有理数数轴教学设计
- 格式:doc
- 大小:41.50 KB
- 文档页数:2
数轴与有理数的运算教案一、教学目标:1. 了解数轴的概念和使用方法;2. 理解有理数的概念和表示方法;3. 掌握有理数的加减运算方法;4. 能够在数轴上进行有理数的加减运算。
二、教学内容:1. 数轴的概念和使用方法;2. 有理数的概念和表示方法;3. 有理数的加减运算方法;4. 数轴上的有理数加减运算。
三、教学步骤:步骤一:引入数轴的概念1. 引导学生观察实物中涉及到的轴,如尺子、铅笔等;2. 提问:你们在数学学习中还遇到过哪些涉及轴的概念?3. 学生回答后,引导学生思考轴在数学中的作用,并逐步引出数轴的概念;4. 教师给出数轴的定义和使用方法,并画出一个简单的数轴作为示例。
步骤二:引入有理数的概念1. 提问:你们学过哪些数?这些数可以怎么表示?2. 学生回答后,引导学生思考为什么有些数不能用分数或小数表示;3. 教师给出有理数的定义和表示方法,并结合示例进行说明。
步骤三:有理数的加法运算1. 提问:你们会如何计算两个正整数的和?两个负整数的和?2. 学生回答后,引导学生思考如何计算正整数和负整数的和;3. 示范正整数、负整数、零以及它们组合的加法运算,并总结得出规律。
步骤四:有理数的减法运算1. 引导学生回顾正整数和负整数的减法运算规则;2. 教师给出正整数、负整数以及它们组合的减法运算的示例,并引导学生总结减法运算的规律。
步骤五:数轴上的有理数加减运算1. 提醒学生在数轴上表示有理数时的规定:向右表示正数,向左表示负数;2. 学生根据给定的有理数进行加减运算,并在数轴上表示出结果。
四、教学重点和难点:1. 教学重点:数轴的概念、有理数的加减运算方法;2. 教学难点:数轴上的有理数加减运算。
五、教学评估:1. 学生课堂参与情况评估;2. 学生完成课堂练习的准确率评估;3. 学生在数轴上进行有理数加减运算的准确性评估。
六、教学延伸:1. 引导学生思考:为什么有理数的减法运算可以转化为加法运算?2. 给学生布置有理数的乘法和除法的计算练习,加深对有理数运算的理解。
数轴课程分析本节主要让学生知道数轴上有原点、正方向和单位长度,会画数轴,并用数轴上的点表示整数或分数.通过学习使学生会正确画出数轴,初步了解有理数与数轴上的点的对应关系,能将有理数用数轴上的点来表示,理解利用数轴上点的位置关系比较有理数大小的法则,从而发现和认识负数小于零,正数大于零,向学生渗透对立统一的辩证唯物主义观点以及数形结合的数学思想.教材分析1.地位与作用:数轴是继正负数、有理数之后的又一个新的概念,同时又是数形结合的一个重要范例.其重要性体现在它一方面锻炼学生的动手操作、观察分析的能力,另一方面体现代数与几何的一个结合,为下一步研究相反数、绝对值奠定基础,在数学的发展上具有重要作用.本节的学习对下一步的后继学习是非常关键的,具有承上启下的作用.2.重点与难点:本节的重点是数轴的概念,利用数轴比较数的大小;难点是从直观认识到理性认识,从而建立数轴的概念,正确地画出数轴.教法分析重视相关知识的联系,要通过复习、回忆原有知识,对照有理数中新增加的负数,联系生活经验,从温度计上得到启发,引出数轴,故采用启发诱导,自主学习与合作学习相结合的数学方法.讲解数轴概念及画法时,重点讲明原点作用,在数轴上标注负数单位时,要强调方向,并与正数单位作比较,可以多举一些实例.在讲解本节重点时,可以根据教学情况和学习练习,加深对数轴概念的理解;在通过观察数轴上点的位置关系,初步比较有理数的大小这部分内容时,要注意启发学生自己得出这一法则,并认识其合理性,重点要突出负数和零的大小比较.本节教学中涉及图形和数量的对应关系,可以向学生指明这是数学研究的一种重要方法,并注意在后继内容的教学中适时渗透.学法分析学习本节内容时应通过实践画图、交流、反思,真正掌握数轴的概念,理解用数轴可以直观地表示有理数,在数轴上比较有理数的大小,学习时应充分注意数形结合,理解数轴的定义时注意结合直观图形,如温度计,这样更容易理解.教学目标知识与技能1.认识数轴,会用数轴上的点表示有理数.2.了解数轴的概念,知道数轴的三要素,会画数轴.过程与方法从直观认识到理性认识,从而建立数轴的概念.情感态度与价值观通过数轴的学习,体会数形结合的数学思想方法,认识事物之间的联系,感受数学与生活的联系.教学重难点重点:数轴的概念.难点:从直观认识到理性认识,建立数轴的概念,正确地画出数轴.教学过程活动1:创设情境,导入新课设计意图:直接抛出数轴的名称,对应学生小学中已经接触过的用直线上的点表示数,引起学生的学习兴趣,建立初步的数轴印象.师:提问有理数包括哪些数?0是正数还是负数?在日常生活中,你能举出一些用刻度来表示物品的数量的例子吗?让学生充分讨论,明确知识是从实践中得到的,它与我们的生活息息相关;再有,数除了可以用符号表示外,还有其他表示方法,从而引出新课:数轴.活动2:学习数轴的概念,探索数轴的画法设计意图:通过教具的使用,使学生能够直观地感受数与形之间的对应关系,渗透数形结合的数学思想,通过讨论、自主学习、合作交流等形式,使学生对数轴从感性认识上升到理性认识.1.教师出示温度计,问:你会读温度计吗?温度上的刻度与数值之间有什么关系?2.教师出示图片,提出:怎样用数简明的表示树、电线杆与汽车站的相对位置关系(方向、距离)?说明:将公路看作直线,将各个事物看作点.学生动手操作,感受画数轴的过程,之后,师让学生阅读教材15页上的三段话,正确规范地理解数轴的概念,然后师生共同总结数轴的三要素.活动3:学习有理数在数轴上的表示方法设计意图:会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来,这是本节课要求学生掌握的最基本的技能,也是以后继续学习坐标系的基础.让学生通过练习感受数与形之间的对应关系,感受数学直观与抽象之间的联系.师:数轴上的点都是整数,分数或小数能用数轴上的点表示吗?生:思考后回答,然后完成教材16页练习.师:观察数轴,数轴上原点左边的数都是什么数,右边呢?学生讨论后进行归纳,最后教师作点评.活动4:课后作业下列所画数轴对不对?如果不对,指出错在哪里.【答案】①错,没有原点;②错,没有正方向;③正确; ④错,没有单位长度;⑤错,单位不统一;⑥错,正方向标错.板书设计活动1:创设情境,导入新课活动2:学习数轴的概念,探索数轴的画法.活动3:学习有理数在数轴上的表示方法.活动4:课后作业章末复习【知识与技能】1。
以博致雅:“八有效”文化课堂讲学案
10.在数轴上原点以及原点右边的点表示的数是
A.正数B.负数C.零和正数D.零和负数11.从数轴上看,0是
A.最小的整数B.最大的负数C.最小的有理数D.最小的非负数12.--2的相反数是
A.2 B.1
2
C.-1
2
D.-2
三;解答;
13.明明在超市买一食品,外包装上印有“总净含量20213g”的字洋,请问“±3g”表示什
么意义?明明拿去称了一下,发现只有198g,问食品生产厂家有没有欺诈行为?
