2017-2018年江西省赣州市宁都县八年级上学期期中数学试卷及参考答案
- 格式:doc
- 大小:462.50 KB
- 文档页数:25
2017~2018学年度第一学期期中质量检测八年级数学试卷说明:1、考试时间:100分钟;2、满分:120分。
一、单项选择题(本大题10小题,每小题3分,共30分)1、如图,下列图案中,是轴对称图形的是()2、以下面各组线段的长为边,能组成三角形的是()A、1,2,3B、3,4,8C、5,6,11D、2,3,43、下列图形中具有不稳定性的是()A、长方形B、等腰三角形C、直角三角形D、锐角三角形4、如图,AC平分∠BAD,∠B=∠D,AB=8cm,则AD=()A、6cmB、8cmC、10cmD、4cm5、已知直角三角形中30°角所对的直角边为2cm,则斜边的长度为()A、2cmB、4cmC、6cmD、8cm6、一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是()A、等腰三角形B、锐角三角形C、直角三角形D、钝角三角形7、点P(1,2)关于x轴对称点的坐标是()A、(-1,2)B、(1,-2)C、(1,2)D、(-1,-2)8、等腰三角形有两条边长分别为5和10,则这个等腰三角形的周长为()A、15B、20C、25或20D、259、下列条件中,不能判定两个直角三角形全等的是()A、两锐角对应相等B、斜边和一条直角边对应相等C、两直角边对应相等D、一个锐角和斜边对应相等10、如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为()A、72°B、36°C、60°D、82°二、填空题(本大题6小题,每小题4分,共24分)11、正十二边形的内角和是。
12、已知点A(m+2,-3),B(-2,n-4)关于y轴对称,则m= ,n= 。
13、△ABC和△A′B′C′,已知AB=A′B′,BC=B′C′,则增加条件后,△ABC≌△A′B′C′。
(填写一个即可)14、如图,在等边△ABC中,AD⊥BC,AB=5cm,则DC的长为。
八年级(上)期中数学试卷一、精心选一选(每题3分,共15分)1.(﹣2)3的值为()A.﹣6 B.6 C.﹣8 D.82.单项式﹣4πr2的系数是()A.4 B.﹣4 C.4πD.﹣4π3.下列运算正确的是()A.a4•a5=a20B.x8÷x2=x4C.(a3)2=a9D.(3a2)2=9a44.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1 D.3x2+2x=5x35.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.二、仔细填一填(每小题2分,共20分)6.两个单项式a5b2m与﹣a n b4是同类项,则m=,n=.7.2a+3(b﹣c)=,a3•a4÷a5=.8.﹣(2x2y3)2=;4x2﹣(﹣2xy)=.9.因式分解:a2﹣3a=.10.计算﹣6x(x﹣3y)=;(x﹣1)(x+1)﹣x2=.11.函数的自变量x的取值范围是.12.弹簧原长3cm,每加重1kg弹簧伸长0.5cm,写出弹簧长度L(m)与载重m (kg)的函数关系式为.当载重2kg时,弹簧长度为cm.13.如果正比例函数的图象经过点(1,2),那么这个正比例函数的解析式为.14.如图,直线y=5x+10与x轴、y轴交于点A,B,则△AOB的面积为.15.观察下列各式1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…把你猜想到的规律用只含一个字母的等式表示出来.三、耐心算一算.16.计算下列各题(1)2(x﹣3x2+1)﹣3(2x2﹣2)(2)(﹣a2)3+(﹣a3)2﹣a2•a4(3)(x+3)2﹣(x+2)(x﹣1)(4)(﹣8x3y2+12x2y﹣4x2)÷(﹣2x)2(5)用简便方法计算:2008×2006﹣20072.17.分解因式(1)25m2﹣n2(2)ax2﹣2axy+ay2(3)x3﹣9x.18.先化简(2x﹣1)2﹣(3x+1)(3x﹣1)+5(x﹣1),再选取一个你喜欢的数代入求值.四、函数图象的认识.(1小题6分,2小题8分,共14分)19.“龟兔赛跑”是同学们熟悉的寓言故事,图中表示路程S(米)与时间t(分)之间的关系,那么可以知道:(1)赛跑中,免子共睡了分钟(2)乌龟在这次赛跑中的平均速度为米/分.(3)比先达到终点,你有何感想.20.如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?五、(共10分)21.当m为何值时函数y=(m+2)是正比例函数.22.已知直线y=(3m﹣1)x+m﹣1,当m为何值时(1)与y轴相交于(0,3)(2)与x轴相交于(2,0)(3)图象经过一、三、四象限?六、解答题(共1小题,满分6分)23.一汽车的速度是每小时60千米,一次加满油可加40升,每小时耗油5升,t小时后行程S千米.(1)写出一次加满油后所行路程S与时间t的函数关系式.(2)求出自变量的取值范围.(3)画出这个函数的图象.七、(1小题4分,2小题7分,共11分)24.已知直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),则点P(﹣2,4)是否在直线y=kx﹣6上?25.一次函数的图象经过点A(﹣6,4)B(3,0)(1)求这个函数的解析式.(2)画出这个函数的图象.(3)若该直线经过点(9,m),求m的值.(4)求△AOB的面积.八、阅读下面材料再填空.26.x2+(p+q)x+pq型式子的因式分解∵x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)(加法结合律)=x(x+p)+q(x+p)=(x+p)(x+q)∴我们得到x2+(p+q)x+pq=(x+p)(x+q)①利用①式可以将某些二次项系数为1的二次三项式分解因式.例把x2+3x+2分解因式分析:x2+3x+2中的二次项系数为1,常数项2=1×2,一次项系数3=1+2,这是一个x2+(p+q)x+pq型式子.∴解:x2+3x+2=(x+1)(x+2)请仿照上面的方法将下列多项式分解因式:①x2+7x+10=;②x2﹣2y﹣8=.八年级(上)期中数学试卷参考答案与试题解析一、精心选一选(每题3分,共15分)1.(﹣2)3的值为()A.﹣6 B.6 C.﹣8 D.8【考点】有理数的乘方.【分析】根据有理数乘方的法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.【解答】解:(﹣2)3=﹣8,故选C.2.单项式﹣4πr2的系数是()A.4 B.﹣4 C.4πD.﹣4π【考点】单项式.【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.【解答】解:由单项式系数的定义,单项式﹣4πr2的系数是﹣4π.故选D.3.下列运算正确的是()A.a4•a5=a20B.x8÷x2=x4C.(a3)2=a9D.(3a2)2=9a4【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的乘除法运算法则以及结合积的乘方运算法则计算得出答案.【解答】解:A、a4•a5=a9,故此选项计算错误,不合题意;B、x8÷x2=x6,故此选项计算错误,不合题意;C、(a3)2=a6,故此选项计算错误,不合题意;D、(3a2)2=9a4,正确,符合题意.故选:D.4.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1 D.3x2+2x=5x3【考点】合并同类项.【分析】直接利用合并同类项法则分别判断得出答案.【解答】解:A、3a+2b,无法合并,故此选项错误;B、﹣4xy+2xy=﹣2xy,正确;C 、3y 2﹣2y 2=y 2,故此选项错误;D 、3x 2+2x ,无法合并,故此选项错误;故选:B .5.一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧时剩下的长度为y (cm )与燃烧时间x (小时)的函数关系用图象表示为下图中的( )A .B .C .D .【考点】一次函数的应用;一次函数的图象.【分析】根据实际情况即可解答.【解答】解:蜡烛剩下的长度随时间增长而缩短,根据实际意义不可能是D ,更不可能是A 、C .故选B .二、仔细填一填(每小题2分,共20分)6.两个单项式a 5b 2m 与﹣a n b 4是同类项,则m= 2 ,n= 5 .【考点】同类项.【分析】根据同类项的定义直接可得到m、n的值.【解答】解:∵单项式a5b2m与﹣a n b4是同类项,∴2m=4,n=5.即m=2,n=5.故答案为:2;5.7.2a+3(b﹣c)=2a+3b﹣3c,a3•a4÷a5=a7.【考点】同底数幂的除法;同底数幂的乘法.【分析】直接利用同底数幂的乘除法运算法则以及结合去括号法则计算得出答案.【解答】解:2a+3(b﹣c)=2a+3b﹣3c,a3•a4÷a5=a12÷a5=a7.故答案为:2a+3b﹣3c,a7.8.﹣(2x2y3)2=﹣4x4y6;4x2﹣(﹣2xy)=4x2+2xy.【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则求出答案.【解答】解:﹣(2x2y3)2=﹣4x4y6;4x2﹣(﹣2xy)=4x2+2xy.故答案为:﹣4x4y6;4x2+2xy.9.因式分解:a2﹣3a=a(a﹣3).【考点】因式分解﹣提公因式法.【分析】直接把公因式a提出来即可.【解答】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).10.计算﹣6x(x﹣3y)=﹣6x2+18xy;(x﹣1)(x+1)﹣x2=﹣1.【考点】平方差公式;单项式乘多项式.【分析】根据单项式乘以多项式法则求出即可;根据平方差公式展开,再合并同类项即可.【解答】解:﹣6x(x﹣3y)=﹣6x2+18xy,(x﹣1)(x+1)﹣x2=x2﹣1﹣x2=﹣1,故答案为:﹣6x2+18xy,﹣1.11.函数的自变量x的取值范围是x≥2.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.12.弹簧原长3cm,每加重1kg弹簧伸长0.5cm,写出弹簧长度L(m)与载重m (kg)的函数关系式为L=3+0.5m.当载重2kg时,弹簧长度为4cm.【考点】函数关系式.【分析】根据题意列出函数关系式,然后将m=2代入函数关系式即可求出弹簧长度.【解答】解:由题意可知:L=3+0.5m当m=2时,L=4,故答案为:L=3+0.5m;413.如果正比例函数的图象经过点(1,2),那么这个正比例函数的解析式为y=2x.【考点】待定系数法求正比例函数解析式.【分析】运用待定系数法求解析式.【解答】解:设此直线的解析式是y=kx,把(1,2)代入得:k=2,即直线的解析式是:y=2x.14.如图,直线y=5x+10与x轴、y轴交于点A,B,则△AOB的面积为10.【考点】一次函数图象上点的坐标特征.【分析】根据直线y=x+3的解析式可求出A、B两点的坐标,从而求得OA、OB 的长,然后根据三角形面积公式即可求得△AOB的面积.【解答】解:∵直线y=5x+10交x轴于点A,交y轴于点B,∴令y=0,则x=﹣2;令x=0,则y=10;∴A(﹣2,0),B(0,10),∴OA=2,OB=10,∴△AOB的面积=×2×10=10.故答案为10.15.观察下列各式1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…把你猜想到的规律用只含一个字母的等式表示出来(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).【考点】规律型:数字的变化类.【分析】根据给出的格式可得出:两个相邻的奇数相乘等于这两个奇数中间的偶数的平方减去1,根据此列出等式表示即可.【解答】解:∵1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…,∴规律为:(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).故答案为:(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).三、耐心算一算.16.计算下列各题(1)2(x﹣3x2+1)﹣3(2x2﹣2)(2)(﹣a2)3+(﹣a3)2﹣a2•a4(3)(x+3)2﹣(x+2)(x﹣1)(4)(﹣8x3y2+12x2y﹣4x2)÷(﹣2x)2(5)用简便方法计算:2008×2006﹣20072.【考点】整式的混合运算.【分析】(1)原式去括号合并即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用积的乘方运算法则变形,再利用多项式除以单项式法则计算即可得到结果;(5)原式变形后,利用平方差公式计算即可得到结果.【解答】解:(1)原式=2x﹣6x2+2﹣6x2+6=﹣12x2+2x+8;(2)原式=﹣a6+a6﹣a6=﹣a6;(3)原式=x2+6x+9﹣x2﹣x+2=5x+11;(4)原式=(﹣8x3y2+12x2y﹣4x2)÷4x2=﹣2xy2+3y﹣1;(5)原式=×﹣20072=20072﹣1﹣20072=﹣1.17.分解因式(1)25m2﹣n2(2)ax2﹣2axy+ay2(3)x3﹣9x.【考点】提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=(5m+n)(5m﹣n);(2)原式=a(x2﹣2xy+y2)=a(x﹣y)2;(3)原式=x(x2﹣9)=x(x+3)(x﹣3).18.