据全等三角形的判定定理“AAS”证明△ABC≌△EDB,得AB=ED,再由AC2=5,AB2=DE2=11,根据勾股定理求得BC==4,于是得到问题的答案.【解答】解:∵三个正方形a,b,c在直线l的同侧,且正方形a、c的边及正方形B的顶点在直线l上,∴∠CAB=∠BED=180°﹣90°=90°,∠CBD=90°,CB=BD,∴∠ACB=∠EBD=90°﹣∠ABC,在△ABC和△EDB中,∠ACB=∠EBD ∠CAB=∠BED CB=BD,∴△ABC≌△EDB(AAS),∴AB=ED,∵正方形a,c的面积分别为5和11,∴AC2=5,AB2=DE2=11,∴BC===4,∴正方形b的边长为4,故选:D.9.(3分)如图所示,边长为2的等边三角形ABC中,D点在边BC上运动(不与B、C重合),点E在边AB的延长线上,点F在边AC的延长线上,AD=DE=DF.点D在BC边上从B至C的运动过程中,△BED周长变化规律为( )A.不变B.一直变小C.先变大后变小D.先变小后变大【分析】由“AAS”可证△BED≌△CDF,由全等三角形的性质可得BD=CF,BE=CD,可得△BED周长=BD+BE+DE=BD+CD+AD=BC+AD,即可求解.【解答】解:∵AD=DE=DF,∴∠DAE=∠DEA,∠DAF=∠DFA,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA,∵∠ACB=∠CFD+∠CDF=60°,∴∠CDF=∠BED,且∠EDB=∠DFA,DE=DF,∴△BDE≌△CFD(AAS),∴BD=CF,BE=CD,∴△BED周长=BD+BE+DE=BD+CD+AD=BC+AD,∴点D在BC边上从B至C的运动过程中,∴AD的长先变小后变大,∴△BED周长先变小后变大,故选:D.10.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∠ACB=90°,AC=3,BC=4,AD平分∠BAC,交BC于点D,点P、M是AD、AC上的动点,则PC+PM的最小值为( )A .32B .3C .4D .125【分析】作点C 关于AD 的对称点D ',连接D 'P ,CD ',DD ',作CE ⊥AB 于E ,可得当点M ,点P ,点D '三点共线且D 'M ⊥AC 时,MP +CP 有最小值,由面积法可求解.【解答】解:如图,作点C 关于AD 的对称点D ',连接D 'P ,CD ',DD ',作CE ⊥AB 于E ,∵AC =3,BC =4,∴BA ==5,∵点C 与点D '关于AD 对称,∴AC =AD ',CD =DD ',CP =D 'P ,∴MP +CP =MP +D 'P ,∴当点M ,点P ,点D '三点共线且D 'M ⊥AC 时,MP +CP 有最小值,此时,在△ACE 和△AD 'M 中,∠CAE =∠D′AM∠AEC =∠AMD′=90°AC =AD′,∴△ACE ≌△AD 'M (AAS ),∴D 'M =CE ,∵12×AC ×BC =12×AB ×CE ,∴CE =3×45=125=DM ',∴MP +CP 的最小值为125,故选:D .二.填空题(共7小题)11.(3分)写出命题“对顶角相等”的逆命题 .【分析】根据逆命题的定义可以写出命题“对顶角相等”的逆命题,本题得以解决.【解答】解:命题“对顶角相等”的逆命题是如果两个角相等,那么这两个角是对顶角,故答案为:如果两个角相等,那么这两个角是对顶角.12.(3分)如图,已知∠ACB =∠DBC ,要用“SAS ”判断△ABC ≌△DCB ,需添加的一个条件: .【分析】已知∠ACB =∠DBC ,BC 公共,要用“SAS ”判断△ABC ≌△DCB ,需添加的一个条件是AC =BD .【解答】解:添加的条件是:AC =BD ,理由是:∵在△ABC 和△DCB 中,AC =BD∠ACB =∠DBC CB =BC,∴△ABC ≌△DCB (SAS ),故答案为:AC =BD .13.(3分)等腰三角形一腰上的高与另一腰的夹角是40°,则该等腰三角形顶角为 °.【分析】读到此题我们首先想到等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况所以舍去不计,我们可以通过画图来讨论剩余两种情况.【解答】解:①当为锐角三角形时可以画图,高与右边腰成40°夹角,由三角形内角和为180°可得,顶角为50°;②当为钝角三角形时可画图为,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为50°,所以三角形的顶角为130°;故填50°或130°.14.(3分)如图,已知点D ,E ,F 分别为AC ,BC ,BD 的中点,若△ABC 的面积为32,则四边形ADEF 的面积为 .【分析】由三角形的中线得S △ABD =S △CBD ,S △ABF =S △ADF ,S △BDE =S △CDE ,S △BEF =S △DEF ,再求出S △ADF =8,S △DEF =4,即可得出答案.【解答】解:∵点D ,E ,F 分别为AC ,BC ,BD 的中点,∴S △ABD =S △CBD ,S △ABF =S △ADF ,S △BDE =S △CDE ,S △BEF =S △DEF ,∴S △ADF =12S △ABD =12×12S △ABC =14×32=8,S △DEF =12S △BDE =12×12S △BCD =14×12S △ABC =18×32=4,∴S 四边形ADEF =S △ADF +S △DEF =8+4=12.故答案为:12.15.(3分)如图,在△ABC 中,将∠B 和∠C 按如图所示方式折叠,点B ,C 均落于边BC 上一点G 处,线段MN ,EF 为折痕.若∠A =94°,则∠MGE = .【分析】由折叠的性质可知:∠B =∠MGB ,∠C =∠EGC ,根据三角形的内角和为180°,可求出∠B +∠C 的度数,进而得到∠MGB +∠EGC 的度数,问题得解.【解答】解:∵线段MN 、EF 为折痕,∴∠B =∠MGB ,∠C =∠EGC ,∵∠A =94°,∴∠B +∠C =180°﹣94°=86°,∴∠MGB +∠EGC =∠B +∠C =86°,∴∠MGE =180°﹣86°=94°,故答案为:94.16.(3分)如图,已知CE 平分∠ACD ,OE 平分∠AOB ,EF ⊥OA ,EG ⊥OB ,下面四个结论:①DE 平分∠CDB ;②∠OED =∠OCD ;③∠CED =90°+12∠AOB ;④S △CEF +S △DEG =S △CDE 其中正确的是 .