14.如图,分别指出数轴上A、B、C、D、E各点所表示的数.
15.写出下列各数的相反数,并在数轴上表示下列各数及它们的相反数.
+2,-3,0,--1,-3
1
2
,-+4
展评有效课堂分组学习——口头展示——教师点评——学生纠错
总结有效师生同台
测试有效中考链接(结合本节知识点)
板书设计
有理数,数轴,绝对值习题课
一;填空;二;选择;三;解答;
教学反思。
有理数与数轴适用年七年级数学级所需时7课时间主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要的学习方式和预期的学习成果,字数300-500) 本章是第三学段教科书的第一章,既承接前两个学段的内容,又为进一步学习打下基础。
本章主要内容是有理数的有关概念及其运算。
首先,从实例出发引入负数,接着引进关于有理数的一些概念,在此基础上,介绍有理数的加减法运算。
本主题单元,将分成三个专题来组织学习活动。
专题一:认识正、负数及有理数的分类。
专题二:数轴与有理数。
数轴与相反数。
数轴与绝对值。
专题三:数轴与有理数加法。
这三个专题都源于教材,其覆盖了教材的全部要求,又不拘泥于教材,适当进行了拓展和延伸,充分体现了学科服务于生活的理念。
学习本章的一个关键,就是利用数轴的直观性,帮助学生理解相反数与绝对值的概念,掌握比较有理数大小的方法,认识有理数的运算法则。
利用数轴分析物体运动的实例,可以非常直观地获得物体两次运动的结果,从而引出有理数加法的运算法则。
主题单元规划思维导图主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)知识与技能:1、通过生活实例,了解有理数等知识是生活的需要.2、理解并掌握数轴、相反数、绝对值、有理数等有关概念.3、通过本单元的学习,掌握有理数的加法。
过程与方法:通过本单元的学习,培养学生应用数学知识的意识,训练和增强学生运用新知识解决实际问题的能力情感态度与价值观:1、过本单元知识的学习,通过生活实例的引入,通过教师、学生双边的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.2、通过本单元知识的学习,给学生渗透辩证唯物主义思想。
3、让学生通过观察、思考、探究、讨论、归纳,主动地进行学习。
对应课标(说明:学科课程标准对本单元学习的要求)1、通过实际例子,感受引入负数的必要性。
小学数学教案数轴与有理数教案学科:数学年级:小学三年级教材:数学(三年级上册)单元:有理数主题:数轴与有理数的认识教学目标:1. 理解数轴的概念,能够正确使用数轴表示整数和小数。
2. 掌握有理数的定义和分类,能够按照要求在数轴上标出有理数的位置。
3. 能够在具体问题中运用数轴和有理数的知识解决实际问题。
教学重点:1. 理解数轴的概念,掌握数轴上整数和小数的表示方法。
2. 掌握有理数的定义和分类。
3. 能够在具体问题中灵活运用数轴和有理数的知识。
教学准备:教学课件、数轴模板、纸张、彩色笔等。
教学过程:Step 1 引入新知1. 【板书】:数轴与有理数。
2. 引导学生观察图片,回答问题:“你们在生活中见过数轴吗?它有什么作用?”3. 学生回答后,教师简要解说数轴的定义和作用,引发学生对数轴的兴趣。
Step 2 数轴的认识1. 教师出示数轴模板,让学生观察、感受。
2. 引导学生观察数轴上的刻度和箭头,并解释其含义。
3. 让学生自行在数轴上标出1、0和-1等整数,并向同学们展示。
4. 引导学生体会数轴上整数的排列规律,进而认识正数、负数和零的概念。
5. 引导学生在数轴上标出一些小数,加深对数轴的认识。
Step 3 有理数的定义与分类1. 【板书】:有理数的定义。
2. 引导学生回顾整数的概念,并解释有理数的定义。
3. 学生互动回答:有理数包括哪些数?如何将有理数分类?4. 教师对学生回答进行总结和点评,确保学生对有理数的理解准确。
Step 4 数轴上的有理数1. 引导学生思考:如何在数轴上表示有理数?2. 学生互动回答:在数轴上表示正数、负数和零的方法。
3. 教师出示一些有理数,要求学生在数轴上标出这些数的位置,并解释标记方法。
4. 学生通过标记有理数的方法,进一步加深对数轴和有理数的理解。
Step 5 运用数轴解决问题1. 出示一个实际问题:小明从家出发,走了3.5千米,然后又走了2.7千米,问他现在距离家有多远?2. 引导学生分析问题,利用数轴解决。
数轴教学目标知识技能1.通过与温度计的类比,了解数轴的概念,会画数轴。
2.知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。
过程方法从直观认识到理性认识,从而建立数轴概念。
通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。
会利用数轴解决有关问题。
情感态度通过对数轴的学习,体会到数形结合的思想方法,进而初步认识事物之间的联系性。
教学重点1.数轴的概念。
2.能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。
教学难点从直观认识到理性认识,从而建立数轴的概念。
情景引入1.小明感冒了,医生用体温计测量了他的体温,并说:“37.8度。
”提疑:医生为什么通过体温计就可以读出任意一个人的体温?(体温计上的刻度)2.我们再一起去看看12月时祖国各地的自然风光和温度情况(电脑分别显示黑龙江、焦作、海南三个城市美丽的自然风光,温度分别为-10°c,0°c,20°c)提疑:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?(正数、零、负数)3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解。
然后提问:请找出一支温度计从外观上具有哪些不可缺少的特征?(组织学生讨论交流)学生可能会从不同的角度回答,教师给予必要的引导,总结出与数轴相对应的特点,如形状是直的、0刻度、单位刻度。
(电脑动态演示,将温度计水平放置,抽象得出数轴图形表示有理数-10,0,20的过程)从而引出课题------数轴。
教学过程一.数轴的画法与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右(或上)为正方向(箭头所指的方向),那么从原点向左(或下)为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…根据画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.二.数轴的相关概念1.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.(说明:数轴像一支平放的温度计。