先化简(2x﹣1)2﹣(3x+1)(3x﹣1)+5(x﹣1),再选取一个你喜欢的数代入求值.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,平方差公式计算,去括号合并得到最简结果,把x=0代入计算即可求出值.【解答】解:原式=4x2﹣4x+1﹣9x2+1+5x﹣5=﹣5x2+x﹣3,当x=0时,原式=﹣3.四、函数图象的认识.(1小题6分,2小题8分,共14分)19.“龟兔赛跑”是同学们熟悉的寓言故事,图中表示路程S(米)与时间t(分)之间的关系,那么可以知道:(1)赛跑中,免子共睡了40分钟(2)乌龟在这次赛跑中的平均速度为10米/分.(3)乌龟比免子先达到终点,你有何感想做事不能骄傲.【考点】函数的图象.【分析】(1)时间在增多,路程没有变化时,说明兔子在睡觉,时间为50﹣10;(2)平均速度=总路程÷总时间;(3)根据图象即可得到结论.【解答】解:(1)50﹣10=40分钟;故答案为:40;(2)500÷50=10米/分钟.故答案为:10.(3)乌龟比免子先达到终点,你有何感想:做事不能骄傲.故答案为:乌龟,免子,做事不能骄傲.20.如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?【考点】函数的图象.【分析】(1)根据观察函数图象的纵坐标,可得距离,观察函数图象的横坐标,可得时间;(2)根据观察函数图象的横坐标,可得体育场与文具店的距离;(3)观察函数图象的横坐标,可得在文具店停留的时间;【解答】解:(1)由纵坐标看出体育场离陈欢家2.5千米,由横坐标看出小刚在体育场锻炼了15分钟;(2)由纵坐标看出体育场离文具店3.5﹣2.5=1(千米);(3)由横坐标看出小刚在文具店停留55﹣35=20(分);(4)小强从文具店回家的平均速度是3.5÷=(千米/分).五、(共10分)21.当m为何值时函数y=(m+2)是正比例函数.【考点】正比例函数的定义.【分析】直接利用正比例函数的定义分析得出即可.【解答】解:根据题意,得:,由①,得:m=2或m=﹣2,由②,得:m≠﹣2,∴m=2,即当m=2时函数y=(m+2)是正比例函数.22.已知直线y=(3m﹣1)x+m﹣1,当m为何值时(1)与y轴相交于(0,3)(2)与x轴相交于(2,0)(3)图象经过一、三、四象限?【考点】一次函数图象与系数的关系.【分析】(1)把(0,3)代入直线解析式,求出m的值即可;(2)(2,0)代入直线解析式,求出m的值即可;(3)根据函数的图象的位置列出关于m的不等式,求出m的取值范围即可.【解答】解:(1)∵直线与y轴相交于点(0,3),∴m﹣1=3,解得m=4;(2)∵直线x轴相交于点(2,0),∴2(3m﹣1)+m﹣1=0,解得m=;(3)∵直线y=(3m﹣1)x+m﹣1图象经过一、三、四象限,∴,解得:<m<1.六、解答题(共1小题,满分6分)23.一汽车的速度是每小时60千米,一次加满油可加40升,每小时耗油5升,t小时后行程S千米.(1)写出一次加满油后所行路程S与时间t的函数关系式.(2)求出自变量的取值范围.(3)画出这个函数的图象.【考点】一次函数的应用.【分析】(1)根据题意可以得到一次加满油后所行路程S与时间t的函数关系式;(2)根据一次加满油可加40升,每小时耗油5升,可以得到t的取值范围;(3)根据(1)中的函数解析式和(2)中自变量的取值范围,可以画出相应的函数图象.【解答】解:(1)由题意可得,路程S与时间t的函数关系式为:S=60t;(2)∵一次加满油可加40升,每小时耗油5升,∴5t≤40,得t≤8,∴自变量的取值范围是:0≤t≤8;(3)当t=0时,S=0;当t=1时,S=60,故这个函数的图象如右图所示.七、(1小题4分,2小题7分,共11分)24.已知直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),则点P(﹣2,4)是否在直线y=kx﹣6上?【考点】两条直线相交或平行问题.【分析】直接利用图象上点的坐标性质得出m的值,进而得出k的值,进而判断点P(﹣2,4)是否在直线y=kx﹣6上.【解答】解:∵直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),∴﹣4=﹣2m,解得:m=2,故﹣4=2k﹣6,解得:k=1,故y=x﹣6,当x=﹣2时,y=﹣2﹣6=﹣8,故点P(﹣2,4)不在直线y=kx﹣6上.25.一次函数的图象经过点A(﹣6,4)B(3,0)(1)求这个函数的解析式.(2)画出这个函数的图象.(3)若该直线经过点(9,m),求m的值.(4)求△AOB的面积.【考点】待定系数法求一次函数解析式;一次函数的图象;一次函数图象上点的坐标特征.【分析】(1)利用待定系数法把点A(﹣6,4)B(3,0)代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式;(2)根据题意作出图象即可;(3)把(9,m)代入y=2x﹣2,即可求得m的值;(4)根据三角形的面积公式即可得到结论.【解答】解:(1)设一次函数为:y=kx+b,∵一次函数的图象经过点A(﹣6,4)B(3,0),∴,解得:∴这个一次函数的表达式为y=﹣x+;(2)图象如图所示,(3)把(9,m)代入y=﹣x+,得m=﹣;=×3×4=6.(4)S△AOB八、阅读下面材料再填空.26.x2+(p+q)x+pq型式子的因式分解∵x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)(加法结合律)=x(x+p)+q(x+p)=(x+p)(x+q)∴我们得到x2+(p+q)x+pq=(x+p)(x+q)①利用①式可以将某些二次项系数为1的二次三项式分解因式.例把x2+3x+2分解因式分析:x2+3x+2中的二次项系数为1,常数项2=1×2,一次项系数3=1+2,这是一个x2+(p+q)x+pq型式子.∴解:x2+3x+2=(x+1)(x+2)请仿照上面的方法将下列多项式分解因式:①x2+7x+10=(x+2)(x+5);②x2﹣2y﹣8=(y﹣4)(y+2).【考点】因式分解﹣十字相乘法等.【分析】根据x2+(p+q)x+pq=(x+p)(x+q)容易得出答案.【解答】解:①x2+7x+10=(x+2)(x+5);故答案为:(x+2)(x+5);②x2﹣2y﹣8=(y﹣4)(y+2);故答案为:(y﹣4)(y+2).2017年5月13日。
2017-2018学年上学期期中原创卷A卷八年级数学(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:人教版第11~13章。
第Ⅰ卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C .四边形的内角和与外角和相等D .角是轴对称图形6.如图,ABC BAD △≌△,点A 和点B ,点C 和点D 是对应点.如果AB =6厘米,BD =5厘米,AD =4厘米,那么BC 的长是 A .6 cmB .5 cmC .4 cmD .不能确定7.如图,ABC △中,AB AC =,点D 在AC 边上,且BD BC AD ==,则A ∠的度数为 A .36°B .45°C .54°D .72°8.如图,在ABC △中,∠BAC =56°,∠ABC =74°,BP 、CP 分别平分∠ABC 和∠ACB ,则∠BPC =A .102°B .112°C .115°D .118°9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',,11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36 cm,BC =24 cm, 2120cm ABC S =△,DE 长是A .4 cmB . 4.8 cmC . 5 cmD .无法确定12.使两个直角三角形全等的条件是A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 13.如图,已知40AOB ∠=︒,在AOB ∠的两边OA OB 、上分别存在点Q 、点P ,过点Q 作直线QR OB ∥,当OP QP =时,∠PQR 的度数是 A .60°B .80°C .100°D .120°14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 215.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.17.一个四边形,截一刀后得到的新多边形的内角和为__________. 18.若等腰三角形的一个角为80︒,则顶角为__________.19.已知点A (2a +3b ,−2)和A '(−1,3a +b )关于y 轴对称,则a +b 的值为__________.20.如图,ABC △中,90C ∠=︒,60BAC ∠=︒,AD 是角平分线,若8BD =,则CD 等于__________.21.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是ABC △的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.23.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.24.(本题满分8分)已知:如图,在ABC △中, D 为BC 上的一点, AD 平分EDC ∠,且E B ∠=∠, DE DC =.求证: AB AC =.25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△; (2)线段CC ′被直线l ; (3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.27.(本小题满分9分)如图,在Rt ABC △中,∠A =90°,AB=AC=4 cm ,若O 是BC 的中点,动点M 在AB 上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.△边AB上一动点(不与A,B重合)分别过点A,B向直线CD作垂28.(本小题满分9分)已知点D是ABC线,垂足分别为E,F,O为边AB的中点.(1)如图1,当点D与点O重合时,AE与BF的位置关系是____________,OE与OF的数量关系是__________;(2)如图2,当点D在线段AB上不与点O重合时,试判断OE与OF的数量关系,并给予证明;(3)如图3,当点D在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.(备注:直角三角形中,斜边上的中线等于斜边的一半)2017-2018学年上学期期中原创卷A卷八年级数学答案一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm【答案】B2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D【答案】C△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.【答案】D4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形【答案】B5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C.四边形的内角和与外角和相等D.角是轴对称图形【答案】A△≌△,点A和点B,点C和点D是对应点.如果AB=6厘米,BD=5厘米,AD=4厘米,6.如图,ABC BAD那么BC的长是A.6 cm B.5 cm C.4 cm D.不能确定【答案】B解:∵△ABC≌△BAD,对应为点A对点B,点C对点D,∴AC=BD∵BD=5cm(已知)∴AC=5cm故选B.7.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A为A.36° B.45° C.54° D.72°【答案】A∵BD=BC=AD,AC=AB,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°∵∠A+∠C+∠ABC=180°∴x+2x+2x= 180,∴x=36,∴∠A=36° .故选B .△中,∠BAC=56°,∠ABC=74°,BP、CP分别平分∠ABC和∠ACB,则∠BPC= 8.如图,在ABCA.102°B.112°C.115°D.118°【答案】D∵∠BAC=56°,∠A+∠ABC+∠ACB= 180°,∴∠ABC+∠ACB2=62°∵BP 、CP 分别平分∠ABC 和∠ACB , ∴∠BPC +∠ABC+∠ACB2= 180°∴∠BPC=118° .9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个【答案】A10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',, 【答案】C11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36cm ,BC =24cm ,2120cm ABC S =△,DE 长是( )A .4 cmB . 4.8 cmC . 5 cmD .无法确定【答案】A12.使两个直角三角形全等的条件是( )A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 【答案】D13.