(填序号)【分析】作EH ⊥CD 于点H ,因为CE 平分∠ACD ,EF ⊥OA ,所以EF =EH ,同理可得EF =EG ,则EH =EG ,所以DE 平分∠CDB ,可判断①正确;由∠BDE =12∠BDC ,∠DOE =12∠DOC 推导出∠OED =∠BDE ﹣∠DOE =12∠OCD ≠∠OCD ,可判断②错误;由∠CED =180°―12(180°﹣∠OCD )―12(180°﹣∠ODC )=12(∠OCD +∠ODC )=90°―12∠AOB ≠90°+12∠AOB ,可判断③错误;根据直角三角形全等的判定定理“HL ”可证明Rt △CEF ≌Rt △CEH ,Rt △DEG ≌Rt △DEH ,即可证明S △CEF +S △DEG =S △CDE ,可判断④正确.【解答】解:如图,作EH ⊥CD 于点H ,∵CE 平分∠ACD ,EF ⊥OA ,∴EF =EH ,∵OE 平分∠AOB ,EG ⊥OB ,∴EF =EG ,∴EH =EG ,∴DE 平分∠CDB ,故①正确;∵∠BDE =12∠BDC ,∠DOE =12∠DOC ,∴∠OED =∠BDE ﹣∠DOE =12(∠BDC ﹣∠DOC )=12∠OCD ≠∠OCD ,故②错误;∵∠ECD =12∠ACD =12(180°﹣∠OCD ),∠EDC =12∠BDC =12(180°﹣∠ODC ),∴∠CED =180°﹣∠ECD ﹣∠EDC =180°―12(180°﹣∠OCD )―12(180°﹣∠ODC )=12(∠OCD +∠ODC ),∵∠OCD +∠ODC =180°﹣∠AOB ,∴∠CED =12(180°﹣∠AOB )=90°―12∠AOB ≠90°+12∠AOB ,故③错误;∵EF ⊥OA ,EH ⊥CD ,EG ⊥OB ,∴∠CFE =∠CHE =∠EHD =∠EGD =90°,在Rt △CEF 和Rt △CEH 中,CE =CE EF =EH ,∴Rt △CEF ≌Rt △CEH (HL ),∴S △CEF =S △CEH ,同理S △DEG =S △DEH ,∴S △CEF +S △DEG =S △CEH +S △DEH =S △CDE ,故④正确,故答案为:①④.三.解答题(共8小题)17.(6分)如图所示,E为AB延长线上的一点,AC⊥BC,AD⊥BD,AC=AD 求证:∠CEA=∠DEA.【分析】首先利用“HL”证明Rt△ABC≌Rt△ABD,得出∠CAB=∠DAB,进一步利用“SAS”证得△ACE≌△ADE,证得∠CEA=∠DEA.【解答】证明:∵AC⊥BC,AD⊥BD,∴∠ACB=∠ADB=90°,在Rt△ABC和Rt△ABD中,AC=AD AB=AB∴Rt△ABC≌Rt△ABD(HL),∴∠CAB=∠DAB,在△ACE和△ADE中,AC=AD∠CAE=∠DAE AE=AE∴△ACE≌△ADE(ASA),∴∠CEA=∠DEA.18.(6分)如图,在△ABC中,AD是高,∠DAC=10°,AE是∠BAC外角的平分线,BF平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB的度数.【分析】根据直角三角形的性质求出∠BAD的度数,得到∠BAC的度数,根据邻补角的性质求出∠CAM的度数,根据角平分线的定义求出∠MAE的度数,根据三角形的外角的性质计算即可.【解答】解:∵AD是高,∴∠ADB=90°,∴∠BAD=90°﹣∠ABC=44°,又∠DAC=10°,∴∠BAC=54°,∴∠MAC=126°,∵AE是∠BAC外角的平分线,∴∠MAE=12∠MAC=63°,∵BF平分∠ABC,∴∠ABF=12∠ABC=23°,∴∠AFB=∠MAE﹣∠ABF=40°.19.(8分)如图,在△ABC中,D为AB上一点,E为AC中点,连接DE并延长至点F,使得EF=ED,连CF.(1)求证:CF∥AB;(2)若∠ABC=50°,连接BE,BE平分∠ABC,AC平分∠BCF,求∠A的度数.【分析】(1)求出△AED≌△,根据全等三角形的性质得出∠A=∠ACF,根据平行线的判定得出即可;(2)根据(1)求出∠A=∠ACB,根据三角形内角和定理求出即可.【解答】(1)证明:∵E为AC中点,∴AE=CE,在△AED和△CEF中,AE=CE∠AED=∠CEFDE=EF,∴△AED≌△CEF(SAS),∴∠A=∠ACF,∴CF∥AB;(2)解:∵AC平分∠BCF,∴∠ACB=∠ACF,∵∠A=∠ACF,∴∠A=∠ACB,∵∠A+∠ABC+∠ACB=180°,∠ABC=50°,∴2∠A=130°,∴∠A=65°.20.(8分)按要求画出图形.(1)如图1,已知△ABC,按要求作图:①作△ABC的角平分线BD;②作BC边上的高线AF.(2)有公路l1同侧,l2异侧的两个城镇A,B,如图2.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)【分析】(1)利用尺规根据角平分线的定义作出图形;用尺规作AF⊥BC交CB的延长线于点F;(2)①作两条公路夹角的平分线OD或OE.②作线段AB的垂直平分线FG,则射线OD、OE 与直线FG的交点C1、C2即为所求的位置.【解答】解:(1)①△ABC的角平分线BD如图1;②如图1,线段AF即为所求.(2)①作两条公路夹角的平分线OD或OE.②作线段AB的垂直平分线FG,则射线OD、OE与直线FG的交点C1、C2即为所求的位置.21.(10分)如图,在△ABC中,∠ACB>∠ABC,△ABC的角平分线BD与BC的垂直平分线交于点E,连结CE.若∠A=α,∠ECB=β.(1)当α=60°,β=20°时,求∠ACB的度数;(2)当α+2β=90°时,AC=3,BC=4,求AB的长.【分析】(1)根据角平分线定义及线段的垂直平分线的性质得到∠EBC=12∠ABC,BE=CE,根据等腰三角形的性质得到∠EBC=∠ECB,再根据三角形内角和定理列式计算即可;(2)同(1)的方法,求出∠ACB=90°,根据勾股定理求解即可.【解答】解:(1)∵BD是∠ABC的平分线,∴∠ABD=∠EBC=12∠ABC,∵E在是线段BC的垂直平分线上,∴BE=CE,∴∠EBC=∠ECB,∴∠ABC=2∠ECB,∵∠ECB=β=20°,∴∠ABC=40°,∵∠A=α=60°,∠A+∠ABC+∠ACB=180°,∴∠ACB=80°;(2)∵BD是∠ABC的平分线,∴∠ABD=∠EBC=12∠ABC,∵E在是线段BC的垂直平分线上,∴BE=CE,∴∠EBC=∠ECB,∴∠ABC=2∠ECB,∴∠ABC=2β,∵∠A=α,∠A+∠ABC+∠ACB=180°,∴α+2β+∠ACB=190°,∵α+2β=90°,∴∠ACB=90°,∵AC=3,BC=4,∴AB==5.22.