数轴教学目标1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;(重点)2.会正确地画出数轴,会用数轴上的点表示给定的有理数;(难点)3.会根据数轴上的点读出所表示的有理数;(难点)4.感受在特定的条件下数与形是可以相互转化的.教学过程一、情境导入1.欣欣感冒了,医生用体温计测量了她的体温,并说:“37.8度”.提出问题:医生为什么通过体温计就可以读出任意一个人的体温?2.我们再一起去看看中秋节祖国各地的自然风光和温度情况(电脑分别显示嘉峪关、长白山、颐和园三个旅游景点的自然风光,温度分别为-3℃,0℃,20℃)嘉峪关-3℃长白山0℃颐和园20℃提出问题:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解.提出问题:请找出一支温度计从外观上具有哪些不可缺少的特征?二、合作探究探究点一:数轴的概念下列图形中是数轴的是( )A. B.C. D.解析:A中的没有单位长度,错误;B中没有正方向,错误;C中满足原点,正方向,单位长度,正确;D中没有原点,错误.故选C.方法总结:要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.探究点二:有理数与数轴的关系【类型一】读出数轴上的点所表示的数指出如图中所表示的数轴上的F 各点所表示的数.解析:要确定数轴上的点所表示的数可利用以下方法:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.解:由图可知,A 点表示:-4.5;B 点表示:4;C 点表示:-2;D 点表示:5.5;E 点表示:0.5;F 点表示7.方法总结:在确定数字时,要认真观察已知点是在原点的左边还是右边,对于A.D 这种情况,要注意它们所表示的数是在哪两个数之间.【类型二】 在数轴上表示有理数画出数轴,并用数轴上的点表示下列各数:-5,2.5,3,-52,0,-3,312. 解析:(1)画数轴必须具备“三要素”,三者缺一不可;单位长度必须一致,不能长短不一;正方向向右;(2)用数轴上的点表示数时,注意数的符号和该数到原点的距离.解:如图:方法总结:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.【类型三】 数轴上两点间的距离问题数轴上的点A 表示的数是+2,那么与点A 相距5个单位长度的点表示的数是( )A .5B .±5C .7D .7或-3解析:与点A 相距5个单位长度的点表示的数有2个,分别是7或-3,故选D.方法总结:解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧.另外,点在数轴上移动时也要分向左、向右两种情况.三、板书设计1.数轴(1)原点(2)正方向(3)单位长度2.数轴上的点与有理数间的关系(1)原点表示零(2)原点右边的点表示正数(3)原点左边的点表示负数教学反思数轴是数形转化、结合的重要桥梁,教学时的创设问题情境,激发学生的学习热情,发现生活中的数学.让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,学习过程中也体现出了从感性认识到理性认识,再到抽象概括的认识规律.相交线◆回顾归纳1.两条直线互相垂直,•其中的一条直线叫做另一条直线的_______,•交点叫做________.2.过一点有且只有_______与已知直线_______.3.连结直线外一点与直线上各点的所有线段中,________最短.4.直线外一点到这条直线的________的长度,叫做点到直线的距离.5.如图1直线AB,CD与EF相交,构成_______个角,其中∠1与∠5是_______,∠3与∠5是______,∠4与∠5是_______.图1 图2 图3 图4◆课堂测控知识点一垂线垂线段1.如图2所示,CD⊥AB,则点D是_____,∠ADC=∠CDB=________.2.如图3所示,l1⊥l2,垂足为_____,∠1与∠2是一组_____的邻补角,∠1•与______是一对_______的对顶角.3.(经典题)如图4所示,l1⊥l2,图中与直线L1垂直的直线是()A.直线a B.直线L2 C.直线a,b D.直线a,b,c4.如图5所示,若∠ACB=90°,BC=8cm,•AC=•6cm,•则B•点到AC•边的距离为________.图5 图6 图7 图85.如图6所示,直线L外一点P到L的距离是________的长度.知识点二同位角内错角同旁内角6.如图7所示,图中的同位角有______对.7.如图8所示,下列说法不正确的是()A.∠1与∠B是同位角 B.∠1与∠4是内错角C.∠3与∠B是同旁内角 D.∠C与∠A不是同旁内角8.如图9所示,∠1与∠2是哪两条直线被另一条直线所截,构成的是什么角的关系?∠3与∠D呢?图9◆课后测控1.如图10所示,直线AB,CD交于点O,OE⊥AB且∠DOE=40°,则∠COE=_____.图10 图11 图122.如图11所示,AO⊥OB于点O,∠AOB:∠BOC=3:2,则∠AOC=_______.3.如图12所示,AB与CD交于点O,OE⊥CD,OF⊥AB,•∠BOD= 25 °,•则∠AOE=____,∠DOF=_____.4.(教材变式题)如图所示,图(1)中∠1<∠2,图(2)中∠1=∠2.试用刻度量一量比较两图中PC,PD的大小.5.如图所示,分别过P画AB的垂线.6.(原创题)如图,OA⊥OC,OB⊥OD,且∠AOD=3∠BOC,求∠BOC的度数.◆拓展创新7.(经典题)我国“十一五”规划其中一重要目标是,建设社会主义新农村,国家对农村公路建设投资近1000亿人民币.西部的某落后山村准备在河流M上架上一座桥梁,如图所示,桥建在何处才能使A,B两个村庄的之间修建路面最短?参考答案回顾归纳1.垂线,垂足 2.一条直线,垂直 3.垂线段4.垂线段 5.八,同位角,内错角,同旁内角课堂测控1.垂足,90° 2.O,相等,∠3,90°3.D(点拨:∵L1∥L2,a⊥L1,b⊥L1,c⊥L1)4.8cm(点拨:点到直线距离定义)5.PC的长(点拨:PE>PD>PC,PA>PB>PC)6.2(点拨:∠ADE与∠B,∠ADC与∠B)7.D(点拨:∠C与∠A是直线AB,BC被AC所截的同旁内角)8.AB,CD被AC所截,∠1与∠2是内错角关系;AC与CD被AD所截,∠3与∠D是同旁内角关系.课后测控1.140°(点拨:∠DOB=∠AOC=90°-40°=50°)2.150°(点拨:∠AOB=90°,3x=90°,x=30°,∠BOC=60°)3.65°,115°(点拨:∠AOC=∠BOD=25°,∠AOE=90°-∠AOC=90°-25°=65°)• 4.图(1)量得PC<PD,图(2)量得PC=PD.5.如图.6.