如图,已知∠AOB=40°,在∠AOB 的两边OA 、OB 上分别存在点Q 、点P ,过点Q 作直线QR ∥OB ,当OP=QP 时,∠PQR ∠的度数是( ) A .60°B .80°C .100°D .120°【答案】C14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 2【答案】B15.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC【答案】B第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.【答案】117°解:∵∠1是OABC 的外角,且∠B=45°,∠C=72° ∴∠1=∠A+∠B=45°+72°=117° . 故答案为: 117°17.一个四边形,截一刀后得到的新多边形的内角和为__________.【答案】180°或360°或540°解:∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和为180°或360°或540°故答案为:180°或360°或540°18.若等腰三角形的一个角为80 ,则顶角为__________.【答案】80°或20°解:(1 )当80°的角是顶角时,顶角是80°;(2 )当80°的角是底角时,顶角的度数是:180°-80°- 80°= 100°- 80°=20°综上,可得等腰三角形的顶角是20°或80°故选:C.19.已知点A(2a+3b,−2)和A'(−1,3a+b)关于y轴对称,则a+b的值为__________.【答案】0解:∵点A( 2a+3b,−2 )和点A′ (−1 ,3a+b )关于y轴对称∴2a+3b=1,3a+b=−2∴2 ( 2a+3b ) +3a+b=1×2+ (−2 ) =0∴a+b=020.如图,△ABC中,∠C =90°,∠BAC=60°,AD是角平分线,若BD=8,则CD等于__________.【答案】4解:∵∠C=90°,∠BAC=60°∴∠B=30°∵AD是角平分线∴∠DAB=∠CAD=∠B=30°∴AD=BD=8∴CD=12AB=4 故答案为:421.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.【答案】4解:根据垂线段最短,当DP ⊥BC 的时候, DP 的长度最小,∵BD ⊥CD ,即∠BDC=90°,又∠A=90°∴∠A=∠BDC ,又∠ADB=∠C∴∠ABD=∠CBD ,又DA ⊥BA , DP ⊥BC∴AD=DP ,又AD=4∴DP=4故答案为: 4三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是△ABC 的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.【答案】解: ∵ (b −3)2≥0,|c −4|≥0且(b −3)2 +|c −4|=0 ,∴(b −3)2=0,|c −4|=0,∴b =3 , c =4∵4−3<a <4+3且a 为奇数,∴a =3或5当a =3时,△ABC 的周长是3+4+3=10当a =5时,△ABC 的周长是3+4+5=1223.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.【答案】解:设∠1=5x °,∠2=7x °,在△ABE 中,∠B =180°−∠A −∠2=180°−100°−7x °=80°−7x °在△CDE 中,∠CDE =180°−∠C −∠1−∠2=180°−75°−5x °−7x °=105°− 12x °, ∵AB//CD ,∴∠B=∠CDE ,∴80°−7x°=105°− 12x°解得:x =5,∴∠B =80°−7x °=45°24.(本题满分8分)已知:如图,在△ABC 中, D 为BC 上的一点, AD 平分∠EDC ,且E B ∠=∠, DE DC =.求证: AB AC =.【答案】证明:∵AD 平分∠EDC∴∠ADE=∠ADC ,在△AED 和△ACD 中{DE =DC∠ADE =∠ADC AD =AD∴△AED ≌△ACD ( SAS )∴∠C=∠E又∵∠E=∠B∴∠C=∠B∴AB=AC25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△;(2)线段CC ′被直线l ;(3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.【答案】( 1 )无(2)垂直平分(3) 3(4)无26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.【答案】解: ∵∠BCE=∠ACD=90°∴∠3+∠4=∠4+∠5∴∠3=∠5在△ABC 和△DEC 中,{∠l =∠D∠3=∠5BC =CE∴△ABC ≌△DEC ( AAS ),∴AC=CD ;(2 ) ∵∠ACD=90°,AC=CD ,∴∠2=∠D=45°∵AE=AC∴∠4=∠6=67.5°∴∠DEC=180°-∠6=112.5°.27.(本小题满分9分)如图,在Rt ABC△中,∠A=90°,AB=AC=4 cm,若O是BC的中点,动点M在AB上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.【答案】解:(1)连接OA∵∠A=90°,AB=AC又∵O是BC的中点∴OA=OB=OC,(直角三角形中,斜边上的中线是斜边的一半)∴∠CAO=∠BAO=45°在△ONA和△OMB中{OA=OB∠CAO=∠BAO AN=BM∴△ONA≌△OMB ( SAS)∴OM=ON ( 全等三角形的对应边相等)(2)不变,理由如下:由上知△ONA≌△OMB∴S△ONA=S△OMB∴S四边形ANOM=S△ONA+S△OMA=S△OMB+S△OMA=S△OAB∴S四边形ANOM=S△OAB=12S△ABC=4(cm2)28.(本小题满分9分)已知点D 是ABC △边AB 上一动点(不与A ,B 重合)分别过点A ,B 向直线CD 作垂线,垂足分别为E ,F ,O 为边AB 的中点.(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是____________,OE 与OF 的数量关系是__________;(2)如图2,当点D 在线段AB 上不与点O 重合时,试判断OE 与OF 的数量关系,并给予证明;(3)如图3,当点D 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路. (备注:直角三角形中,斜边上的中线等于斜边的一半)【答案】解:(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是AE//BF , OE 与OF 的数量关系是OE=OF ,理由是:∵O 为AB 的中点∴AQ=BO∵AE ⊥CO, BF ⊥CO∴AE//BF ,∠AEO=∠BFO=90°在△AEO 和△BFO 中{∠AOE =∠BOF∠AEO =∠BFO AO =BO∴△AEO ≌△BFO ,∴OE=OF ,故答案:AE//BF ;OE=OF(2)OE=OF证明:延长EO 交BF 于M∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO 和△BMO 中{∠AOE =∠BOM∠AEO =∠BMO AO =BO∴△AEO ≌△BMO∴EO=MO∵∠BFE=90°∴OE=OF(3)当点D在线段BA(或AB)的延长线上时,此时(2)中的结论成立,证明:延长EO交FB于M,∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO和△BMO中{∠AOE=∠BOM∠AEO=∠BMOAO=BO∴△AEO≌△BMO∴EO=DO∵∠BFE=90°∴OE=OF。
2017-2018学年度第一学期八年级期中考试数学试题参考答案(人教版)1-6 A A B B C D 7-12 C D B A C B 13-14 A B15.(2,4)16.30. 17.SSS 18.140°;719.解:∵∠2是△ADB的一个外角,∴∠2=∠1+∠B,∵∠1=∠B,∴∠2=2∠1,∵∠2=∠C,∴∠C=2∠1,∴∠BAC=180°-3∠1∵∠BAC=63°,∴∠1=39°,∴∠CAD=24°.20.解:(1)点A1(-2,1.5)变换为(5,1.5),A1(-2,1.5)不是不动点;A2(1.5,0)变换为(1.5,0),A2(1.5,0)是不动点;(2)A1(a,-3)变换为(3-a,-3),由不动点,得a=3-a.解得a=1.5.21.解:上面证明过程不正确;错在第一步.正确过程如下:在△BEC中,∵BE=CE∴∠EBC=∠ECB又∵∠ABE=∠ACE∴∠ABC=∠ACB∴AB=AC.在△AEB和△AEC中,AE=AE,BE=CE,AB=AC,∴△AEB≌△AEC(SSS)∴∠BAE=∠CAE.22.解:设这个外角的度数是x°,则(5-2)×180-(180-x)+x=600,解得x=120.故这个外角的度数是120°.23.解:如图1所示:从A到B的路径AMNB最短;【思考】如图2所示:从A到B的路径AMENFB最短;【进一步的思考】如图3所示:从A到B的路径AMNGHFEB最短;【拓展】如图3所示:从A到B的路径AMNEFB最短.24.(1)证明:如图1中,在l上截取F A=DB,连接CD、CF.∵△ABC为等腰直角三角形,∠ACB=90°,BD⊥l,∴AC=BC,∠BDA=90°,∴∠CBD+∠CAD=360°-∠BDA-∠ACB=180°,∵∠CAF+∠CAD=180°,∴∠CBD=∠CAF,∴△CBD≌△CAF(SAS),∴CD=CF,∵CE⊥l,∴DE=EF=12DF=12(DA+F A)=12(DA+DB),∴DA+DB=2DE,图2中有结论:DA-DB=2DE,图3中有结论:DB-DA=2DE.25. 解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB-BN=12-2t,∵三角形△AMN是等边三角形,∴t=12-2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∵CM=y-12,NB=36-2y,∴y-12=36-2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N运动的时间为16秒.。
江西省上学期初中八年级期中考试数学试卷一、选择题(每题3 分,共18 分)1.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行. 在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()2.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()3.若△ABC的边长都是整数,周长为12,且有一边长为4,则这个三角形的最大边长为()A.7 B.6 C.5 D.8 4.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.14 B.15 C.16 D.175.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°6.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积等于△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CHA.①③④ B.①③C.②④ D.①②③二、填空题(每空3 分,共18分)M 关于x轴对称的点的坐标是.7.点(2,3)8.如图,BC⊥ED于点M,∠A=27°,∠D=20°,则∠ABC=______.9.木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即图中AB、CD两个木条),这样做根据的数学道理是.10.如图△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是.11.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是45cm2,AB=16cm,AC=14cm,则DE= .12.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①AD=BE;②PQ∥AE;③ DE=DP;④AP=BQ恒成立的结论有______.(把你认为正确的序号都填上)三、解答题(本大题共5小题,每小题6分,共30分)13.在正方形网格图①、图②中各画一个等腰三角形.每个等腰三角形的一个顶点为格点A,其余顶点从格点B、C、D、E、F、G、H中选取,并且所画的两个三角形不全等.14.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.15.已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.16.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.17.如图,在△ABC中,∠1=100°,∠C=80°,∠2=12∠3,BE平分∠ABC.求∠4的度数.四、(本大题共3小题,每小题8分,共24分)18.如图,在等边三角形ABC的三边上,分别取点D,E,F,使得△DEF为等边三角形,求证:AD=BE=CF.19.