(10分)阅读并完成相应的任务.如图,小明站在堤岸凉亭A点处,正对他的B点(AB与堤岸垂直)停有一艘游艇,他想知道凉亭与这艘游艇之间的距离,于是制定了如下方案.(2)任务二:①凉亭与游艇之间的距离是 米.②请你说明小明方案正确的理由.【分析】(1)任务一:根据题意可知,小华的方案中蕴含着一对全等三角形,即△ABC≌△DEC,将图形补充完整即可;(2)任务二:①由补充完整的图形可知,△ABC≌△DEC,且AB与DE是对应边,可知AB=DE=8米,得出答案为8;②由题意可知AC=CD=20米,∠A=∠D=90°,∠ACB与∠DCE是对顶角,由“ASA”可判定△ABC≌△DEC,则AB=DE=8米,说明小明的方案是正确的.【解答】解:(1)任务一:将测量方案示意图补充完整如图所示.(2)任务二:①由△ABC≌△DEC得AB=DE=8(米),故答案为:8.②理由:如图,由题意可知,AC=20米,CD=20米,DE=8米,∠A=90°,∠D=90°,∴AC=DC,∠A=∠D,在△ABC和△DEC中,∠A=∠DAC=DC∠ACB∠DCE,∴△ABC≌△DEC(ASA),∴AB=DE=8米,∴小明的方案是正确的.23.(12分)如图,△ABC中,∠ABC=90°,AC=20,BC=12.(1)直接写出AB的长度 .(2)设点P 在AB 上,若∠PAC =∠PCA .求AP 的长;(3)设点M 在AC 上,若△MBC 为等腰三角形,直接写出AM 的长.【分析】(1)依据勾股定理进行计算,即可得出AB 的长度;(2)设AP =PC =x ,依据勾股定理列方程求解即可得到AP 的长;(3)依据△MBC 为等腰三角形,分三种情况讨论即可得到AM 的长.【解答】解:(1)∵∠ABC =90°,AC =20,BC =12,∴AB ===16,故答案为:16;(2)∵∠PAC =∠PCA ,∴AP =PC ,设AP =PC =x ,∴PB =16﹣x ,∵∠B =90°,∴BP 2+BC 2=CP 2,∴(16﹣x )2+122=x 2,解得:x =252,∴AP =252;(3)AM 的长为8或10或285.如图(1),当CB =CM =12时,AM =AC ﹣CM =20﹣12=8;如图(2),当BM =CM 时,AM =BM =CM =12AC =10;如图(3),当BC =BM 时,过B 作BH ⊥AC 于点H ,则BH =AB⋅BC AC =485,∴CH ===365,∴CM =2CH =725,∴AM =AC ﹣CM =20―725=285,综上所述,AM 的长为8或10或285.24.(12分)(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,当△DCE 旋转至点A ,D ,E 在同一直线上,连接BE .填空:①∠AEB 的度数为 ;②线段AD 、BE 之间的数量关系是 .(2)拓展研究:如图2,△ACB 和△DCE 均为等腰三角形,且∠ACB =∠DCE =90°,点A 、D 、E 在同一直线上,若AE =15,DE =7,求AB 的长度.(3)探究发现:图1中的△ACB 和△DCE ,在△DCE 旋转过程中当点A ,D ,E 不在同一直线上时,设直线AD 与BE 相交于点O ,试在备用图中探索∠AOE 的度数,直接写出结果,不必说明理由.【分析】(1)由条件易证△ACD ≌△BCE ,从而得到:AD =BE ,∠ADC =∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.(2)根据等腰直角三角形的性质得到CA =CB ,CD =CE ,∠ACB =∠DCE =90°.根据全等三角形的性质得到AD =BE =AE ﹣DE =8,∠ADC =∠BEC ,由平角的定义得到∠ADC =135°.求得∠BEC =135°.根据勾股定理即可得到结论;(3)由(1)知△ACD ≌△BCE ,得∠CAD =∠CBE ,由∠CAB =∠ABC =60°,可知∠EAB +∠ABE =120°,根据三角形的内角和定理可知∠AOE =60°.【解答】解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,CA=CB∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS).∴AD=BE=AE﹣DE=8,∠ADC=∠BEC,∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∴AB==17;(3)如图3,由(1)知△ACD≌△BCE,∴∠CAD=∠CBE,∵∠CAB=∠CBA=60°,∴∠OAB+∠OBA=120°∴∠AOE=180°﹣120°=60°,如图4,同理求得∠AOB=60°,∴∠AOE=120°,∴∠AOE的度数是60°或120°.。
DCBA 八年级数学(上)第一章平行线单元测试 姓名:________班级:_______________一、选择题(24分)1、如图T-1,直线AB 、AC 被直线BC 所截,则∠1与∠2是( )A 、对顶角B 、同位角C 、内错角D 、同旁内角 2、如图:内错角有( ) A .4对 B .5对 C .6对 D .8对(第2题)3、两条直线被第三条直线所截,总有 ( ) A .同位角相等 B .内错角相等 C .同旁内角互补 D .以上都不对4、如图T-2,直线a ,b 被直线c 所截,则与∠1是同位角的是( )A 、∠2B 、∠3C 、∠4D 、∠5 5、如图T-3,已知AB ∥CD ,那么( )A 、∠1=∠2B 、∠3=∠4C 、∠1+∠3=180°D 、∠4+∠2=1806、如图T-4,∠1与∠2互补,∠3=130°,那么∠4的度数是( )A 、50°B 、60°C 、70°D 、80° 7、已知:如图T-5,下列条件中不能判断直线a ∥b 的是( )A 、∠1=∠3B 、∠4=∠5C 、∠2=∠3D 、∠2+∠4=180 º8、如图T-6,下列条件中能判断直线AD ∥BC 的是( )A 、∠A=∠ABCB 、∠ADB=∠CBDC 、∠A+∠ADC=180 ºD 、∠A=∠C 9、下列说法正确的是( )A 、不相交的两条直线互相平行B 、同旁内角相等,两直线平行C 、在同一平面内,不平行的两条直线会相交D 、同位角相等 10.