∵∠BOD=90°,∠AOC=90°,∠BOD+∠AOC=180°∴∠AOD=180°-∠BOC,又∵∠AOD=3∠BOC∴3∠BOC=180°-∠BOC,∴∠BOC=45°解题技巧:本题扣住∠AOD=2×90°-∠BOC这一关键式子.7.如图所示.(1)将A向下平移河宽长度得A′;(2)连A′B交河岸于M;(3)过M作MN⊥a,交河岸b于N,MN即为架桥处;(4)连AN,则AN+MN+BM最短.3.1.2 等式的性质知能演练提升能力提升1.下列变形符合等式性质的是()A.如果2x-3=7,那么2x=7-3B.如果3x-2=x+1,那么3x-x=1-2C.如果-2x=5,那么x=-D.如果-x=1,那么x=-32.已知a-b-1=1,则2a-2b-3的值是()A.1B.2C.5D.73.如果式子5x-4的值与-互为倒数,那么x的值是()A.B.-C.D.-4.如图,天平上放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的质量是一个香蕉的质量的()A.倍B.倍C.2倍D.3倍5.(1)如果-3(x+3)=6,那么x+3=,变形依据是.(2)如果3a+7b=4b-3,那么a+b=,变形依据是.6.若2a-b=5,a-2b=4,则a-b的值为.7.小李在解方程5a-x=13(x为未知数)时,误将-x看作+x,解得方程的解x=-2,则原方程的解为.8.将等式5a-3b=4a-3b变形,过程如下:因为5a-3b=4a-3b,所以5a=4a(第一步),所以5=4(第二步).上述过程中,第一步的依据是,第二步得出错误的结论,其原因.9.已知等式(a-2)x2+ax+1=0是关于x的一元一次方程,求这个方程的解.★10.某旅客携带了30 kg的行李从南京禄口国际机场乘飞机去天津.按民航的规定,旅客最多可免费携带20 kg的行李,超重部分每千克按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,求他的飞机票价格是多少元.创新应用★11.能不能由(a+3)x=b-1得到等式x=?为什么?反之,能不能由x=得到(a+3)x=b-1?为什么?参考答案知能演练·提升能力提升1.D2.A等式a-b-1=1的两边都加1,得a-b=2,两边再同乘2,得2a-2b=4,所以2a-2b-3=4-3=1.3.D由题意可列出方程5x-4=-6,根据等式的性质,得x=-.4.B5.(1)-2等式的性质2(2)-1等式的性质1和等式的性质2(1)根据等式的性质2,等式两边都除以-3,得x+3=-2.(2)先根据等式的性质1,等式两边都减去4b,得3a+3b=-3.再根据等式的性质2,等式两边同除以3,得a+b=-1.6.3将两等式左右两边分别相加,得2a-b+a-2b=9,即3a-3b=9,等式两边同时除以3,得a-b=3.7.x=2把x=-2代入5a+x=13,得a=3.所以原方程5a-x=13为15-x=13,根据等式的性质,得x=2.8.等式的性质1等式的两边同除以了一个可能等于0的数a9.解因为(a-2)x2+ax+1=0是关于x的一元一次方程,所以a-2=0,即a=2.所以原方程变为2x+1=0,根据等式的性质,得x=-.10.解设他的飞机票价格是x元.由题意,得(30-20)×1.5%x=120,即0.15x=120.根据等式的性质,得x=800.答:他的飞机票价格是800元.创新应用11.解不能由(a+3)x=b-1得到x=,因为当a=-3时,a+3=0,而0不能为除数,即不符合等式的性质2的规定.由x=可以得到(a+3)x=b-1,因为x=是已知条件,已知条件中已经隐含着条件a+3≠0,等式的两边乘同一个数,等式仍成立.11。
1.2.2 数轴-教案本节课主要是在学生学习了有理数概念的基础上,从实际事例出发,通过数学建模,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题.【情景导入】问题1:观察温度计,体会其特点.1.读出三个温度计上的温度,并表示出来.2.我们能否用类似温度计的图形表示有理数呢?问题2:画情境图,体会方向与距离.在一条东西方向的马路上,有一个汽车站牌,汽车站牌东3 m和7.5 m处分别有一棵柳树和一棵杨树,汽车站牌西3 m和4.8 m处分别有一棵槐树和一根电线杆,试画图表示这一情境,你会怎样画图呢?【说明与建议】说明:结合实例引导学生以轻松愉悦的心情进入本节课的学习,让学生体会到数学来源于实践,在生活中发现数学.通过问题1和问题2的解决,帮助学生感受到点与数之间的关系,从而对点表示数由感性认识上升到理性认识,同时对新知识的学习有了期待.建议:问题1中,找学生读温度计,通过学生读出温度计的温度初步了解数轴的特点;问题2中,学生根据题意画图并展示,对作图较好的学生给予表扬.【悬念导入】在一个大森林里,一群动物正在玩“寻宝”游戏.裁判长狮子介绍规则:寻宝必须根据寻宝图,而寻宝图分成四份,藏在一条路(东西方向)旁的四棵树的附近,它们分别是从现场向东300 m 的柳树、向东750 m 的杨树、向西460 m 的槐树和向西800 m 的松树.同学们,你能帮助动物们画图表示这些位置从而快速地找到宝物吗?【说明与建议】 说明:从同学们感兴趣的游戏入手,激发学生的积极性,同时调动学生探究问题的热情,借助“寻宝图”引出数轴.建议:让学生结合所给的条件分组讨论,动手画图(教师可以进行适当的提示),然后教师提出问题:你能把更多的数表示在你所作的图上吗?命题角度1 数轴上的点与有理数的关系1.如图,数轴上一个点被叶子盖住了,这个点表示的数可能是(A)A .2.3B .-1.3C .3.7D .1.32.在数轴上位于-4和2之间(不包括-4和2)的整数点有(B) A .6个B .5个C .4个D .无数个3.如图,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm ”和“3 cm ”分别对应数轴上的3和0,那么刻度尺上“5.6 cm ”对应数轴上的数为(C)A .-1.4B .-1.6C .-2.6D .1.64.请你画一条数轴,并把2,-1,0,23,-121这五个数在数轴上表示出来.解:在数轴上表示如图所示:命题角度2 数轴上两点之间的距离5.数轴上点A 表示的有理数是-5,那么到点A 的距离为10的点表示的数是-15或5.提问:1.想一想,汽车站牌起到什么作用呢?2.怎样用数简明地表示这些树、电线杆与汽车站牌的相对位置关系(方向、距离)?规定从左向右表示从西到东,把点O左右两边的数分别用负数和正数表示(如图).由此可见,正数,0和负数可用一条直线上的点表示出来.【探究新知】1.数轴的画法由上述问题加以联想,你能用一条直线上的点表示有理数吗?(用实物投影仪展示学生的画图)具体做法:第一步:画一条水平直线,定原点,原点表示0,如图1;第二步:规定从原点向右的方向为正方向,那么相反的方向(从原点向左)为负方向,如图2;第三步:选择适当的长度为单位长度,如图3.