如图,在所给网络图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1; (2)在DE 上画出点P ,使PB+PC 最小; (3)求△ABC 的面积.20.如图,90CDE CED ∠+∠=︒,EM 平分CED ∠,并与CD 边交于点M .DN 平分CDE ∠,并与EM 交于点N .(1)依题意补全图形,并猜想EDN NED ∠+∠的度数等于 ; (2)证明以上结论.证明:∵ DN 平分CDE ∠,EM 平分CED ∠,∴ 12EDN CDE ∠=∠,NED ∠= .(理由: ) ∵ 90CDE CED ∠+∠=︒,∴EDN NED ∠+∠= ×(∠ +∠ )= ×90°= °.五、(本大题共2小题,每小题9分,共18分)21.如图,△ABC 中,CD 是∠ACB 的角平分线,CE 是AB 边上的高,(1)若∠A=40°,∠B=60°,求∠DCE的度数.(2)若∠A=m,∠B=n,求∠DCE.(用m、n表示)22.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB 上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.六、(本大题共12分)23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形?如存在,请求出此时M、N运动的时间.八年级数学期中试卷参考答案一选择题1、D2、B3、C4、B5、B6、D二填空题7、(-2,-3) 8、43°9、三角形具有稳定性 10、611、3 12①②④三解答题13、任选1个14、证明:(1)∵AE=CF,∠ABC=∠CBF=90°,AB=BC,∴△ABE≌△CBF(2)解:∵AB=BC,∠ABC=90°,∠CAE=25°,∴∠EAB=45°﹣25°=20°.∵△ABE≌△CBF,∴∠EAB=∠FCB=20°∴∠ACF=45°+20°=65°.15、证明:∵OP是∠AOC和∠BOD的平分线,∴∠AOP=∠COP,∠BOP=∠DOP,∴∠AOB=∠COD,在△AOB和△COD中,所以△AOB≌△COD,所以AB=CD。
期中检测卷一、选择题(本大题共6小题,每小题3分,共18分.)1. 如果等腰三角形两边长是9cm和4cm,那么它的周长是().A. 17 cmB. 22cmC. 17或22 cmD. 无法确定【答案】B【解析】试题分析:当腰长为4cm时,则9、4、4无法构成三角形,则三角形的三边长为9、9、4,则周长为22cm.考点:等腰三角形的性质2. 下列轴对称图形中,对称轴条数最少的是()A. 等边三角形B. 正方形C. 正六边形D. 圆【答案】A【解析】A 3条,B 4条,C 6条,D 无数条,故选A3.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A. ∠A=∠DB. AB=DCC. ∠ACB=∠DBCD. AC=BD【答案】D【解析】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.4.在△ABC中,已知∠A=∠B=12∠C,则三角形是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形【答案】D【解析】分析:首先设∠C=2x°,从而得出∠A=∠B=x°,根据三角形内角和定理求出x的值,从而得出△ABC的形状.详解:设∠C=2x°,则∠A=∠B=x°,∴x+x+2x=180°,解得:x=45°,∴∠A=∠B=45°,∠C=90°,∴△ABC为等腰直角三角形.点睛:本题主要考查的是三角形内角和定理以及三角形形状的判定,属于基础题型.明确三角形内角和定理是解决这个问题的关键.5.如图,∠A=80°,点 O 是 AB,AC 垂直平分线的交点,则∠BCO 的度数是()A. 40°B. 30°C. 20°D. 10°【答案】D【解析】试题解析:连接OA、OB,Q,∠=o80A∴∠+∠=o,100ABC ACB∵O是AB,AC垂直平分线的交点,∴OA=OB,OA=OC,∴∠OAB=∠OBA,∠OCA=∠OAC,OB=OC,∴∠+∠=o,80OBA OCAo o o,∴∠+∠=-=1008020OBC OCB∵OB=OC,∴∠=∠=o,10BCO CBO故选D.点睛:线段的垂直平分线上的点到线段两个端点的距离相等.6.如图,在△ABC 中,∠BAC=90°,∠ABC=2∠C,BE 平分∠ABC 交 AC 于 E,AD⊥BE 于 D,下列结论:①AC ﹣BE=AE;②点 E 在线段 BC 的垂直平分线上;③∠DAE=∠C;④BC=4AD,其中正确的个数有()A. 1 个B. 2 个C. 3 个D. 4 个【答案】D【解析】①∵BE平分∠ABC,∴∠CBE=12∠ABC,∵∠ABC=2∠C,∴∠EBC=∠C,∴BE=CE,∴AC-BE=AC-CE=AE;(①正确)②∵BE=CE,∴点E在线段BC的垂直平分线上;(②正确)③∵∠BAC=90°,∠ABC=2∠C,∴∠ABC=60°,∠C=30°,∵BE=CE,∴∠EBC=∠C=30°,∴∠BEA=∠EBC+∠C=60°,又∵∠BAC=90°,AD⊥BE,∴∠DAE=∠ABE=30°,∴∠DAE=∠C;(③正确)④∠ABE=30°,AD⊥BE,∴AB=2AD,∵∠BAC=90°,∠C=30°,∴BC=2AB,∴BC=4AD.(④正确)综上,正确的结论有4个,故选D.点睛:此题考查了等腰三角形的性质与判定、线段垂直平分线的性质以及30°角直角三角形的性质.此题难度适中,注意数形结合思想的应用.二、填空题(本大题共6小题,每小题3分,共18分)7.如图,OC是∠BOA的平分线,PE⊥OB,PD⊥OA,若PE=4,则PD=________.【答案】4【解析】分析:根据角平分线的性质、垂直的定义以及OP=OP得出△OPE和△OPD全等,从而得出PD=PE=4.详解:∵OC平分∠BOA,PE⊥OB,PD⊥OA,∴∠EOP=∠DOP,∠OEP=∠ODP=90°,又∵OP=OP,∴△OPE≌△OPD,∴PD=PE=4.点睛:本题主要考查的是三角形全等的证明与性质,属于基础题型.得出三角形全等是解决这个问题的关键.8.如图所示是某零件的平面图,其中∠B=∠C=30°,∠A=40°,则∠ADC 的度数为_____.【答案】100°【解析】分析:连接BD并延长,根据三角形外角的性质得出∠ADE=∠A+∠ABD,∠CDE=∠C+∠CBD,从而得出∠ADC的度数.详解:连接BD 并延长,根据三角形外角的性质可得:∠ADE=∠A+∠ABD,∠CDE=∠C+∠CBD,∴∠ADC=∠ADE+∠CDE=∠A+∠C+∠ABD+∠CBD=∠A+∠C+∠ABC=100°.点睛:本题主要考查的是三角形外角的性质,属于基础题型.将四边形转化为两个三角形是解决这个问题的关键.9.若点C (-1,2)关于x 轴的对称点为点A ,关于y 轴的对称点为点B ,则△ABC 的面积是________.【答案】4【解析】分析:首先根据轴对称的性质得出点A 和点B 的坐标,然后得出△ABC 为直角三角形,求出AC 和BC 的长度,从而根据三角形的面积计算法则得出答案.详解:根据题意可得:点A 的坐标为(-1,-2), 点B 的坐标为(1,2),∴∠ACB=90°,AC=4,BC=2, ∴ABC 4224S =⨯÷=V .点睛:本题主要考查的是轴对称的性质以及三角形的面积计算法则,属于基础题型.根据轴对称得出三角形的性质及边长是解决这个问题的关键. 10.如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为______°.【答案】108°【解析】分析:首先判断出里面的小的五边形也是正五边形,然后根据正多边形的内角计算公式即可得出答案. 详解:∵正五边形的内角和为(5-2)×180°=540°,∴∠1=540°÷5=108°.点睛:本题主要考查的是正多边形的内角计算公式,属于基础题型.得出小五边形为正五边形是解题的关键.11.如图,在△ABC 中,∠A=90°,AB=AC ,∠ABC 的平分线BD 交AC 于点D ,CE ⊥BD ,交BD 的延长线于点E ,若BD=8,则CE=_________.【答案】4【解析】试题解析:如图,延长BA 、CE 相交于点F ,∵BD 平分ABC ∠,∴ABD CBD ∠=∠,在BCE V 和BFE △中,90,ABD CBD BE BEBEF BEC ∠=∠⎧⎪=⎨⎪∠=∠=⎩o ∴BCE V ≌BFE △(ASA ),∴CE=EF ,∵90BAC CE BD ∠=︒⊥,,∴9090ACF F ABD F ,,∠+∠=︒∠+∠=︒ ∴ABD ACF ∠=∠,在ABD △和ACF V 中,90,ABD ACF AB ACBAC CAF o ∠=∠⎧⎪=⎨⎪∠=∠=⎩∴ABD △≌ACF V (ASA ),∴BD CF =,∵2CF CE EF CE =+=,∴28BD CE ,== ∴4CE =.故答案为4.12.已知以线段AC为对角线的四边形ABCD(它的四个顶点A,B,C,D按顺时针方向排列)中,AB=BC=CD,∠ABC=100°,∠CAD=40°,则∠BCD的度数为____________.【答案】80°或100°【解析】【分析】作出图形,证明Rt△ACE≌Rt△ACF,Rt△BCE≌Rt△DCF,分类讨论可得解.【详解】∵AB=BC,∠ABC=100°,∴∠1=∠2=∠CAD=40°,∴AD∥BC.点D的位置有两种情况:如图①,过点C分别作CE⊥AB于E,CF⊥AD于F,∵∠1=∠CAD,∴CE=CF,在Rt△ACE与Rt△ACF中,AC AC CE CF=⎧⎨=⎩,∴Rt△ACE≌Rt△ACF,∴∠ACE=∠ACF.在Rt△BCE与Rt△DCF中,CB CD CE CF=⎧⎨=⎩,∴Rt△BCE≌Rt△DCF,∴∠BCE=∠DCF,∴∠ACD=∠2=40°,∴∠BCD=80°;如图②,∵AD′∥BC,AB=CD′,∴四边形ABCD′是等腰梯形,∴∠BCD′=∠ABC=100°,综上所述,∠BCD=80°或100°,故答案为80°或100°.【点睛】本题考查了全等三角形的判定与性质,等腰梯形的判定与性质,本题关键是证明Rt△ACE≌Rt△ACF,Rt△BCE≌Rt△DCF,同时注意分类思想的应用.三、(本大题共5小题,每小题6分,共30分)13.如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.【答案】证明见解析【解析】试题分析:求线段相等,可把线段放进两个三角形中,求解三角形全等,由全等,即可得出线段相等.试题解析:证明:∵∠1=∠2,∴∠ABD=∠EBC,∵∠3=∠4,∴∠A=∠E,又∵EC=AD,∴△ABD≌△EBC.∴AB=BE.14.如图,△ABC中,AB=AC=5,AB的垂直平分线DE分别交AB,AC于E,D.(1)若△BCD的周长为8,求BC的长;(2)若BC=4,求△BCD的周长.【答案】(1)3;(2)9.【解析】【分析】(1)根据中垂线的性质得出BD=AD,根据△BCD的周长以及AC的长度得到BC的长度;(2)同第一题同样的方法求出△BCD的周长.【详解】(1)∵DE是AB的垂直平分线∴ BD=AD∴△BCD的周长为:BD+DC+BC=AD+CD+BC=AC+BC=8∵AB=AC=5 ∴BC=8-5=3.(2)∵DE是AB的垂直平分线∴BD=AD∴ △BCD的周长为:BC+BD+CD=AD+CD+BC=AC+BC=4+5=9.15.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.【答案】∠C=78°.【解析】试题分析:由AD是BC边上的高,∠B=42°,可得∠BAD=48°,在由∠DAE=18°,可得∠BAE=∠BAD-∠DAE=30°,然后根据AE是∠BAC的平分线,可得∠BAC=2∠BAE=60°,最后根据三角形内角和定理即可推出∠C的度数.试题解析:∵AD是BC边上的高,∠B=42°,∴∠BAD=48°,∵∠DAE=18°,∴∠BAE=∠BAD-∠DAE=30°,∵AE是∠BAC的平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°-∠B-∠BAC=78°.考点:1.三角形内角和定理;2.三角形的角平分线、3.中线和高.16.如图,AD为△ABC的中线,BE为△ABD的中线.(1)用圆规和无刻度的直尺在△BED中作BD边上的高EF;(2)若△ABC的面积为40,BD=5,求EF的长.【答案】(1)见解析;(2)4.【解析】试题分析:(1)根据过直线外一点作已知直线的垂线的方法作图即可;(2)利用三角形中线的性质得出S△BDE=S△ABC,进而借助三角形面积公式求出即可.解;(1)如图所示:(2)∵AD为△ABC的中线,BE为三角形ABD中线,∴S△ABD=S△ABC,S△BDE=S△ABD,∴S△BDE=S△ABC,∵△ABC的面积为40,BD=5,∴×5×EF=10,∴EF=4.考点:作图—复杂作图;三角形的面积.17.如图,等边三角形ABC和等边三角形ECD的边长相等,BC与CD两边在同一直线上,请根据如下要求,用无刻度的直尺通过连线的方式画图.(1)在图①中画一个直角三角形;(2)在图②中画出∠ACE的平分线.【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)直接利用等边三角形的性质结合菱形的性质得出△ABD为直角三角形,同理可知,△BED 也为直角三角形;(2)利用菱形的判定与性质得出△AFG≌△EFH,得出FG=FH,进而结合角平分线的判定得出答案.