如图,有下列判定,其中正确的有 ( ) ①若∠1=∠3,那么AD ∥BC ②若AD ∥BC ,则∠1=∠2=∠3 ③若∠1=∠3,AD ∥BC,则∠1=∠2 ④若∠C+∠3+∠4=180°,AD ∥BC A .1个 B .2个 C .3个 D .4个(第10题)11、如果一个角的两边与另一个角的两边分别平行,那么这两个角的关系是( )A .相等B .互余C .互补D .相等或互补T-2Cab52134CDT-31432T-4T-5aT-6AT-7BDAD B C1 2 3 412、如图T-7,已知AD ∥BC ,AB ⊥BC ,则直线AD 与BC 的距离是( ) A 、AB 的长 B 、AD 的长 C 、BC 的长 D 、DC 的长13、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是 ( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50° 14、如图,有下列判定,其中正确的有 ( )①若∠1=∠3,那么AD ∥BC ②若AD ∥BC ,则∠1=∠2=∠3③若∠1=∠3,AD ∥BC,则∠1=∠2 ④若∠C+∠3+∠4=180°,AD ∥BCA .1个B .2个C .3个D .4个二、选择题(每空格3分,共30分)1、如图T-8,∠1的同位角是 ,∠1的内错角是 ,∠2与∠3是T-812435d abc 1432T-9T-1031cba T-111243abm nT-122、如图T-9,若∠1= ,则a ∥b, 理由是3、如图T-10,a ∥b, ∠1=65°则∠3= °4、如图T-11,∠1=∠2,∠3=89°,则∠4=5、如图T-12,请添加一个条件: ,使DE ∥BC 。
2021-2022学年度初中数学期末考试卷试卷副标题考试范围:初中数学八年级上测前两章;考试时间:120分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、单选题1.四边形的内角和与外角和的数量关系,正确的是()A.内角和比外角和大180°B.外角和比内角和大180°C.内角和比外角和大360°D.内角和与外角和相等【答案】D【分析】直接利用多边形内角和定理分别分析得出答案.【详解】解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.故选:D.【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.2.如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:①∠CDF=30°;②∠ADB=50°;③∠ABD=22°;④∠CBN=108°其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】D【分析】根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.【详解】解:∵AD∥BC,∠C=30°,∴∠FDC=∠C=30°,故①正确;∴∠ADC=180°-∠FDC=180°-30°=150°,∵∠ADB:∠BDC=1:2,∴∠BDC=2∠ADB,∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,解得∠ADB=50°,故②正确∵∠EAB=72°,∴∠DAN=180°-∠EAB=180°-72°=108°,∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确∵AD∥BC,∴∠CBN=∠DAN=108°,故④正确其中正确说法的个数是4个.故选择D.【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.3.如图,已知120AOB ∠=︒,在AOB ∠的平分线OM 上有一点C ,将一个60°角的顶点与点C 重合,它的两条边分别与直线OA ,OB 相交于点D ,E .下列结论:(1)CD CE =;(2)OE OD OC +=;(3)OE OD OC -=;(4)OC a =,OD b =,则=-OE a b ;其中正确的有( ).A .1个B .2个C .3个D .4个【答案】A【分析】 过C 点作CN OB ⊥于N 点,CF OA ⊥于F 点,根据AOB ∠的平分线OM 上有一点C ,得60AOC BOC ∠=∠=︒,CF CN =,从而得12ON OC =,12OF OC =,36060∠=︒-∠-∠-∠=︒FCN AOB CFO CNO ;当D ,E 在射线OA ,OB 上时,通过证明≌CFD CNE △△,得OE OD OC +=;当D ,E 在直线OA ,射线OB 上时,通过≌CFD CNE △△,得OE OD OC -=;当D ,E 在直线OA 、OB 上时,得OD OE OC -=,即可完成求解.【详解】过C 点作CN OB ⊥于N 点,CF OA ⊥于F 点∵OC 平分AOB ∠又∵120AOB ∠=︒∴60AOC BOC ∠=∠=︒,CF CN =,∴30∠=∠=︒OCF OCN ∴12ON OC =,12OF OC =,36060∠=︒-∠-∠-∠=︒FCN AOB CFO CNO ①当D ,E 在射线OA ,OB 上时60∠=∠=︒FCN DCE∴∠=∠FCD ECN∵CF CN =,90∠=∠=︒CFD CNE∴≌CFD CNE △△∴CD CE =,=FD NE∴+=++=++=+=OE OD ON NE OD ON DF OD ON OF OC .②如图,当D ,E 在直线OA ,射线OB 上时≌CFD CNE △△=+=+=++=+OE ON NE ON DF ON OF OD OC OD∴OE OD OC -=;③如图,当D ,E 在直线OA 、OB 上时≌CFD CNE △△∴OD OE OC -=综上:②③④错误;故选:A .【点睛】本题考查了角平分线、全等三角形、直角三角形两锐角互余的知识;解题的关键是熟练掌握角平分线、全等三角形的性质,从而完成求解.4.如图,AB ,CD 相交于点E ,且AB=CD ,试添加一个条件使得△ADE ≌△CBE .现给出如下五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB .其中符合要求有( )A.2个B.3个C.4个D.5个【答案】D【分析】延长DA、BC使它们相较于点F ,首先根据AAS证明△FAB≌△FCD,然后根据全等三角形的性质即可得到AF=FC,FD=FB,进而得到AD=BC,即可证明△ADE≌△CBE,可判断①、②的正误;根据SAS证明△ADE≌△CBE,即判断③、④的正误;连接BD,根据SSS证明△ADB≌△CBD,根据全等三角形的性质得到∠A=∠C,结合①即可证明⑤.【详解】延长DA、BC使它们相较于点F∵∠DAB=∠DCB,∠AED=∠BEC∴∠B=∠D又∵∠F=∠F,AB=CD∴△FAB≌△FCD∴AF=FC,FD=FB∴AD=BC∴△ADE≌△CBE,即①正确;同理即可证明②正确;∵AE=CE,AB=CD∴DE=BE又∵∠AED=∠BEC∴△ADE≌△CBE,③正确;同理即可证明④正确;连接BD,∵AD=CB,AB=CD,BD=BD∴△ADB≌△CBD∴∠DAB=∠BCD∴△ADE≌△CBE,⑤正确;故选D.【点睛】本题考查了三角形全等的判定方法,主要包括:SSS、SAS、AAS、ASA,难点在于添加辅助线来构造三角形全等,关键在于应根据所给的条件判断应证明哪两个三角形全等.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题5.“三角形的一个外角等于与它不相邻的两个内角的和”揭示了三角形的一个外角与它的两个内角之间的数量关系,请探索并写出三角形没有公共顶点的两个外角与它的第三个内角之间的关系:_______.【答案】三角形没有公共顶点的两个外角之和等于与它们都不相邻的一个内角加上180°【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式,再根据三角形的内角和定理整理即可得解.【详解】解:如图,根据三角形的外角性质,∠1=∠A+∠ACB ,∠2=∠A+∠ABC , ∴∠1+∠2=∠A+∠ACB+∠A+∠ABC ,根据三角形内角和定理,得∠A+∠ABC+∠ACB=180°,∴∠1+∠2=∠A+180°,∴三角形没有公共顶点的两个外角之和等于与它们都不相邻的一个内角加上180°. 故答案为:三角形没有公共顶点的两个外角之和等于与它们都不相邻的一个内角加上180°..【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键是解题的关键,作出图形更形急直观.6.设, , a b c 表示一个三角形三边的长,且他们都是自然数,其中a b c ≤≤,若b =2020,则满足此条件的三角形共有____个.【答案】2041210【分析】已知2020b =,根据三角形的三边关系求解,首先确定出a 、c 三边长取值范围,进而得出各种情况有几个三角形.【详解】解:a ,b ,c 表示一个三角形三边的长,且它们都是自然数,其中a b c ,如果2020b =,则02020a ,20204039c ,∴当2020c =时,根据两边之和大于第三边,则a 的取值范围为12020a ,有2020个三角形;当2021c =时,根据两边之和大于第三边,则a 的取值范围为22020a ,有2019个三角形;当2022c =时,根据两边之和大于第三边,则a 的取值范围为32020a ,有2018个三角形;⋯当4039c =时,根据两边之和大于第三边,则a 的取值范围为2020a =,有1个三角形;∴三角形数量是:(12020)2020(202020192018321)20412102+⨯+++⋯+++==, 故答案为:2041210.【点睛】本题主要考查一元一次不等式、三角形的三边关系,解题的关键是利用了在三角形中任意两边之和大于第三边,任意两边之差小于第三边的三边关系.三、解答题7.已知ABC 中,(1)如图1,点E 为BC 的中点,连AE 并延长到点F ,使=FE EA ,则BF 与AC 的数量关系是________.(2)如图2,若AB AC =,点E 为边AC 一点,过点C 作BC 的垂线交BE 的延长线于点D ,连接AD ,若DAC ABD ∠=∠,求证:AE EC =.(3)如图3,点D 在ABC 内部,且满足AD BC =,BAD DCB ∠=∠,点M 在DC 的延长线上,连AM 交BD 的延长线于点N ,若点N 为AM 的中点,求证:DM AB =.【答案】(1)BF AC =;(2)见解析;(3)见解析【分析】(1)通过证明BEF CEA △≌△,即可求解;(2)过点A 引AF CD ∥交BE 于点F ,通过≌ABF CAD 得到AF CD =,再通过AFE CDE ≌即可求解;(3)过点M 作MT AB ∥交BN 的延长线于点T ,MG AD ,在MT 上取一点K ,使得MK CD =,连接GK ,利用全等三角形的性质证明AB MT =、DM MT =,即可解决.【详解】证明:(1)BF AC =由题意可得:BE EC =在BEF 和CEA 中BE EC BEF CEA EF AE =⎧⎪∠=∠⎨⎪=⎩∴()BEF CEA SAS △≌△∴BF AC =(2)过点A 引AF CD ∥交BE 于点F ,如下图:由题意可得:CD BC ⊥,且∠=∠EAF ACD则AF BC ⊥又∵AB AC =∴AF 平分BAC ∠,∴BAF EAF ACD ∠=∠=∠∴在ABF 和CAD 中ABF DAC AB ACBAF ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABF CAD ASA ≌∴AF CD =在AFE △和CDE △中FAE DCE AEF CED AF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AFE CDE AAS △≌△∴AE EC =(3)证明:过点M 作MT AB ∥交BN 的延长线于点T ,MG AD ,在MT 上取一点K ,使得MK CD =,连接GK ,如下图:∵AB MT ∥∴ABN T ∠=∠∵ANB MNT ∠=∠,AN MN =∴()ANB MNT AAS △≌△∴BN NT =,AB MT =∵MG AD∴ADN MGN ∠=∠∵,AND MNG AN NM ∠=∠=∴()AND MNG AAS △≌△∴,AD MG DN NG ==∴BD GT =∵,BAN AMT DAN GMN ∠=∠∠=∠∴BAD GMT ∠=∠∵BAD BCD ∠=∠∴BCD GMK ∠=∠∵,AD BC AD GM ==∴BC GM =又∵MK CD =∴()BCD GMK SAS △≌△∴,GK BD BDC MKG =∠=∠∴,GK GT MDT GKT =∠=∠∴GKT T ∠=∠∴DM MT =∵AB MT =∴DM AB =【点睛】本题属于三角形综合题,考查了全等三角形的判定与性质,等腰三角形的判定与性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.8.