师生活动:学生在讨论的基础上动手操作,一边画图一边说画法,然后教师加以纠正.要强调正数从0向右写,负数从0向左写.并且总结数轴的画法,最后强调数轴必须满足三个条件:规定原点、正方向、单位长度.也可以类似于温度计,把温度计水平放置即可. 教师引导学生总结出:画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到了数轴. 说明:(1)原点、单位长度和正方向三要素缺一不可; (2)直线一般画水平的;(3)原点可取直线上任一点,一旦取定就不再改变; (4)正方向用箭头表示,一般取从左到右的方向为正方向; (5)单位长度应结合实际需要选取,一旦取定就不再改变,要做到刻度均匀.2.抽象建模,数形结合观察画好的数轴,思考以下问题:(1)原点表示什么数?(2)原点右边的点表示什么数?原点左边的点表示什么数? (3)+2,-41,-2.5,0分别在数轴的什么位置?师生活动:学生思考,并与同桌相互叙述,互相纠正补充,然后举手回答.根据所画的数轴可知原点表示的数是0,原点右边的点表示的是正数,原点左边的点表示的是负数.教师根据学生的回答给予肯定或否定.第(3)个问题可以让学生在黑板上画图指出.教师也可以给出其他的数让学生说出其对应的点在数轴上的位置. 结论:数轴上原点右边的点表示正数,原点左边的点表示负数. 任何一个有理数都可以用数轴上的一个点来表示.(2)如图2所示:(3)如图3所示:(4)如图4所示:【变式训练】 如图所示:(1)数轴上点A ,B ,C ,D 分别表示什么数? (2)在数轴上表示下列各数:1.5,-27,-5,3.解:(1)点A 表示-2.5,点B 表示-1,点C 表示0,点D 表示5. (2)如图.师生活动:教师在数轴上,把一些点进行移动,让学生求移动后的点所表示的有理数,引导学生理解数形结合思想.1.在数轴上表示-1.2的点在(B) A .-1与0之间B .-2与-1之间C .1与2之间D .-1与1之间2.在数轴上点A 表示的数是-4,如果把原点向负方向移动1.5个单位长度,那么在新数轴上点A 表示的数是(C) A .-521B .-4C .-221D .2213.数轴上表示-8的点在原点的左侧,距离原点8个单位长度;数轴上点P 距原点5个单位长度,且在原点的左侧,则点P 表示的数是-5.4.如图,写出数轴上点A ,B ,C ,D ,E 所表示的数.解:点A ,B ,C ,D ,E 所表示的数分别是0,-2,1,2.5,-3. 师生活动:学生进行当堂检测,完成后,教师进行批阅、点评、讲解.。
人教版初中七年级数学第一单元有理数《1.2.2数轴》教学设计一、教学内容分析数轴是一个重要的概念,后续的平面直角坐标系也是以它为基础的.这是学生第一次学习数形结合的思想.数轴实际就是有理数的形的表示载体,或者说是有理数的另一种表示形式.如果要对有理数有一个深刻的理解,除了从符号的形式理解外,还要从形的角度理解有理数.如何利用数形结合理解有理数是本课时教学的关键问题.学生在本节课上已经完成了第一课时布置的任务:绘制一条路上的几个建筑物的位置关系图,并用文字语言描述建筑物的位置关系.以右图为例,如果想要准确地描述建筑物的位置关系,如体育馆在校史馆的西边25 m处,那么就要说清楚参考标准,以及建筑物相对参考标准的方向及距离,才能准确地表示出建筑物相对的位置关系,这三点缺少一个都无法准确地表示建筑物的位置关系.例如,如果缺少参考标准,那么体育馆可能在校史馆的西边25 m处,也可能在荣光楼的西边25 m处,这个位置是无法确定的;如果缺少方向,那么体育馆有可能在校史馆的西边25 m处,也有可能在校史馆的东边25 m处,位置无法确定;如果缺少距离,那么体育馆可能在校史馆的西边25 m处或是50 m处等等,位置也是无法确定下来的.因此,想要描述物体的位置关系,参考基准、方向和距离是缺一不可的.为了更加简洁地表示出位置关系,我们借用了数轴这一数学工具,用数学语言表示物体的位置关系.参考基准即为数轴上的原点,方向即为数轴上的正方向,距离体现为数轴上的单位长度.例如,如果以校史馆为原点,向东为正方向,单位长度为25 m,如下图,那么体育馆可以表示为-50 m处,用一个数字就简化了表示物体位置关系的方式,同样是一个数,在数轴上就具有了几何的意义:符号表示的是方向,符号后面的数表示的是距离原点的距离,这是我们后面课时要学习的内容.教材中给出的数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…,从原点向左,用类似的方法依次表示-1,-2,-3,…,如下图:根据研究概念的四个维度,我们从特征、由来、与已有知识的联系与区别、应用这几个角度对数轴进行总结:(1)特征:根据定义,数轴首先是一条直线,并且具备三个要素:原点、正方向和单位长度.这几个条件缺一不可,否则无法描述物体的位置关系.但是在选择原点、正方向和单位长度时取法是不唯一的,选择不同的取法,对应的数轴就会不同,表示物体位置的数也就会不同.(2)由来:用数简明地表示物体的位置关系.(3)与已有知识的联系与区别:数轴,拆开来就是数和轴.数轴与数有关,与直线也有关,这条直线具有原点、正方向和单位长度.给定一个数,可以在数轴上找到该数对应的点;给定数轴上的一个点,也可以读出该点对应的数.数的变化在数轴上体现为点动,反之,数轴上的点动体现为点所对应的数的变化.第二课时中有理数的分类,借助数轴能够更直观地分辨出正数、负数和0.要注意的是,有理数与数轴上点的关系:所有的有理数都可以用数轴表示,但不能说数轴上的点仅仅表示有理数.(4)应用:表示位置关系二、学情分析学生通过自主学习初步掌握了数轴及如何利用数轴表示位置关系等内容,并且完成了主干路上几个建筑物的位置关系图,能够描述出这些建筑物的位置关系. 但是为什么用数轴表示物体的位置关系?为什么数轴要有原点、正方向和单位长度?这三个要素是否是必备的?这些问题学生还理解不到位.学生由于第一次接触数形结合的思想,对于数在数轴上的几何意义还不能完全理解.因此,要结合学生完成的实际任务对上述问题进行分析.此外,数轴三要素的取法并不是唯一的,当选取的三要素发生变化时,同一个点所表示的数就会发生变化.下题是北京市2018年中考数学第8题,当平面直角坐标系的原点及单位长度发生变化时对应同一个点坐标的变化,学生作答情况并不好.平面直角坐标系是以数轴为基础进行学习的,因此学生要牢牢掌握数轴的基本知识,特别是落实清楚三要素变化对点所对应的数变化的影响(2018·北京)右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为(5,-6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-12,-6)时,表示左安门的点的坐标为(10,-12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(-11,-5)时,表示左安门的点的坐标为(11,-11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(-16.5,7.5)时,表示左安门的点的坐标为(16.5,-16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④三、教学目标1.