解:(1)如图①所示:连接AE,∵△ABC与△ECD全等且为等边三角形,∴四边形ACDE为菱形,连接AD,则AD平分∠EDC,∴∠ADC=30°,∵∠ABC=60°,∴∠BAD=90°,则△ABD为直角三角形,同理可知,△BED也为直角三角形;(2)如图②所示:连接AE、BE、AD,则四边形ABCE和四边形ACDE为菱形,则AC⊥BE,AD⊥CE,设BE,AD相交于F,AC交BE于点G,CE交AD于点H,则FG⊥AC,FH⊥BC,由(1)得:∠BEC=∠DAC,∠AEF=∠EAF,则AF=EF,△AFG和△EFH中∵∠AGF=∠FHE,∠GFA=∠HFE,AF=EF,∴△AFG≌△EFH(AAS),∴FG=FH,由到角两边距离相等的点在角平分线上,可知,连接CF,GF为所作的角平分线.四、(本大题共3小题,每小题8分,共24分)18.如图,以四边形ABCD 各顶点及各边延长线上的点构成△AEF 、△BGH 、△CMN 、△DPQ ,求∠E+∠F+∠G+∠H+∠M+∠N+∠P+∠Q 的度数.【答案】360°【解析】【分析】根据三角形外角的性质可得∠FAB=∠E+∠F,∠HBC=∠G+∠H,∠DCN=∠M+∠N,∠QDA=∠P+∠Q,继而根据四边形外角和为360度进行求解即可.【详解】由三角形外角的性质可得:∠FAB=∠E+∠F,∠HBC=∠G+∠H,∠DCN=∠M+∠N,∠QDA=∠P+∠Q,∵四边形的外角和为360°,∴∠FAB+∠HBC+∠DCN+∠QDA=360°,∴∠E+∠F+∠G+∠H+∠M+∠N+∠P+∠Q=360°.19.如图,△ABC 的三个顶点均在网格小正方形的顶点上,这样的三角形称为格点三角形,请你分别在图①、图②、图③的网格中画出一个和△ABC 关于某条直线对称的格点三角形,并画出这条对称轴.【答案】答案见解析【解析】【分析】首先画出对称轴,然后根据轴对称图形性质画出图形即可.【详解】解:如图所示.【点睛】本题主要考查的是画轴对称图形,属于基础题型.解题的关键就是画出每一个图形的对称轴,然后根据对称轴进行画图.20.如图,AD ∥BC ,∠BAC =70°,DE ⊥AC 于点E ,∠D =20°. (1)求∠B 的度数,并判断△ABC 的形状;(2)若延长线段DE 恰好过点B ,试说明DB 是∠ABC 的平分线.【答案】(1)△ABC 是等腰三角形,∠B =40°;(2)见解析. 【解析】分析:(1)、根据Rt△ADE 的内角和得出∠DAC=70°,根据平行线的性质得出∠C=70°,从而根据有两个角相等的三角形是等腰三角形得出答案;(2)、根据等腰三角形底边上的三线合一定理得出DB 为顶角的角平分线.详解:解:(1)∵DE ⊥AC 于点E ,∠D =20°,∴∠CAD =70°, ∵AD ∥BC , ∴∠C =∠CAD =70°, 又∵∠BAC =70°,∴∠BAC =∠C ,∴AB =BC , ∴△ABC 是等腰三角形,∴∠B =180°-∠BAC -∠C =180°-70°-70°=40°. (2)∵延长线段DE 恰好过点B ,DE ⊥AC ,∴BD ⊥AC ,∵△ABC 是等腰三角形,∴DB 是∠ABC 的平分线.点睛:本题主要考查的是等腰三角形的判定及性质,属于基础题型.明确等腰三角形底边上的三线合一定理是解决这个问题的关键.五、(本大题共2小题,每小题9分,共18分)21.已知等腰三角形一腰上的中线将三角形的周长分为9cm 和15cm 两部分,求这个等腰三角形的底边长和腰长.【答案】底边长为4cm ,腰长为10cm.【解析】【分析】根据题意画出图形,设△ABC 的腰长为xcm ,则AD =DC =12xcm ,然后根据AB+AD=9和AB+AD=15两种情况分别求出底边和腰长,最后根据三角形的三边关系进行判定是否能够构成三角形,从而得出答案.【详解】如图,△ABC是等腰三角形,AB=AC,BD是AC边上的中线.设△ABC的腰长为xcm,则AD=DC=12 xcm.分下面两种情况解:①AB+AD=x+12x=9,∴x=6. ∵三角形的周长为9+15=24(cm),∴三边长分别为6cm,6cm,12cm. 6+6=12,不符合三角形的三边关系,舍去;②AB+AD=x+12x=15,∴x=10. ∵三角形的周长为24cm,∴三边长分别为10cm,10cm,4cm,符合三边关系.综上所述,这个等腰三角形的底边长为4cm,腰长为10cm.【点睛】本题主要考查的是等腰三角形的性质以及分类讨论思想的应用,属于中等难度的题型.学会分类讨论是解决这个问题的关键.22.如图,在△ABC中,AD平分∠CAB,点F在边AC上,若∠CAB+∠BDF=180°.求证:DF=DB.【答案】见解析.【解析】分析:在AB上截取AE=AF,根据角平分线和公共边得出△ADF和△ADE全等,从而得出DF=DE,根据∠CAB+∠BDF+∠5+∠B=360°,∠CAB+∠BDF=180°,得出∠5+∠B=180°,根据平角的性质以及∠5=∠3得出∠B=∠4,从而得出答案.详解:解:如图,在AB上截取AE=AF,∵AD平分∠CAB,∴∠1=∠2,在△ADF和△ADE中,AF=AE,∠1=∠2,AD=AD,∴△ADF≌△ADE(SAS),∴DF=DE,∠5=∠3,∵∠CAB+∠BDF+∠5+∠B=360°,∠CAB+∠BDF=180°,∴∠5+∠B=180°,又∵∠3+∠4=180°,∠5=∠3,∴∠B=∠4,∴DB=DE,∴DF=DB.点睛:本题主要考查的是三角形全等的证明与性质、等腰三角形的判定与性质,难度中上,综合性比较强.作出辅助线构造三角形全等是解决这个问题的关键.六、(本大题共12分)23.如图①,已知线段AC∥y轴,点B在第一象限,且AO平分∠BAC,AB交y轴于G,连接OB,OC.(1)判断△AOG的形状,并予以证明;(2)若点B,C关于y轴对称,求证:AO⊥BO;(3)在(2)的条件下,如图②,点M为OA上一点,且∠ACM=45°,BM交y轴于P,若点B的坐标为(3,1),求点M的坐标.【答案】(1)△AOG是等腰三角形;(2)见解析;(3)M(-1,3).【解析】分析:(1)、利用已知条件可证明∠GOA=∠GAO,由等腰三角形的判定可得AG=OG,所以△AOG是等腰三角形;(2)、由已知可得BP=CP,因为AC∥y轴,可得GA=GB;根据等腰三角形的性质得出∠GOB=∠GBO,∠AOG=∠OAG,所以∠AOG+∠BOG=∠OAG+∠OBG,即∠AOB=∠OAG+∠OBG,即可求得∠AOB=90°;(2)、先证得BM是∠ABC的平分线,设∠OBC=x,则x+∠POB=90°,而∠POA+∠POB=∠AOB=90°,求得x=∠POA,进一步证得x=∠GAM.根据∠OMB=∠GAM+∠ABM=x+∠ABM=x+∠PBM=∠MBO,得出OB=OM,然后证明出△OMF和△BOH全等,根据点B的坐标得出点M的坐标.详解:(1)解:△AOG的形状是等腰三角形证明如下:∵AC∥y轴,∴∠CAO=∠GOA,∵AO平分∠BAC,∴∠CAO=∠GAO,∴∠GOA=∠GAO,∴AG=OG,∴△AOG是等腰三角形.(2)证明:如图①,连接BC,过点O作OE⊥AB于点E,过点C作CD⊥x轴于点D.∵B,C关于y轴对称,AC∥y轴,∴OB=OC,AC⊥BC,∴点A,C,D在同一条直线上.∵AO为∠CAB的平分线,∴OD=OE.在Rt△COD和Rt△BOE中,OD=OE,OC=OB,∴△COD≌△BOE(HL),∴∠DCO=∠EBO.∵∠DCO+∠ACO=180°,∴在四边形ACOB中,∠ACO+∠EBO=180°,∴∠BAC+∠BOC=180°,设∠BAO=∠CAO=x,∠OBC=∠OCB=y,∴2x+∠BOC=180°,2y+∠BOC=180°,∴x=y,∴∠OAC=∠OBC,∴∠AOB=∠ACB=90°,∴AO⊥OB.(3)解:如图②,连接BC,过点M作MF⊥x轴于F,过点B作BH⊥x轴于H,由(2)可知∠ACB=90°,∵∠ACM=45°,∴CM平分∠ACB,又∵AM平分∠BAC,∴BM平分∠ABC.设∠ABM=∠CBM=z,由(2)可得∠OMB=x+z,∠OBM=y+z=x+z,∴∠OMB=∠OBM,∴OM=OB,∴△OBM为等腰直角三角形.∵∠BOH+∠MOF=90°,∠MOF+∠FMO=90°,∴∠FMO=∠BOH,在△OMF和△BOH中,∠MFO=∠OHB=90°,∠FMO=∠HOB,OM=OB,∴△OMF≌△BOH(AAS).又∵点B的坐标为(3,1),∴OF=BH=1,MF=OH=3,∴M(-1,3).点睛:本题考查了角平分线的性质、轴对称的性质、等腰三角形的判定和性质、三角形的内角和定理,题目的综合性强,难度较大.解题的关键是正确添加辅助线.。
2017-2018学年江西省赣州市宁都县八年级(上)11月月考数学试卷一、选择题(本大题共6个小题,每小题3分,共18分) 1.下列图形:①等腰三角形;②平行四边形;③等边三角形;④等腰梯形;⑤长方形.其中,一定是轴对称图形的有( ) A .2个 B .3个 C .4个 D .5个2.如图,△ABC 中,AD ⊥BC 于D ,若BA=CA ,则可推出△ABD ≌△ACD ,其依据是( )A .AASB .ASAC .SASD .HL3.一个等腰三角形ABC ,顶角为∠A ,作∠A 的三等分线AD 、AE ,即∠1=∠2=∠3(如图),若BD=x ,DE=y ,CE=z ,则有( )A .x >y >zB .x=z >yC .x=z <yD .x <y=z4.如图所示,将正方形纸片折叠两次后,沿虚线剪下一角,然后再展开,得到的图形是哪一个图,说说你的理由.( )A .B .C .D .5.利用基本的尺规作图不能作出等腰三角形的是( ) A .已知底边及底边上的高 B .已知底边的上的高及腰 C .已知底边及顶角 D .已知两底角6.如图,∠1=∠2,∠C=∠D,AC,BD交于E,则下列结论错误的是()A.∠DAB=∠CBA B.∠DAE=∠CBEC.无法确定CE,DE是否相等D.△AEB为等腰三角形二、填空题(本大题共6小题,每小题3分,共18分)7.已知:如图,在△ABC中,BD为角平分线,则x=,y=.8.若多边形的内角和与某一个外角的度数总和为1350°,则该多边形的边数为,且该多边形必有一内角度数为°.9.如图,AD=AE,BE=CD,∠1=∠2,∠C=50°,那么∠B=度.10.如图,△ABC是等腰直角三角形,∠A=90°,BD是角平分线,DE⊥BC,BC=20,则△DCE的周长为.11.如图,在△ABC中,AB=AC=32cm,DE是AB的垂直平分线,分别交AB、AC 于D、E两点,若∠C=70°,则∠CBE=°.12.(1)顺次连接任意四边形各边中点构成的四边形是;(2)顺次连接对角线相等的四边形的各边中点,构成的四边形是;(3)顺次连接对角线互相垂直的四边形的各边中点构成的四边形是.三、(本大题共5小题,每小题6分,共30分)13.(6分)如图所示,已知三角形ABC的面积为1,且BD=DC,AF=FD,CE= EF.求三角形DEF的面积.14.(6分)如图,已知△ABC≌△DEF,AB与DE是对应边,∠ACB与∠F是对应角.(1)求证:∠A=∠D.(2)求证:BE=CF.15.(6分)在△ABC和△A′B′C′中,若AB+AC=A′B′+A′C′,BC=B′C′,∠B=∠B′,求证:△ABC≌△A′B′C′.16.(6分)(1)画出下面图形关于直线m成轴对称的图形.(2)画出同一图形关于直线n成轴对称的图形.17.(6分)如图,在△ABC中,BD平分∠ABC的交AC于点D,DE∥BC交AB 于点E,∠A=60°,∠BDC=100°,求△BDE各个内角的度数.四、(本大题共4小题,每小题8分,共32分)18.(8分)(1)“等角的余角相等”与“等角的余角相等吗?”这两句话一样吗?如果不一样,它们有什么不同?(2)“经过一点有且只有一条直线与已知直线垂直”与“经过一点画已知直线的垂线”有什么不同?(3)“四边形不是多边形”与“四边形不一定是多边形”有什么不同?19.(8分)已知:等腰三角形一边上的高是另一边的一半,求顶角的度数.20.(8分)如图,在△ABC中,∠BAC=90°,AC=2AB,O为AC的中点,AD为高,OG⊥AC,交AD的延长线于G,OB交AD于F,OE⊥OB交BC于E,过点O 作OH⊥BC于H,求证:DF=HE.21.(8分)如图,点A、D、E在直线l上,∠BAC=90°,AB=AC,BD⊥l于D,CE⊥l于E,求证:DE=BD+CE.五、(本大题1小题,满分10分)22.(10分)如图,△ABC中,CA=CB,∠ACB=90°,BD平分∠ABC交AC于D,CE⊥BD于F,交AB于E.(1)求证:CD=AE;(2)求证:的值.六、(本大题1小题,满分12分)23.(12分)如图,△ABC和△EDC都是等边三角形,AD=,BD=,CD=2,求:(1)AE的长;(2)∠BDC的度数;(3)AC的长.2017年12月10日182****4016的初中数学平行组卷参考答案与试题解析一、选择题(本大题共6个小题,每小题3分,共18分)1.(3分)下列图形:①等腰三角形;②平行四边形;③等边三角形;④等腰梯形;⑤长方形.其中,一定是轴对称图形的有()A.2个 B.3个 C.4个 D.5个【分析】根据轴对称图形的概念对各小题分析判断即可得解.【解答】解:①等腰三角形一定是轴对称图形;②平行四边形不一定是轴对称图形;③等边三角形一定是轴对称图形;④等腰梯形一定是轴对称图形;⑤长方形一定是轴对称图形;综上所述,一定是轴对称图形的有①③④⑤共4个.故选C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)如图,△ABC中,AD⊥BC于D,若BA=CA,则可推出△ABD≌△ACD,其依据是()A.AAS B.ASA C.SAS D.HL【分析】根据垂直得出∠ADB=∠ADC=90°,根据HL推出两直角三角形全等即可.【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中∴Rt△ABD≌Rt△ACD(HL),故选D.