如图,//AB CD ,点O 在直线CD 上,点P 在直线AB 和CD 之间,ABP PDQ α∠=∠=,PD 平分BPQ ∠.(1)求BPD ∠的度数(用含α的式子表示);(2)过点D 作//DE PQ 交PB 的延长线于点E ,作DEP ∠的平分线EF 交PD 于点F ,请在备用图中补全图形,猜想EF 与PD 的位置关系,并证明;(3)将(2)中的“作DEP ∠的平分线EF 交PD 于点F ”改为“作射线EF 将DEP ∠分为1:3两个部分,交PD 于点F ”,其余条件不变,连接EQ ,若EQ 恰好平分PQD ∠,请直接写出FEQ ∠=__________(用含α的式子表示).【答案】(1)2BPD α∠=;(2)画图见解析,EF PD ⊥,证明见解析;(3)452α︒-或3452α︒-【分析】(1)根据平行线的传递性推出////PG AB CD ,再利用平行线的性质进行求解; (2)猜测EF PD ⊥,根据PD 平分,2BPQ BPD α∠∠=,推导出2BPD DPQ α∠=∠=,再根据//DE PQ 、EF 平分DEP ∠,通过等量代换求解;(3)分两种情况进行讨论,即当:1:3PEF DEF ∠∠=与:1:3DEF PEF ∠∠=,充分利用平行线的性质、角平分线的性质、等量代换的思想进行求解. 【详解】(1)过点P 作//PG AB ,//,//AB CD PG AB ,////PG AB CD ∴,,BPG ABP DPG PDQ αα∴∠=∠=∠=∠=,2BPD BPG DPG α∴∠=∠+∠=.(2)根据题意,补全图形如下:猜测EF PD ⊥,由(1)可知:2BPD α∠=,PD 平分,2BPQ BPD α∠∠=,2BPD DPQ α∴∠=∠=,//DE PQ ,2EDP DPQ α∴∠=∠=,1801804DEP BPD EDP α∴∠=︒-∠-∠=︒-,又EF 平分DEP ∠,19022PEF DEP α∠=∠=︒-,18090EFD PEF BPD ∴∠=︒-∠-∠=︒,EF PD ∴⊥. (3)①如图1,:1:3PEF DEF ∠∠=,由(2)可知:2,1804EPD DPQ EDP DEP αα∠=∠=∠=∠=︒-,:1:3PEF DEF ∠∠=,1454PEF DEP α∴∠=∠=︒-,313534DEF DEP α∠=∠=︒-,//DE PQ ,DEQ PQE ∴∠=∠,180EDQ PQD ∠+∠=︒, 2,EDP PDQ αα∠=∠=, 3EDQ EDP PDQ α∴∠=∠+∠=, 1801803PQD EDQ α∠=︒-∠=︒-, 又EQ 平分PQD ∠,139022PQE DQE DEQ PQD α∴∠=∠=∠=∠=︒-,331353(90)4522FEQ DEF DEQ ααα∴∠=∠-∠=︒--︒-=︒-;②如图2,1804DEP α∠=︒-,1803PQD α∠=︒-(同①);若:1:3DEF PEF ∠∠=,则有11(1804)4544DEF DEP αα∠=∠=⨯︒-=︒-,又113(1803)90222PQE DQE PQD αα∠=∠=∠=⨯︒-=︒-,//DE PQ ,3902DEQ PQE α∴∠=∠=︒-,1452FEQ DEQ DEF α∴∠=∠-∠=︒-,综上所述:3452FEQ α∠=︒-或452α︒-,故答案是:452α︒-或3452α︒-. 【点睛】本题考查了平行线的性质、角平分线、三角形内角和定理、垂直等相关知识点,解题的关键是掌握相关知识点,作出适当的辅助线,通过分类讨论及等量代换进行求解. 9.问题提出:(1)我们把两个面积相等但不全等的三角形叫做偏等积三角形,如图,ABC 中,7AC =9BC =,10AB =,P 为AC 上一点,当AP =______时,ABP △与CBP 是偏等积三角形; 问题探究:(2)如图,ABD △与ACD △是偏等积三角形,2AB =,6AC =,且线段AD 的长度为正整数,过点C 作//CE AB 交AD 的延长线于点E ,求AE 的长度; 问题解决:(3)如图,四边形ABED 是一片绿色花园,ACB △、DCE 是等腰直角三角形,90ACB DCE ∠=∠=︒(090)BCE <∠<︒.①ACD △与BCE 是偏等积三角形吗?请说明理由;②已知60m BE =,ACD △的面积为22100m .如图,计划修建一条经过点C 的笔直的小路CF ,F 在BE 边上,FC 的延长线经过AD 中点G .若小路每米造价600元,请计算修建小路的总造价.【答案】(1)72;(2)6;(3)①是偏等积三角形,理由见解析;②42000元【分析】(1)当AP CP =时,则72AP =,证ABP CBP S S ∆∆=,再证ABP ∆与CBP ∆不全等,即可得出结论;(2)由偏等积三角形的定义得ABD ACD S S ∆∆=,则BD CD =,再证()CDE BDA AAS ∆≅∆,则2CE AB ==,ED AD =,得2AE ED AD AD =+=,然后由三角形的三边关系求解即可; (3)①过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,证()ACM BCN AAS ∆≅∆,得AM BN =,则ACD BCE S S ∆∆=,再证ACD ∆与BCE ∆不全等,即可得出结论;②过点A 作//AN CD ,交CG 的延长线于N ,证得()AGN DGC AAS ∆≅∆,得到AN CD =,再证()ACN CBE SAS ∆≅∆,得ACN CBE ∠=∠,由余角的性质可证CF BE ⊥,然后由三角形面积和偏等积三角形的定义得12BCE S BE CF ∆=⋅,2100BCE ACD S S ∆∆==,求出70()CF m =,即可求解. 