明确数轴三要素的作用,会画数轴.2.能读出数轴上的点所表示的有理数.3.能将有理数对应的点表示在数轴上.4.学会运用数形结合的思想解决问题●重点体会数轴三要素的作用,能够依据三要素的变化确定数轴上数的变化●难点理解有理数在数轴上的几何意义,学会运用数形结合思想解决问题四、评价设计学习评价量表五、教学活动设计置关系? 2.根据前两个活动的讨论结果,学生了解到数轴的三个要素是缺一不可的,原点、正方向、单位长度对于描述位置关系都有重要作用.3.在数轴上,我们用一个点表示物体所在的位置,那么该点所对应的数就能够体现出物体的位置.例如,根据上图所示,以校史馆为原点,向东为正方向,25 m为单位长度建立数轴,则体育馆在-50 m所对应的点的位置.-50 m中负号体现的是方向,与正方向相反,为向西;50表示体育馆到原点,即到校史馆的距离为50 m.4.总结:有理数在数轴上的几何意义:一个有理数对应为数轴上的一个点,体现了这个点的位置,符号表示点相对原点的方向,符号后面的数字体现为该点到原点的距离. 个环节对物体位置关系的描述,类比到数轴中来,让学生体会数轴三要素的作用,以及三要素选取不同,对应的点所表示的数不同等知识点.1.根据下图所示的文字语言,选取不同的原点画数轴,并把建筑物用点表示在数轴上.(1)以校史馆为原点(2)以荣光楼为原点六、板书设计七、达标检测与作业1.(A)画一条数轴,将有理数235,332--,,分别表示在数轴上,并依次记作点A,B,C,D.2.(A)把数轴上各点表示的数写出来.3.(B)数轴上点 M表示2,点N表示-3.5,点A表示-1,在点 M和点N中距离点A 较远的点是.4.(B)已知数轴上有A,B两点,A,B之间的距离为3,点A与原点O的距离为3,那么点B表示的数为.5.(B)如果将5个城市的国际标准时间(单位:时)在数轴上表示(如下图所示),那么北京时间2016年8月8日20时应是()A.伦敦时间2016年8月8日11时B.巴黎时间2016年8月8日13时C.纽约时间2016年8月8日5时D.首尔时间2016年8月8日19时6.(B)下图是北京地铁1号线一些站点的分布示意图.在图中,以东为正方向建立数轴.有如下四个结论:①当表示五棵松的点所表示的数为0,表示玉泉路的点所表示的数为-3.5时,表示公主坟的点所表示的数为6;②当表示五棵松的点所表示的数为0,表示玉泉路的点所表示的数为-7时,表示公主坟的点所表示的数为12;③当表示五棵松的点所表示的数为1,表示玉泉路的点所表示的数为-2.5时表示公主坟的点所表示的数为7;④当表示五棵松的点所表示的数为2,表示玉泉路的点所表示的数为-5时,表示公主坟的点所表示的数为14上述结论中正确的是()A.①②③B.②③④C.①④D.①②③④7.(B)小华骑车从家出发,先向东骑行2km到A村,继续向东骑行3km到达B村,接着又向西骑行9km到达C村,最后回到家.试回答下列问题:(1)画一条数轴,以家为原点,以向东方向为正方向,表示出家以及A,B,C 三个村庄的位置;(2)C村离A村有多远?(3)小华一共行驶了多少千米?8.(C)已知有理数-4,2,3543,在数轴上对应的点分别为A,B,C,D将点A向右移动5个单位长度,再向左移动2个单位长度后表示的数为;若点E向右移1个单位长度后恰好落在点C处,则点E表示的数为;B,E两点之间的距离为;若点F与点C关于原点对称,则点F表示的数为;若点G到点D的距离为3,则点G表示的数为.9.(C)如下图所示,一根木棒放在数轴上,木棒的左端与数轴上的点A重合,右端与点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为20;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时则它的左端在数轴上所对应的数为5,用1个单位长度表示1cm,由此可得到木棒长为.(2)受题(1)的启发,请你借助“数轴”这个工具帮助小红解决下列问题:一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了?八、教学反思本课时旨在通过实际任务让学生认识数轴在表示物体位置关系时的简洁,让学生理解为什么要引入数轴,以及三要素的重要作用.数形结合思想是本节课重点渗透的思想,通过用数轴上的点表示物体,用点所对应的数表示点的位置,将有理数和数轴上的点对应起来,从而有理数就有了几何意义,其符号和符号后面的数字分别对应的是相对原点的方向和距离.在教学中,由于三要素选取不同,学生绘制的数轴各不相同.学生提前自主学习时对规范性没有要求,因此一开始画出的数轴并不标准,所以在课堂上教师需要规范这一标准.学生通过一系列的练习后可以进一步感知有理数在数轴上的几何意义.在运用数形结合思想解决问题时,有些学生还不能在本节课一下子吸收掌握,因此教师要逐渐渗透数轴还有一个非常大的作用就是让数变得有“序”,可以利用这点比较多个数的大小,这是之后学习的内容.但是在教学中,学生还较难发现这点,需要教师引导指出本节课在实施过程中虽然留给学生思考时间,但是学生交流讨论的时间还是不够,例如,三要素的选取这部分可以让学生通过完成实际任务自己发现这一结论,也可以引导学生自己提出变换原点、正方向、单位长度去表示位置关系这一问题.。
课堂教学设计1、复习、导入可以写成分数形式的数称为有理数(rational number)有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数判断表中各数分别是什么数,在相应的空格内打“√”。
复习巩固话题迅速将学生的注意力吸引到课堂上来。
使学生生认知冲突,渴望了解其中的奥秘从而调动了学生学习的积极性。
2、精讲新课在小学,我们曾经在有刻度的直线上表示出0和正数,并借助这种图形来直观理解和分析问题.下面我们在此基础上直观表示有理数.在以前的学习基础上,能否尝试加入负数?怎么加进去呢?例1、在一条东西方向的马路上,有一个汽车站牌,汽车站牌东3m和7.5m分别有一颗柳树和杨树,汽车站牌西3m和4.8m处分别有一颗槐树和一根电线杆,试画图表示这一情景。