【点评】本题考查了全等三角形的判定的应用,能熟记全等三角形的判定定理是解此题的关键,注意:直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.3.(3分)一个等腰三角形ABC,顶角为∠A,作∠A的三等分线AD、AE,即∠1=∠2=∠3(如图),若BD=x,DE=y,CE=z,则有()A.x>y>z B.x=z>y C.x=z<y D.x<y=z【分析】首先根据边角边定理,判定△ABD≌△ACE,根据全等三角形的性质定理可知BD=EC,即x=z.再根据三角形的外角性质与等腰三角形的性质,可得AB>AE.进而得到BD>DE 即x>y.问题得解.【解答】解:∵△ABC是等腰三角形∴∠B=∠C又∵∠1=∠2,∠ADE=∠B+∠1,∠AED=∠C+∠3∴∠ADE=∠AED∴AD=AE在△ABD与△ACE中∵AD=AE,∠1=∠3,AB=AC∴△ABD≌△ACE∴BD=EC,即x=z又∵∠AEB=∠C+∠3=∠B+∠3>∠B∴AB>AE又∵∠1=∠2所以BD>DE即x>y,所以x=z>y故选B【点评】本题考查全等三角形的性质与判定、三角形三边关系、等腰三角形的性质.本题解决的关键是对三角形相关知识的综合运用能力.4.(3分)如图所示,将正方形纸片折叠两次后,沿虚线剪下一角,然后再展开,得到的图形是哪一个图,说说你的理由.()A.B.C.D.【分析】结合空间思维,分析折叠的过程及剪菱形的位置,注意图形的对称性,易知展开的形状.【解答】解:将展开一次得,再展开一次得:.故选:D.【点评】本题主要考查了学生的立体思维能力即操作能力.错误的主要原因是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.5.(3分)利用基本的尺规作图不能作出等腰三角形的是()A.已知底边及底边上的高B.已知底边的上的高及腰C.已知底边及顶角 D.已知两底角【分析】直接利用基本作图方法结合等腰三角形的判定方法分析得出答案.【解答】解:A、作出底边再作底边的垂直平分线,进而结合高,即可得出顶点位置,可以得出等腰三角形,故此选项错误;B、已知底边的上的高及腰,做一条直线,再作垂直于直线的线段等于高,再以高位为半径,作弧,得出与直线的交点,进而得出等腰三角形,如图所示:,故此选项错误;C、已知底边及顶角,无法作出等腰三角形,故此选项正确;D、已知两底角,作两底角相等的三角形,即可得出等腰三角形,故此选项错误.故选:C.【点评】此题主要考查了复杂作图,正确掌握等腰三角形的判定方法是解题关键.6.(3分)如图,∠1=∠2,∠C=∠D,AC,BD交于E,则下列结论错误的是()A.∠DAB=∠CBA B.∠DAE=∠CBEC.无法确定CE,DE是否相等D.△AEB为等腰三角形【分析】根据题意,通过对各个结论进行验证从而确定答案,做题时,要结合已知条件与全等的判定方法对选项逐一验证.【解答】解:∵AB=AB,∠1=∠2,∠C=∠D∴△ABD≌△ABC(AAS)∴∠DAB=∠CBA(A正确)∴AC=BD∵∠1=∠2∴∠DAE=∠CBE(B正确)∴△AEB为等腰三角形(D正确)AE=BE∵AC=CB∴CE=DE(C错误)故选C.【点评】本题考查三角形全等的判定方法与性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)已知:如图,在△ABC中,BD为角平分线,则x=36°,y=72°.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得y=2x,根据角平分线的定义可得∠CBD=∠ABD=x,再利用三角形的内角和定理列式计算求出x,然后求出y.【解答】解:由三角形的外角性质,y=x+x=2x,∵BD为角平分线,∴∠CBD=∠ABD=x,在△BCD中,x+y+y=x+2x+2x=180°,解得x=36°,y=2×36°=72°.故答案为:36°;72°.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质与定理并用x表示出y是解题的关键.8.(3分)若多边形的内角和与某一个外角的度数总和为1350°,则该多边形的边数为9,且该多边形必有一内角度数为90°.【分析】根据n边形的内角和定理可知:n边形内角和为(n﹣2)×180°.设这个外角度数为x度,利用方程即可求出答案.【解答】解:设这个外角度数为x,根据题意,得(n﹣2)×180°+x°=1350°,解得:x°=1350°﹣180°n+360°=1710°﹣180°n,由于0<x°<180°,即0<1710°﹣180°n<180°,解得8.5<n<9.5,所以n=9.可得x°=1350°﹣(9﹣2)×180°=90°该多边形必有一内角度数180°﹣90°=90°.故答案为:9,90°.【点评】主要考查了多边形的内角和定理.解题的关键是熟记n边形的内角和为:180°•(n﹣2).9.(3分)如图,AD=AE,BE=CD,∠1=∠2,∠C=50°,那么∠B=50度.【分析】此题根据已知添加可以利用SAS判定△ADF≌△AEF,再证全等,利用全等三角形的对应角相等得出∠B=∠C=50°.【解答】解:∵AD=AE,∠1=∠2,AF=AF,∴△ADF≌△AEF(SAS),∴DF=EF,又BE=CD,∴BF=CF,又∠DFB=∠EFC,∴△DFB≌△EFC,∠B=∠C,∵∠C=50°,∴∠B=50°.故填50.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.10.(3分)如图,△ABC是等腰直角三角形,∠A=90°,BD是角平分线,DE⊥BC,BC=20,则△DCE的周长为20.【分析】根据等腰直角三角形的性质和角平分线的性质,可以得到AC=AB,DE=DA,然后根据BC=20可以求得AB、AC的长,进而可以求得DE、CE的长,从而可以得到△DCE的周长.【解答】解:∵△ABC是等腰直角三角形,∠A=90°,BD是角平分线,DE⊥BC,∴AB=AC,∠C=45°,∠DEC=90°,∴DE=DA,DE=CE,设AC=x,∵BC=20,∴x2+x2=202,解得x=,设DE=a,则,解得a=.故△DCE的周长为:CD+DE+CE=AC+CE=10=20.故答案为:20.【点评】本题考查等腰直角三角形和角平分线的性质,解题的关键是明确题意,找出所求问题需要的条件.11.(3分)如图,在△ABC中,AB=AC=32cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点,若∠C=70°,则∠CBE=30°.【分析】由在△ABC中,AB=AC=32cm,∠C=70°,即可求得∠ABC的度数,又由DE是AB的垂直平分线,即可求得∠ABE的度数,继而求得答案.【解答】解:∵在△ABC中,AB=AC,∠C=70°,∴∠ABC=∠C=70°,∴∠A=180°﹣∠ABC﹣∠C=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故答案为:30.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.12.(3分)(1)顺次连接任意四边形各边中点构成的四边形是平行四边形;(2)顺次连接对角线相等的四边形的各边中点,构成的四边形是菱形;(3)顺次连接对角线互相垂直的四边形的各边中点构成的四边形是矩形.【分析】(1)连接任意四边形的中点,如图,连接AC,根据三角形的中位线定理,可以证得HG=FE=,并且HG∥EF,所以利用平行四边形的判定定理可知,该中点四边形是平行四边形.(2)在(1)的基础上,易证平行四边形GHBF的一组邻边相等,所以根据菱形的定义可知该中点四边形是菱形.(3)在(1)的基础上,易证平行四边形GHBF中有一个角是直角,所以根据矩形的定义可知该中点四边形是矩形.【解答】解:(1)如图所示,任意四边形ABCD中,E、F、G、H分别为各边的中点,求四边形EFGH的形状.连接AC,∵E、F、G、H分别为各边的中点,∴HG、EF分别为△ACD与△ABC的中位线,∴HG∥AC∥EF,HG=EF=AC,∴四边形EFGH是平行四边形;(2)如图所示,四边形ABCD的对角线AC=BD,E、F、G、H分别为各边的中点,求四边形EFGH的形状.连接AC、BD,∵E、F、G、H分别为各边的中点,∴EH、GF分别为△ABD与△BCD的中位线,∴EH∥BD∥GF,EH=GF=BD,∴四边形EFGH是平行四边形,同理可得,HG=EF=AC,∵AC=BD,∴EH=GF,∴四边形EFGH是菱形;(3)如图所示,四边形ABCD的对角线AC⊥BD,E、F、G、H分别为各边的中点,求四边形EFGH的形状.解:连接AC、BD,∵E、F、G、H分别为各边的中点,∴EH、GF分别为△ABD与△BCD的中位线,∴EH∥BD∥GF,EH=GF=BD,∴四边形EFGH是平行四边形,同理可得,HG∥AC∥EF,∵AC⊥BD,∴HG⊥BD⊥EH,∴四边形EFGH是矩形.故答案分别为平行四边形、菱形、矩形.【点评】本题考查的是三角形中位线定理,即三角形的中位线平行于底边且等于底边的一半.解答此题的关键是根据题意画出图形,利用数形结合解答.三、(本大题共5小题,每小题6分,共30分)13.(6分)如图所示,已知三角形ABC的面积为1,且BD=DC,AF=FD,CE= EF.求三角形DEF的面积.【分析】直接求△DEF面积有困难,观察图形,发现△DEF与△DCF有共同的顶点D,其底边在同一条直线上,因而,高相同.所以.于是,求△DEF的面积就转化为求△DCF的面积.用同样的办法可将△DCF的面积转化为△ADC的面积,进而转化为△ABC的面积.【解答】解:∵CE=EF,∴EF=2CE又△DEF与△DCF有共同的顶点D,且底边EF,CF在同一条直线上,∴.EF:CF=2:3,同理,△DCF与△DCA有共同的顶点C,且底边DF,DA在同一条直线上,由已知DF:DA=2:3,∴.同样,.∴三角形DEF的面积===.【点评】考查了三角形面积公式的应用.解题关键在于底边相同的三角形面积之比等于对应高之比.14.(6分)如图,已知△ABC≌△DEF,AB与DE是对应边,∠ACB与∠F是对应角.(1)求证:∠A=∠D.(2)求证:BE=CF.【分析】根据全等三角形的对应边相等;全等三角形的对应角相等可得结论.【解答】解:(1)∵△ABC≌△DEF,∴∠A=∠D;(2)∵△ABC≌△DEF,∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.【点评】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.15.(6分)在△ABC和△A′B′C′中,若AB+AC=A′B′+A′C′,BC=B′C′,∠B=∠B′,求证:△ABC≌△A′B′C′.【分析】延长BA、B′A′,使AD=AC,A′D′=A′C′,连接CD、C′D′,则∠D=∠ACD,∠D′=∠A′C′D′,证出BD=B′D′,由SAS证明△BCD≌△B′C′D′,得出对应角相等∠D=∠D′,∠BCD=∠B′C′D′,得出∠ACB=∠A′C′B′,再由ASA证明△ABC≌△A′B′C′即可.【解答】证明:延长BA、B′A′,使AD=AC,A′D′=A′C′,连接CD、C′D′,如图所示:则∠D=∠ACD,∠D′=∠A′C′D′,∵AB+AC=A′B′+A′C′,∴BD=B′D′,在△BCD和△B′C′D′中,,∴△BCD≌△B′C′D′(SAS),∴∠D=∠D′,∠BCD=∠B′C′D′,∴∠ACB=∠A′C′B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(ASA).【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,通过作辅助线证明三角形全等是解决问题的关键.16.(6分)(1)画出下面图形关于直线m成轴对称的图形.(2)画出同一图形关于直线n成轴对称的图形.【分析】利用轴对称图形的性质,从图形中的各点向l引垂线并延长相同的距离,找到对应点顺次连接.【解答】解:(1)(2)如图所示.【点评】本题主要是根据轴对称图形,找出图形中关键点的对称轴,然后顺次连接成图形.本题考查图形变换的实际运用能力,体现数学知识的应用价值.17.(6分)如图,在△ABC中,BD平分∠ABC的交AC于点D,DE∥BC交AB 于点E,∠A=60°,∠BDC=100°,求△BDE各个内角的度数.【分析】根据∠A=60°,∠BDC=100°,可以求得∠ABD的度数,由BD平分∠ABC的交AC于点D,DE∥BC交AB于点E,可以求得∠EDB和∠EBD的度数,从而可以解答本题.【解答】解:∵∠A=60°,∠BDC=100°,∠BDC=∠A+∠ABD,∴∠ABD=40°,∵BD平分∠ABC的交AC于点D,DE∥BC交AB于点E,∴∠CBD=∠ABD,∠CBD=∠EDB,∴∠EDB=∠EBD=40°,∵∠EDB+∠EBD+∠BED=180°,∴∠BED=100°,即△BDE各个内角的度数分别是:∠EDB=40°,∠EBD=40°,∠BED=100°.【点评】本题考查三角形内角和定理、平行线的性质,解题的关键是明确题意,找出所求问题需要的条件.四、(本大题共4小题,每小题8分,共32分)18.(8分)(1)“等角的余角相等”与“等角的余角相等吗?”这两句话一样吗?如果不一样,它们有什么不同?(2)“经过一点有且只有一条直线与已知直线垂直”与“经过一点画已知直线的垂线”有什么不同?(3)“四边形不是多边形”与“四边形不一定是多边形”有什么不同?【分析】(1)根据命题的定义进行判断;(2)根据命题的定义进行判断;(3)根据命题的定义进行判断.【解答】解:(1)“等角的余角相等”与“等角的余角相等吗?”