【详解】解:(1)当72AP CP ==时,ABP ∆与CBP ∆是偏等积三角形,理由如下: 设点B 到AC 的距离为h ,则12ABP S AP h ∆=⋅,12CBP S CP h ∆=⋅,ABP CBP S S ∆∆∴=,10AB =,7BC =,AB BC ∴≠,AP CP =,PB PB =, ABP ∴∆与CBP ∆不全等, ABP ∴∆与CBP ∆是偏等积三角形,故答案为:72;(2)设点A 到BC 的距离为n ,则12ABD S BD n ∆=⋅,12ACD S CD n ∆=⋅,ABD ∆与ACD ∆是偏等积三角形,ABD ACD S S ∆∆∴=,BD CD ∴=,//CE AB ,ECD B ∴∠=∠,E BAD ∠=∠,在CDE ∆和BDA ∆中,ECD B E BAD CD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()CDE BDA AAS ∴∆≅∆,2CE AB ∴==,ED AD =,2AE ED AD AD ∴=+=,线段AD 的长度为正整数,AE ∴的长度为偶数,在ACE ∆中,6AC =,2CE =,6262AE ∴-<<+,即:48AE <<,6AE ∴=;(3)①ACD ∆与BCE ∆是偏等积三角形,理由如下: 过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,如图3所示:则90AMC BNC ∠=∠=︒,ACB ∆、DCE ∆是等腰直角三角形,90ACB DCE ∴∠=∠=︒,AC BC =,CD CE =,3603609090180BCN ACD ACB DCE ∴∠+∠=︒-∠-∠=︒-︒-︒=︒,180ACM ACD ∠+∠=︒, ACM BCN ∴∠=∠,在ACM ∆和BCN ∆中, AMC BNC ACM BCN AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ACM BCN AAS ∴∆≅∆,AM BN ∴=,12ACD S CD AM ∆=⋅,12BCE S CE BN ∆=⋅,ACD BCE S S ∆∆∴=,180BCE ACD ∠+∠=︒,090BCE ︒<∠<︒,ACD BCE ∴∠≠∠,CD CE =,AC BC =,ACD ∴∆与BCE ∆不全等, ACD ∴∆与BCE ∆是偏等积三角形;②如图4,过点A 作//AN CD ,交CG 的延长线于N ,则N GCD ∠=∠,G 点为AD 的中点, AG GD ∴=,在AGN ∆和DGC ∆中,N GCDAGN DGC AG DG ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AGN DGC AAS ∴∆≅∆,AN CD ∴=,CD CE =,AN CE ∴=, //AN CD ,180CAN ACD ∴∠+∠=︒,90ACB DCE ∠=∠=︒,3609090180ACD BCE ∴∠+∠=︒-︒-︒=︒,BCE CAN ∴∠=∠,在ACN ∆和CBE ∆中,AN CE CAN BCE AC CB =⎧⎪∠=∠⎨⎪=⎩, ()ACN CBE SAS ∴∆≅∆,ACN CBE ∴∠=∠,1809090ACN BCF ∠+∠=︒-︒=︒, 90CBE BCF ∴∠+∠=︒,90BFC ∴∠=︒,CF BE ∴⊥.由①得:ACD ∆与BCE ∆是偏等积三角形,12BCE S BE CF ∆∴=⋅,2100BCE ACD S S ∆∆==, 22210070()60BCE S CF m BE ∆⨯∴===, ∴修建小路CF 的总造价为:6007042000⨯=(元).【点睛】本题考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明△A CM ≌△BCN 和△ACN ≌△CBE 是解题的关键,属于中考常考题型.10.如图1,点M 在直线AB 上,点P ,N 在直线CD 上,过点N 作NE ∥PM ,连接ME .(1)若AB ∥CD ,点E 在直线AB ,CD 之间,求证:∠MEN =∠BME +∠MPN ; (2)如图2,ME 的延长线交直线CD 于点Q ,作NG 平分∠ENQ 交EQ 于点G ,作EF 平分∠MEN ,过点E 作HE ∥NG .若点F ,H 分别在MP ,PQ 上,探究当∠MPQ +2∠FEH =90°时,线段NE 与NG 的大小关系.【答案】(1)见解析;(2)NE <NG ,见解析 【分析】(1)过点E 作//EF CD ,利用平行线的性质即可得出结论;(2)利用//NE PM ,EF 平分MEN ∠,可得MEF MFE FEN ∠=∠=∠;利用290MPQ FEH ∠+∠=︒,//HE NG ,NG 平分ENQ ∠可得45FEN ∠=︒;进而可得MEN ∆为等腰直角三角形,则PM QM ⊥,由于//NE PM ,于是NE MQ ⊥,根据垂线段最短可得NE NG <.【详解】解:(1)证明:过点E 作//EF AB ,如下图,//FE AB ,MEF BME ∴∠=∠.//AB CD ,//EF AB ,//EF CD ∴.FEN END ∴∠=∠. //NE PM , END MPD ∴∠=∠. FEN MPN ∴∠=∠. MEN MEF FEN ∠=∠+∠, MEN BME MPN ∴∠=∠+∠.(2)NE NG <,理由://NE PM , FEN MFE ∴∠=∠.EF 平分MEN ∠,FEN MEF ∴∠=∠, MEF MFE FEN ∴∠=∠=∠. //HE NG , HEN ENG ∴∠=∠.NG 平分ENQ ∠,12ENG ENQ ∴∠=∠.//NE PM ,MPQ ENQ ∴∠=∠.12HEN MPQ ∴∠=∠.290MPQ FEH ∠+∠=︒,∴1452MPQ FEH ∠+∠=︒.即45HEN FEH ∠+∠=︒,45FEN ∴∠=︒.45MEF MFE FEN ∴∠=∠=∠=︒. 90FME ∴∠=︒. //NE PM ,90NEQ FME ∴∠=∠=︒.即NE MQ ⊥. 垂线段最短,NE NG ∴<.【点睛】本题主要考查了平行线的性质,角平分线的定义,三角形的内角和定理.过点E 作已知直线的平行线是解题的关键.。
第1章 平行线 同步练习
一、选择题: (每题3分,共30分)
1、下列所示的四个图形中,1∠和2∠是同位角...的是( )
A. ②③
B. ①②③
C. ①②④
D. ①④ 2、两平行直线被第三条直线所截,同位角的平分线( ) A.互相重合 B.互相平行 C.互相垂直
D.相交
3、如图3,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )
A.AD ∥BC
B.∠B =∠C 图3
C.∠2+∠B =180°
D.AB ∥CD
4、如右图所示,点在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D.