关键词:东西方向的马路;汽车站牌东和汽车站牌西怎样用数简明地表示柳树、交通标志杆、槐树、电线杆与汽车站牌的相对位置关系(方向、距离)?在上面的问题中,“东”与“西”、“左”与“右”都具有相反意义.如,在一条直线上任取一点o为基准点,规定1个单位长度(线段oA的长)代表1m长,再用0表示点0,用负数表示点0左边的点,用正数表示点o右边的点.这样,我们就用负数、0、正数表示出了这条直线上的点.用上述方法,我们就可以把柳树、交通标志杆、槐树、电线杆与汽车站牌的相对位置关系表示出来了.例如,3表示位于汽“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象.车站牌东侧3m 处的柳树的位置,-4.8表示位于汽车站牌西侧4.8m 处的电线杆的位置,等等 比较,说一说它们之间有什么共同点?从原点向右每隔一个单位长度取一点,依次标上1,2,3,…;从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,…规定了原点、正方向和单位长度的直线叫作数轴(numberaxis) 。
通常称原点、正方向、和单位长度的直线叫做数轴的三要素。
初中数学用数轴上的点表示有理数教案用数轴上的点表示有理数教学目的1.使先生正确了解数轴的意义,掌握数轴的三要素;2.使先生学会由数轴上的点说出它所表示的数,能将有理数用数轴上的点表示出来;3.使先生初步了解数形结合的思想方法.教学重点和难点重点:初步了解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.难点:正确了解有理数与数轴上点的对应关系.课堂教学进程设计一、从先生原有认知结构提出效果1.小学里曾用〝射线〞上的点来表示数,你能在射线上表示出1和2吗?2.用〝射线〞能不能表示有理数?为什么?3.你以为把〝射线〞做怎样的改动,才干用来表示有理数呢?待先生回答后,教员指出,这就是我们本节课所要学习的内容数轴.二、讲授新课让先生观察挂图缩小的温度计,同时教员给予言语指点:应用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,依据温度计的液面的不同位置就可以读出不同的数,从而失掉所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计相似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、正数和零.详细方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,假设所需的都是正数,也可倾向左边)用这点表示0(相当于温度计上的0℃);2.规则直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可罗列几个数)在此基础上,给出数轴的定义,即规则了原点、正方向和单位长度的直线叫做数轴.进而提问先生:在数轴上,一点P表示数-5,假设数轴上的原点不选在原来位置,而改组在另一位置,那么P对应的数能否还是-5?假设单位长度改动呢?假设直线的正方向改动呢?经过上述提问,向先生指出:数轴的三要素原点、正方向和单位长度,缺一不可.三、运用举例变式练习例1 画一个数轴,并在数轴上画出表示以下各数的点:例2 指出数轴上A,B,C,D,E各点区分表示什么数.课堂练习示出来.2.说出下面数轴上A,B,C,D,O,M各点表示什么数?最后引导先生得出结论:正有理数可用原点左边的点表示,负有理数可用原点左边的点表示,零用原点表示.四、小结指点先生阅读教材后指出:数轴是十分重要的数学工具,它使数和直线上的点树立了对应关系,它提醒了数和形之间的内在联络,为我们研讨效果提供了新的方法.本节课要求同窗们能掌握数轴的三要素,正确地画出数轴,在此还要提示同窗们,一切的有理数都可用数轴上的点来表示,但是反过去不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个效果以后再研讨.五、作业课堂教学设计说明从先生已有知识、阅历动身研讨新效果,是我们组织教学的一个重要原那么.小学里曾学过应用射线上的点来表示数,为此我们可引导先生思索:把射线怎样做些改良就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要仔细剖析它的作用,使先生从直观看法上升到理性看法.直线、数轴都是十分笼统的数学概念,当然对初学者不宜讲的过多,但适当引导先生停止笼统的思想活动还是可行的.例如,向先生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.。
《数轴》教学设计通用12篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、致辞讲话、短语口号、心得感想、条据书信、合同协议、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as summary reports, speeches, phrases and slogans, thoughts and feelings, evidence letters, contracts and agreements, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《数轴》教学设计通用12篇《数轴》教学设计篇1一、教学内容分析1.2有理数1.2.2数轴。
数轴教案模板〔共5篇〕第1篇:数轴教案学科:数学教学内容:数轴【学习目的】1.通过与温度计的类比,认识数轴,会用数轴上的点表示有理数.2.借助数轴理解相反数的概念,认识互为相反数的一对数在数轴上的位置关系,能用数轴比拟有理数的大小.【根底知识精讲】1.数轴三要素及数轴画法(1)数轴三要素:原点、单位长度、正方向.其中可以选取某一长度作为单位长度,规定直线上向右的方向为正方向.(2)取一直线,直线上具备了数轴的三要素,那么它就可以称为数轴了. 2.数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示.(反之那么不成立.因为数轴上的点不仅可以表示有理数,还有一些点表示的数不在有理数的范围内)3.利用数轴比拟两个有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.图2—1(2)正数大于0,负数小于0,正数大于负数.图2—2 由于数轴上正数在0的右边,0在负数的右边,所以正数>0,0>负数,正数>负数.如:+7>-10(正数大于负数)0>-3(0大于负数),0<+2(0小于正数)4.相反数的有关知识(1)定义:假如两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.如:-3和3,11和-,-3.2和+3.2…… 77(2)在数轴上,表示互为相反数的两个点位于原点的两侧,并且与原点的间隔相等.图2—3 如:-3和+3是一对互为相反数,它们在原点的左右两侧,且它们到原点的间隔都是3个单位长度.(3)相反数是它本身的数是0.