这两句话不一样,“等角的余角相等”是命题,“等角的余角相等吗”不是命题;(2)“经过一点有且只有一条直线与已知直线垂直”是命题,“经过一点画已知直线的垂线”不是命题;(3)“四边形不是多边形”是命题,“四边形不一定是多边形”不是命题.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.19.(8分)已知:等腰三角形一边上的高是另一边的一半,求顶角的度数.【分析】(1)AC=BC,CD⊥AB,CD=AC,求出∠A、∠B,根据三角形内角和定理求出∠ACB即可;(2)AC=BC,CD⊥AC,BD=AB,同法求出即可;(3)AC=BC,BD⊥AC,BD=BC,根据含30度角的直角三角形求出即可;(4)AC=BC,BD⊥AC,BD=CB,与(1)方法类似求出即可.【解答】解:有以下四种情况:(1)如图,AC=BC,CD⊥AB,CD=AC,∴∠A=30°,∵AC=BC,∴∠A=∠B=30°,∴∠ACB=180°﹣∠A﹣∠B=120°;(2)如图,AC=BC,BD⊥AD,BD=AB,∴∠A=30°,∴∠CBA=30°,∴∠ACB=120°;(3)如图,AC=BC,BD⊥AC,BD=BC,∴∠C=30°;(4)如图,AC=BC,BD⊥AC,BD=CB,∴∠DCB=30°,∴∠ACB=150°;综合上述:顶角的度数是120°或30°或150°,答:顶角的度数是120°或30°或150°.【点评】本题主要考查对等腰三角形性质,三角形的内角和定理,含30度角的直角三角形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.20.(8分)如图,在△ABC中,∠BAC=90°,AC=2AB,O为AC的中点,AD为高,OG⊥AC,交AD的延长线于G,OB交AD于F,OE⊥OB交BC于E,过点O 作OH⊥BC于H,求证:DF=HE.【分析】根据已知条件得到AB=AO=OC,推出∠BAC+∠AOG=180°,根据平行线的性质得到∠G=∠BAD,根据垂直的定义得到∠BDA=∠BAC=90°,由余角的性质得到∠C=∠BAD,证得∠C=∠G,求得∠BFA=∠OEC,推出△ABF≌△COE(AAS),根据全等三角形的性质得到BF=OE,推出△BDF≌△OHE,根据全等三角形的性质即可得到结论.【解答】证明:∵AC=2AB.O为AC的中点,∴AB=AO=OC,∵∠BAC=90°,OG⊥AC,∴∠BAC=∠AOG=90°,∴∠BAC+∠AOG=180°,∴AB∥OG,∴∠G=∠BAD,∵AD⊥BC,∴∠BDA=∠BAC=90°,∴∠ABC+∠BAD=90°,∠ABC+∠C=90°,∴∠C=∠BAD,∴∠C=∠G,∵OB⊥OE,∴∠BOE=90°,∵∠BFA=∠BDA+∠OBE=90°+∠OBE,∠OEC=∠BOE+∠OBE=90°+∠OBE,∴∠BFA=∠OEC,在△ABF和△COE中,,∴△ABF≌△COE(AAS),∴BF=OE,∵∠BFA=∠OEC,∴∠BFD=∠OEH,在△BDF与△OEH中,,∴△BDF≌△OHE,∴DF=HE.【点评】本题考查了三角形外角性质,垂直定义,全等三角形的性质和判定,三角形内角和定理,熟练掌握全等三角形的判定定理是解题的关键.21.(8分)如图,点A、D、E在直线l上,∠BAC=90°,AB=AC,BD⊥l于D,CE⊥l于E,求证:DE=BD+CE.【分析】根据已知条件及互余关系可证△ABD≌△CAE,则BD=AE,AD=CE,由DE=AD+AE,得出线段DE=BD+CE.【解答】证明:∵∠BAC=90°,BD⊥DE,CE⊥DE,∴∠DAB+∠DBA=∠DAB+∠EAC,∴∠DBA=∠EAC;在△ABD与△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴DE=BD+CE.【点评】该题主要考查了全等三角形的判定及其性质的应用问题;准确找出命题中隐含的等量关系,是证明全等三角形的关键.五、(本大题1小题,满分10分)22.(10分)如图,△ABC中,CA=CB,∠ACB=90°,BD平分∠ABC交AC于D,CE⊥BD于F,交AB于E.(1)求证:CD=AE;(2)求证:的值.【分析】(1)如图连接DE,只要证明AE=DE,DE=DC即可.(2)在BD上取一点使得CM=CD,则AE=CM.只要证明△ACE≌△CBM,推出CE=BM,推出BD﹣CE=BD﹣BM=DM=2DF,由此即可证明.【解答】证明:(1)如图连接DE.∵CE⊥BD,∴∠BFC=∠BFE=90°,∴∠FBC+∠FCB=90°,∠FBE+∠BEF=90°,∵∠FBC=∠FBE,∴∠FCB=∠BEF,∴BC=BE,∵BF⊥CE,∴FC=EF,∴BD垂直平分线段CE,∴DE=DC,∴∠DCE=∠DEC,∴∠DEC+∠BEF=∠DCE+∠BCF=90°,∴∠DEB=90°=∠DEA,∵CA=CB,∠ACB=90°,∴∠A=∠ADE=45°,∴AE=ED=DC.(2)在BD上取一点使得CM=CD,则AE=CM.∵∠A=∠ABC=45°,∴∠ABD=∠DBC=22.5°,∵CE⊥BD,CD=CM,∴DF=FM,∴∠BCF=67.5°,∠DCF=∠FCM=22.5°,∴∠MCB=∠A=45°,在△ACE和△CBM中,,∴△ACE≌△CBM,∴CE=BM,∴BD﹣CE=BD﹣BM=DM=2DF,∴==2.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.六、(本大题1小题,满分12分)23.(12分)如图,△ABC和△EDC都是等边三角形,AD=,BD=,CD=2,求:(1)AE的长;(2)∠BDC的度数;(3)AC的长.【分析】(1)根据等边三角形的性质得到BC=AC,CD=CE=DE,∠ACB=∠DCE=60°,推出△BCD≌△ACE,根据全等三角形的性质即可得到结论;(2)根据勾股定理的逆定理得到∠AED=90°,求得∠AEC=150°,根据全等三角形的性质即可得到结论;(3)过C作CP⊥DE与P,设AC与DE交于G,根据等边三角形的性质得到PE=DE=1,CP=,得到AE=CP,根据全等三角形的性质得到AG=CG.PG=EG=,根据勾股定理即可得到结论.【解答】解:(1)∵△ABC和△EDC都是等边三角形,∴BC=AC,CD=CE=DE,∠ACB=∠DCE=60°,∴∠BCD=∠ACE,在△BCD与△ACE中,,∴△BCD≌△ACE,∴AE=BD=;(2)在△ADE中,∵AD=,BD=,DE=2,∴DE2+AE2=AD2,∴∠AED=90°,∵∠DEC=60°,∴∠AEC=150°,∵△BCD≌△ACE,∴∠BDC=∠AEC=150°;(3)过C作CP⊥DE与P,设AC与DE交于G,∵△CDE是等边三角形,∴PE=DE=1,CP=,∴AE=CP,在△AEG与△CPG中,,∴△AEG≌△CPG,∴AG=CG.PG=EG=,∴AG==,∴AC=2AG=.【点评】本题考查了全等三角形的判定和性质,等边三角形的性质,直角三角形的判定,正确的作出辅助线是解题的关键.。
2017—2018学年度八 年 级 数 学上学期期中试卷考试时间:120分钟 满分:150分一、选择题。
(每小题4分,共40分。
)1、有四条线段,长分别是3厘米,5厘米,7厘米,9厘米,如果用这些线段组成三角形,可以组成不同的三角形的个数为( )A .5B .4C .3D .22、如图,小林从P 点向西直走12m 后,向左转,转动的角度为α,再走12m ,如此重复,小林共走了108m 回到点P ,则α=( )A .40oB.50 oC .80 oD .不存在3.判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为50°和20°的三角形一定是钝角三角形,④直角三角形中两锐角的和为90°,其中判断正确的有( ). A.1个 B.2个 C.3个 D.4个 4、若一个多边形的内角和为1080°,则这个多边形的边数是( ) A . 6 B .7 C .8 D .95、如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A .带①去B .带②去 C.带③去 D .带①②去6ABC 的三边长,则下面与△ABC )B .C .D .A. 7、如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是( ). A .∠M=∠N B .AM∥CN C .AB=CD D .AM=CN5题图6题图8、如图,已知C、D分别在OA、OB上,并且OA=OB,OC=OD,AD和BC 相交于E ,则图中全等三角形的对数是( ).A.3 B.4 C.5 D.69、如图12.1-10,△ABC≌△FED,则下列结论错误的是()A. EC=BDB. EF∥ABC. DF=BDD. AC∥FD10、如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A. 10B. 7C. 5D. 4二、填空题。
2017-2018学年度第一学期期中质量检测八年级数学试卷10小题,每小题3分,共30分).在平面直角坐标系中,点(﹣1,-2)在()A.第一象限 B.第二象限C.第三象限D.第四象限.在如图所示的象棋盘上,若“帅”和“相”所在的坐标分别是(1,﹣2)和(3,﹣2))A. (﹣2,1) B.(﹣2,2)C.(﹣1,1) D.(﹣1,2).直线y=x﹣2与y=﹣x﹣4的交点坐标为()A.(﹣2,3)B.(2,﹣3) C.(-1,-3)D.(1,3).在平面直角坐标系中,直线y=-kx+b(k<0,b>0)不经过哪一象限()A.第一象限 B.第二象限C.第三象限D.第四象限.一次函数y=ax﹣a(a≠0)的大致图象是()A. B.C. D..现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可( )A.1个 B.2个 C.3个 D.4个如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E 的度数是()A. 180°B.270°C.360°D.540°8.直线l1:y=ax+b与直线l2:y=mx+n在同一平面直角坐标系中的图象如图所示,则关于x的不等式ax+b<mx+n的解集为()A.x>﹣2 B.x<﹣2 C.x>1 D.x<19.下列判断:①有两个内角分别为55°和25°的三角形一定是钝角三角形;②直角三角形中两锐角之和为90°;③三角形的三个内角中至少有两个锐角;④三条高不相交的三角形一定是钝角三角形,其中正确的有( )个A.1 B.2 C.3 D.410.某人骑自行车沿直线旅行,先前进了a km, 又原路返回b km(b<a),休息了一段时间,再推车步行c km,此人离起点的距离y与时间x之间关系示意图象应为()二.填空题(本大题共5小题,每小题4分,共20分)11.若点(n,n+3)在一次函数2)1(12+-=+mxmy的图象上,则n= .12.若函数y=kx-3的图象与两坐标轴围成的三角形面积为6,那么k= .13.已知直线y=kx+b经过点(﹣2,3),并且与直线y=-2x+1平行,那么b= .14.如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF= .15.在一次自行车越野赛中,出发mh后,小明骑行了25km,小刚骑行了18km,此后两人分别以a km/h,b km/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:km)之间的函数关系如图所示,观察图象,可得小刚追上小明时离起点 km;答题卷一、选择题(每题3分,共30分)二、填空题(每题4分,共20分)11. . 12. .13. .14. 15. 三、解答题:(共40分,每题10分)16.如图,ABC ∆的三个顶点坐标分别为A(-1,1),B(-2,3),C(-6,2),平面直角坐标系中画出ABC ∆,并求ABC ∆的面积.17.已知y ﹣3与3x+1成正比例,且x=2时,y=6.5. (1)求y 与x 之间的函数关系式,并指出它是什么函数; (2)若点(a ,2)在这个函数的图象上,求a .18、已知,直线l 在平面直角坐标系中与y 轴交于点A ,点B (﹣3,3)也在直线l 上,将点B 先向右平移1个单位长度,再向下平移2个单位长度得到点C ,点C 也在直线l 上. 求点A 的坐标和直线l 的解析式;19.如图,∠MAN=100°,点B 、C 是射线AM 、AN 上的动点,∠ACB 的平分线和∠MBC 的平分线所在直线相交于点D ,求∠BDC 的大小四.综合与实践:(10分)20.已知某种鞋子的型号“鞋码”和鞋子的长度“cm ”之间存在一种换算关系如下:(1)通过画图、观察,猜想上表“鞋码”与鞋长之间的关系符合你学过的哪种函数?简单说明你猜想的过程。