180=∠+∠ACD D
5、一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) A. 第一次向左拐
30,第二次向右拐
30 B. 第一次向右拐
50,第二次向左拐
130 C. 第一次向右拐 50,第二次向右拐 130 D. 第一次向左拐 50,第二次向左拐
130 6、已知:如图,下面判定正确的是( )
A . ∵∠1=∠2,∴AB∥CD
B.
∵∠1+∠2
①
2121
②
1
2
③
1
2
④
E D
C
B
A
=180°,∴AB∥CD
C. ∵∠3=∠4,∴AB∥CD
D. ∵∠1+∠4=180°,∴AB∥CD
7、. 如右图所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( )
A. 3对
B. 4对
C. 5对
D. 6对
8、如图14,若AB ∥CD ,则∠A 、∠E 、∠D 之间的关系是( )
A 、∠A +∠E +∠D =180°
B 、∠A -∠E +∠D =180°
C 、∠A +∠E -∠
D =180° D 、∠A +∠
E +∠D =270° 9、两个角的两边分别平行,其中一个角是60°,则另一个角是
( ) A. 60° B. 120° C. 60°或120° D. 无法确定
10、如图,∠1+∠2+∠3=232°,AB ∥DF ,BC ∥DE ,
则∠3-∠1的度数为( )
(A) 76° (B) 52° (C) 75° (D) 60° 二、填空题:(18、19、20每空格1分,其余每题2分,共38分)
11、如图,若l 1∥l 2,∠1=45°,则∠2=_____.
12、如图,∠1=82°,∠2=98°,∠3=80°,则∠4的度数为_____.
13、如图,安装某管道,需经过两次拐弯,若要求拐弯后的管道与拐弯前的管道平行, 第一次拐弯处的∠B =142°,那么第二次拐弯处的∠C = .
14、用吸管吸易拉罐内的饮料时,如图,
1101
=∠,则=2∠ (易拉罐的上下底面互相平行) 15、如图,AD ∥BC ,AC 与BD 相交于O ,则图中相等的角有_____对.
题图
第12题图
16、如图,DAE 是一条直线,DE ∥BC ,则∠BAC =_____.
17、如图,AB ∥CD ,AD ∥BC ,则图中与∠A 相等的角有_____个.
第19题
18.如图,标有角号的7个角中共有_____对内错角,_____对同位角,_____对同旁内角.
19、如图,按角的位置关系填空:A ∠与1∠是 ,是由直线 与 被 所截构成的;A ∠与3∠是 ;是由直线 与 被 所截构成的;2∠与3∠是 ,是由直线 与 被 所截构成的。
20、如图,(1)∵∠A =_____(已知),
∴AC ∥ED ( ) (2)∵∠2=_____(已知),
∴AC ∥ED ( ) (3)∵∠A +_____=180°(已知),
∴AB ∥FD ( ) (4)∵AB ∥_____(已知),
∴∠2+∠AED =180°( ) 第20题图 (5)∵AC ∥_____(已知),
∴∠C =∠1( )
三、解答题 (21至24题每题4分,第25题6分,第26题10分,共32分) 21、如图,CD 平分∠ACB ,DE ∥BC ,∠AED =80°,求∠EDC 的度数.
第15题图
第16题图
第17题图
第18题图
第14题图
22、如图,∠1=
2
1
∠2,∠1+∠2=162°,求∠3与∠4的度数.
23、如图,CD ∥AB ,∠DCB =70°,∠CBF =20°,∠EFB =130°,问直线EF 与AB 有怎样的位置关系,为什么?
24、如图20,BD ⊥AC ,EF ⊥AC ,D 、F 分别为垂足,且∠1=∠4,求证:∠ADG =∠C
25、如图AB ∥CD , AD ∥BC ,(1)请你在图中画出表示平行线AD 与BC 、AB 与CD 之间距离的线段. (2)若AB=3,BC=6,AD 与BC 之间的距离是2,求AB 与CD 之间距离。
26、(1)已知AB∥CD,下列各图中的∠ABE、∠E、∠CDE三个角之间各有什么关系?填入下列括号内,并选择一个你自己喜欢的图加以证明。
(1)(2)(3)(4)
解:(1)图结论:;(2)图结论:;
(3)图结论:;(4)图结论:;
证明:
(2)探索规律:AB∥CD,则下面两图中的∠A BE1、∠E1、∠E2···∠EnCD之间分别有什么关系?写出结果,不要求说明理由。
(5)(6)
答案:
一、选择题:CBBBA,BCCCB
二、填空题:11)、135°, 12)、80°, 13)、142°, 14)、70°, 15)、4, 16)、46°, 17)、
3, 18)、4,24,19)、略, 20)、略,
三、解答题:21)、40°, 22)、∠3=54°, ∠4=72°, 23)、EF∥AB。