说明:数轴是数学中数与图形结合的典范.理解数轴及和数轴有关的知识都可以从几何和代数两方面入手.【学习方法指导】[例1]画一个数轴,并在数轴上表示出以下各数,并用“<”号连接起来.111,-3,-1,0,2 23点拨:①画数轴应必须具备数轴三要素:原点、单位长度、正方向.②用“<”号连接这些数,需要将这些数从小到大排列.而在数轴上右边的数总是大于左边的数,所以只要将数轴上的数从左到右用“<”号连接即可.解答:图2—4 -3<-111<0<1<2 32[例2]m,n在数轴上位置如图2—5,那么下面结论正确的选项是…〔〕图2—5 A.m>0,n<0 B.m>0,n>0 C.m<0,n<0 D.m<0,n>0 点拨:在数轴上的数,右边的总比左边的大.对于m和0,m在0的右边,即m>0,而n在0的左边,所以0>n即n<0.解答:m>0,n<0.选A.[例3]数轴上间隔原点3个单位长度的数是_____.点拨:先画出数轴,找到原点.从原点开场向左、向右各数3个单位长度,这两个点到原点的间隔相等,且符合题意.记住:类似的题目答案一般会有两个数.解答:+3和-3 [例4]填空:(1)-5的相反数是_____ 2(2)b的相反数是_____(3)-m的相反数是_____ 点拨:不管是数字或是字母,互为相反数的两个数只有符号不同.解答:(1)5(2)-b(3)m 2[例5]数轴上表示互为相反数的两个点A和B,它们两点间的间隔是5,那么这两个数分别是_____和_____.点拨:画出数轴,表示出A和B.由于它们互为相反数,所以这两个点到原点的间隔相等,那么每个点距原点2.5个单位长度.在原点左边的点为-2.5,在原点右边那么为+2.5.图2—6 解答:+2.5和-2.5.[例6]比拟大小(1)0_____-3(2)-1_____-2(3)7_____-10 2点拨:假设正数、负数、0互相比拟,那么用“正数>0>负数”进展比拟.假设两负数进展比拟,将它们标注在数轴上,右边的数大于左边的数.解答:(1)>(0大于负数)(2)>(数轴上,-1所对应的点在-2所对应点的右侧)2图2—7(3)>(正数大于负数)【拓展训练】求以下各数的相反数.(1)-(+7)(2)+(-m)点拨:由于互为相反数的两个数只有一个符号不同:一个为正,一个为负.因为在此题中将括号里的数看做一个整体,括号外的才是它的符号.找相反数时,只要改变括号外的符号即可.解答:(1)-(+7)的相反数是+(+7)(2)+(-m)的相反数是-(-m)第2篇:数轴教案1.2.2 数轴教学目的:1.使学生知道数轴上有原点、正方向和单位长度,能将数在数轴上表示出来,能说出数轴上的点所表示的数,知道有理数都可以用数轴上的点表示;2.向学生浸透对立统一的辩证唯物观点及数形结合的数学思想。
乐智教育2018年暑假邛崃校区名师培优精讲有理数的认识【教学目标】1,理解并掌握有理数的概念.2,会用正、负数表示生活中具有相反意义的量.3,通过与温度计的类比认识数轴,并会用数轴上的点表示有理数.4,借助数轴了解相反数的概念,会求一个数的相反数.5,借助数轴理解绝对值的概念.【教学重点】1,会求一个数的相反数.2,会求一个数的绝对值.【教学难点】3,有理数的分类.4,对相反数概念的理解.5,会用绝对值比较两个负数的大小【教学内容】一,有理数正数和负数一、复习引入:1.你看过电视或听过广播中的天气预报吗?请大家来当小小气象员,记录温度计所示的气温25ºC,10ºC,零下10ºC,零下30ºC。
2.回忆我们已经学了哪些数?它们是怎样产生和发展起来的?在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,…;为了表示“没有”,引入了数0;有时分配、测量的结果不是整数,需要用分数(小数)表示。
总之,数是为了满足生产和生活的需要而产生、发展起来的。
二、新课教学1.相反意义的量:在日常生活中,常会遇到这样一些量(事情):例1:汽车向东行驶3千米和向西行驶2千米。
例2:温度是零上10℃和零下5℃。
例3:收入500元和支出237元。
例4:水位升高1.2米和下降0.7米。
例5:买进100辆自行车和买出20辆自行车。
①这些例子中出现的每一对量,有什么共同特点?②你能举出几对日常生活中具有相反意义的量吗?2.正数和负数:①能用我们已经学的来很好的表示这些相反意义的量吗?例如,零上5℃用5来表示,零下5℃呢?也用5来表示,行吗?说明:在天气预报图中,零下5℃是用―5℃来表示的。
一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数来表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放一个“-”(读作“负”)号来表示。
拿温度为例,通常规定零上为正,于是零下为负,零上10℃就用10℃表示,零下5℃则用―5℃来表示。
有理数的数轴与数线图的教学指导数学是一门基础学科,而有理数的数轴与数线图是数学中的重要概念之一。
它们能够帮助学生更好地理解有理数的大小关系,并且在解决实际问题时发挥重要作用。
本文主要介绍有理数的数轴与数线图的教学指导方法。
一、概述有理数包括正整数、负整数、零以及正负分数。
数轴和数线图是用来表示有理数的重要工具。
数轴是一条直线,上面的点和直线上的点一一对应,用于表示数的大小关系。
数轴的中心为原点,向右边是正方向,向左边是负方向。
二、教学步骤1. 引入概念在教学开始前,先向学生讲解有理数的概念,包括正数、负数和零的含义,以及它们在日常生活中的应用场景。
通过生动的例子,激发学生对有理数的学习兴趣。
2. 教授数轴的基本知识向学生介绍数轴的基本结构,包括原点、正方向和负方向。
可以通过展示实物的方式,比如一根线段代表数轴,左侧和右侧分别代表负方向和正方向。
鼓励学生自己思考,提出与数轴相关的问题。
3. 绘制数轴让学生用直尺和铅笔在纸上绘制一个数轴,并帮助学生标注出原点、正方向和负方向。
可以让学生以小组为单位进行绘制,相互之间进行交流和比较。
教师可以适时给予指导和提示。
4. 显示整数和零介绍整数和零在数轴上的位置。
让学生标注出一些整数和零的位置,例如0、-1、1等。
通过与实际问题的联系,让学生感受到整数和零在数轴上的相对大小。
5. 引入分数的概念向学生介绍分数的概念,并与整数进行比较。
可以通过展示实物的方式,比如水杯中的液体分成几份,让学生观察和思考。
6. 分数在数轴上的表示讲解分数在数轴上的表示方法。
分数可以通过将数轴等分,并标出相应的位置来表示。
例如,可以将数轴分为十等分,标注出1/2和1/10等位置。
鼓励学生自己寻找其他分数在数轴上的位置。
7. 绘制数线图介绍数线图的概念和用途。
数线图是用来表示有理数的图形,比数轴更加直观和形象。
让学生通过观察和学习,理解数线图和数轴之间的关系。
8. 实际问题应用通过实际问题的应用,让学生运用数轴和数线图解决问题。