2017-2018学年江西省赣州市宁都县八年级(上)期中数学试卷一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.B.C.D.2.(3分)若△MNP≌△MNQ,且MN=8,NP=7,PM=6,则MQ的长为()A.8 B.7 C.6 D.53.(3分)妈妈问小欣现在几点了,小欣瞧见了镜子里的挂钟如右图所示(分针正好指向整点位置),她就立刻告诉了妈妈正确的时间,请问正确的时间是()A.6点20分B.5点20分C.6点40分D.5点40分4.(3分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对5.(3分)如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm6.(3分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共6小题,每小题3分,共18分.)7.(3分)若n边形内角和为900°,则边数n=.8.(3分)在平面直角坐标系中,点P(1,﹣2)关于x轴对称的点的坐标是.9.(3分)如图,点B在AE上,∠CAB=∠DAB,要使△ABC≌△ABD,可补充的一个条件是:.(答案不唯一,写一个即可)10.(3分)若等腰三角形的周长为26cm,一边为10cm,则腰长为cm.11.(3分)当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为.12.(3分)在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC 与△ABO全等,则点C坐标为.(点C不与点A重合)三、(本大题共5小题,每小题6分,共30分).13.(6分)一个多边形的内角和比它的外角和的2倍还大180度,求这个多边形的边数.14.(6分)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB=CD,AB∥CD,CE=BF.求证:∠A=∠D.15.(6分)如图:△ABC和△ADE是等边三角形,AD是BC边上的中线.求证:BE=BD.16.(6分)图(a)、图(b)是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.具体要求如下:(1)画一个底边长为3,面积为6的钝角三角形;(2)画一个面积为16,且具有轴对称性质的钝角三角形.17.(6分)如图,BD是∠ABC的平分线,AB=BC,点E在BD上,连接AE、CE,过点D作DF⊥AE,DG⊥CE,垂足分别是F、G.(1)求证:△ABE≌△CBE;(2)求证:DF=DG.四、(本大题共3小题,每小题8分,共24分).18.(8分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.19.(8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.试判断线段AE与CD的关系,并说明理由.20.(8分)已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图②③,点D在线段BC(或CB)的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.五、(本大题共2小题,每小题9分,共18分.)21.(9分)Rt△ABC中,∠ABC=90°,在直线AB上取一点M,使AM=BC,过点A作AE⊥AB且AE=BM,连接EC,再过点A作AN∥EC,交直线CM、CB于点F、N.(1)如图1,若点M在线段AB边上时,求∠AFM的度数;(2)如图2,若点M在线段BA的延长线上时,且∠CMB=15°,求∠AFM的度数.22.(9分)如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA 的垂线,垂足分别为P、Q.(1)求证:△AEP≌△BAG;(2)试探究EP与FQ之间的数量关系,并证明你的结论;(3)如图2,若连接EF交GA的延长线于H,由(2)中的结论你能判断EH与FH的大小关系吗?并说明理由;六、(本大题1小题,满分12分.)23.(12分)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m 经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.2017-2018学年江西省赣州市宁都县八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.(3分)若△MNP≌△MNQ,且MN=8,NP=7,PM=6,则MQ的长为()A.8 B.7 C.6 D.5【解答】解:∵△MNP≌△MNQ,∴MP=MQ,已知PM=6,∴MQ=6.故选:C.3.(3分)妈妈问小欣现在几点了,小欣瞧见了镜子里的挂钟如右图所示(分针正好指向整点位置),她就立刻告诉了妈妈正确的时间,请问正确的时间是()A.6点20分B.5点20分C.6点40分D.5点40分【解答】解:根据对称性质得:正确的时间是5点40分,故选:D.4.(3分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对【解答】解:∵EF是AC的垂直平分线,∴OA=OC,又∵OE=OE,∴Rt△AOE≌Rt△COE,∵AB=AC,D是BC的中点,∴AD⊥BC,∴△ABC关于直线AD轴对称,∴△AOC≌△AOB,△BOD≌△COD,△ABD≌△ACD,综上所述,全等三角形共有4对.故选:D.5.(3分)如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm【解答】解:∵DE是边AB的垂直平分线,∴AE=BE.∴△BCE的周长=BC+BE+CE=BC+AE+CE=BC+AC=18.又∵BC=8,∴AC=10(cm).故选:C.6.(3分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.4个 B.3个 C.2个 D.1个【解答】解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=∠EAC,∠DCA=∠ACF,∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°﹣(∠DAC+∠ACD)=180°﹣(∠EAC+∠ACF)=180°﹣(∠ABC+∠ACB+∠ABC+∠BAC)=180°﹣(180°﹣∠ABC)=90°﹣∠ABC,∴③正确;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴④正确;即正确的有4个,故选:A.二、填空题(本大题共6小题,每小题3分,共18分.)7.(3分)若n边形内角和为900°,则边数n=7.【解答】解:根据题意得:180(n﹣2)=900,解得:n=7.故答案为:7.8.(3分)在平面直角坐标系中,点P(1,﹣2)关于x轴对称的点的坐标是(1,2).【解答】解:点P(1,﹣2)关于x轴对称的点的坐标是(1,2),故答案为:(1,2).9.(3分)如图,点B在AE上,∠CAB=∠DAB,要使△ABC≌△ABD,可补充的一个条件是:∠CBE=∠DBE.(答案不唯一,写一个即可)【解答】解:根据判定方法,可填AC=AD(SAS);或∠CBA=∠DBA(ASA);或∠C=∠D(AAS);∠CBE=∠DBE(ASA).10.(3分)若等腰三角形的周长为26cm,一边为10cm,则腰长为10或8cm.【解答】解:①10cm是腰长时,腰长为10cm,②10cm是底边时,腰长=(26﹣10)=8cm,所以,腰长是10cm或8cm.故答案为:10或8.11.(3分)当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为120°.【解答】解:∵α=20°,∴β=2α=40°,∴最大内角的度数=180°﹣20°﹣40°=120°.故答案为:120°.12.(3分)在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC 与△ABO全等,则点C坐标为(2,4)或(﹣2,0)或(﹣2,4).(点C 不与点A重合)【解答】解:如图所示:有三个点符合,∵点A(2,0),B(0,4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(﹣2,0),C2(﹣2,4),C3(2,4).故答案为:(2,4)或(﹣2,0)或(﹣2,4).三、(本大题共5小题,每小题6分,共30分).13.(6分)一个多边形的内角和比它的外角和的2倍还大180度,求这个多边形的边数.【解答】解:设这个多边形的边数为n,由题意得,(n﹣2)•180°=2×360°+180°,解得n=7,答:这个多边形的边数7.14.(6分)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB=CD,AB∥CD,CE=BF.求证:∠A=∠D.【解答】证明:∵AB∥CD,∴∠C=∠B,∵CE=BF,∴CE+EF=FB+EF,即CF=BE,在△AEB和△DFC中,∴△AEB≌△DFC(SAS),∴∠A=∠D.15.(6分)如图:△ABC和△ADE是等边三角形,AD是BC边上的中线.求证:BE=BD.【解答】证明:∵△ABC和△ADE是等边三角形,AD为BC边上的中线,∴AE=AD,AD为∠BAC的角平分线,即∠CAD=∠BAD=30°,∴∠BAE=∠BAD=30°,在△ABE和△ABD中,,∴△ABE≌△ABD(SAS),∴BE=BD.16.(6分)图(a)、图(b)是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.具体要求如下:(1)画一个底边长为3,面积为6的钝角三角形;(2)画一个面积为16,且具有轴对称性质的钝角三角形.【解答】解:(1)如图(a),△ABC即为所求;(2)如图(b),△DEF即为所求.17.(6分)如图,BD是∠ABC的平分线,AB=BC,点E在BD上,连接AE、CE,过点D作DF⊥AE,DG⊥CE,垂足分别是F、G.(1)求证:△ABE≌△CBE;(2)求证:DF=DG.【解答】证明:(1)∵BD是∠ABC的平分线,∴∠ABE=∠CBE,在△ABE和△CBE中,∴△ABE≌△CBE(SAS);(2)∵△ABE≌△CBE,∴∠AEB=∠CEB,∴∠AED=∠CED,∵DF⊥AE,DG⊥CE,∴FD=DG.四、(本大题共3小题,每小题8分,共24分).18.(8分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.19.(8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.试判断线段AE与CD的关系,并说明理由.【解答】解:AE=CD,AE⊥CD,理由:延长AE交CD于M,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD,∠AEB=∠BDC,∵∠ABC=90°,∴∠DAE+∠AEB=90°,∴∠DAE+∠BDC=90°,∴∠AMD=90°,∴AM⊥CD.20.(8分)已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图②③,点D在线段BC(或CB)的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.【解答】解:(1)∠BAD=∠CAE;理由:∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,∴∠BAD=∠CAE;(2)∠DCE=60°,不发生变化;理由如下:∵△ABC是等边三角形,△ADE是等边三角形,∴∠DAE=∠BAC=∠ABC=∠ACB=60°,AB=AC,AD=AE.∴∠ABD=120°,∠BAC﹣∠BAE=∠DAE﹣∠BAE∴∠DAB=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ACE=∠ABD=120°.∴∠DCE=∠ACE﹣∠ACB=120°﹣60°=60°.五、(本大题共2小题,每小题9分,共18分.)21.(9分)Rt△ABC中,∠ABC=90°,在直线AB上取一点M,使AM=BC,过点A作AE⊥AB且AE=BM,连接EC,再过点A作AN∥EC,交直线CM、CB于点F、N.(1)如图1,若点M在线段AB边上时,求∠AFM的度数;(2)如图2,若点M在线段BA的延长线上时,且∠CMB=15°,求∠AFM的度数.【解答】解:(1)连接EM.∵AE⊥AB,∴∠EAM=∠B=90°.在△AEM与△BMC中,,∴△AEM≌△BMC(SAS).∴∠AEM=∠BMC,EM=MC.∵∠AEM+∠AME=90°,∴∠BMC+∠AME=90.∴∠EMC=90°.∴△EMC是等腰直角三角形.∴∠MCE=45°∵AN∥CE,∴∠AFM=∠MCE=45°;解:(2)如图2,连接ME.同(1)△AEM≌△BMC(SAS),则EM=MC,∠MEA=∠CMB=15°.又∵∠MEA+∠EMA=90°,∴∠EMC=60°,∴△EMC是等边三角形,∴∠ECM=60°,∵AN∥CE∴∠AFM+∠ECM=180°,∴∠AFM=120°.22.(9分)如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.(1)求证:△AEP≌△BAG;(2)试探究EP与FQ之间的数量关系,并证明你的结论;(3)如图2,若连接EF交GA的延长线于H,由(2)中的结论你能判断EH与FH的大小关系吗?并说明理由;【解答】解:(1)如图1,∵∠EAB=90°,EP⊥AG,AG⊥BC,∴∠EPA=∠EAB=∠AGB=90°,∴∠PEA+∠EAP=90°,∠EAP+∠BAG=90°,∴∠PEA=∠BAG,在△EPA和△AGB中,,∴△EPA≌△AGB(AAS),(2)EP=FQ,证明:由(1)可得,△EPA≌△AGB,∴EP=AG,同理可得,△FQA≌△AGC,∴AG=FQ,∴EP=FQ;(3)EH=FH,理由:如图,∵EP⊥AG,FQ⊥AG,∴∠EPH=∠FQH=90°,在△EPH和△FQH中,,∴△EPH≌△FQH(AAS),∴EH=FH.六、(本大题1小题,满分12分.)23.(12分)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m 经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。