2015年无为中学自主招生数学试题
- 格式:doc
- 大小:284.00 KB
- 文档页数:16
2015年自主招生数学试卷一、选择题:(每小题6分,共30分)1. 计算=⨯+⨯--2201120132011201220112012222( ) A . 1 B . -1 C. -2012 D.20122. 已知:13=-xx ,则94242+-x x x 的值是( )A . 1B .21 C. 31 D. 41 3. 已知:)62(21---x x >0,则满足条件的自然数x 的个数是( ) A . 1 B .2 C.3 D. 44. 如图是正方体的平面展开图,则d 所对的面是( )A . aB . b C. c D. f5. 如图1,在直角梯形ABCD 中,90=∠B ,点P 从点B 出发,沿A D C B →→→运动,记∆ABP 面积为y ,点P 运动的路程为x ,右图2是y 关于x 的函数图象,则直角梯形ABCD 的面积是 ( ) A . 28.5 B . 26.5 C. 26 D. 52 二、填空题:(每小题6分,共30分)6. 已知b a ,为不等于0的实数,则bba a +的最小值是 . 7. 如图在⊙O 中,圆内接等腰ABC ∆,AC AB =,AE 是直径,BC 交AE 于D 点,F 是OD 的中点,若FC 平行BE ,52=BC ,则AB= .8. 若方程02=++c bx ax 的两根为2,121==x x ,则方程02=+-a bx cx 的根是 .9. 如图在矩形ABCD 中,点E将BCE ∆翻折,使C 点落在AD 10. 已知:六边形OABCDE 中,D (12,8),E(12,0),M (4,6)直线 f edc ba图1EAEC三、解答题:(第11题8分,第12题10分,第13题12分,共30分) 11. 已知:.121,11,11,1133333=+++=+=+-=+yz xz xy xyz b a x z a z y b a y x 求a 的值.12. 如图,正方形ABCD 的边长为1,点E 、F 分别在AB 、AD 边上,AEF ∆的周长为2,求ECF ∠的度数.13.如图,已知抛物线bx ax y +=2与双曲线xky =都经过点A (1,4),∆AOB 的面积是3. (1)求k b a ,,的值;(2使∆EC B21012年义乌中学自主招生数学答案一、选择题: 1. A 2. C 3. C 4. A 5. C二、填空题: 6. -2 7.308. 21,121-=-=x x 9. 20 10. 32231+-=x y 三、解答题:11. 2=a 12. 045=∠ECF13. (1)4,3,1===k b a(2))8,2(),2,8(21--E E解:(1)因为点A (1,4)在双曲线ky x =上,所以k=4. 故双曲线的函数表达式为xy 4=.设点B (t ,4t),0t <,AB 所在直线的函数表达式为y mx n =+,则有44m n mt n t =+⎧⎪⎨=+⎪⎩,, 解得4m t =-,4(1)t n t +=.于是,直线AB 与y 轴的交点坐标为4(1)0,t t +⎛⎫⎪⎝⎭,故 ()141132AOB t S t t∆+=⨯-=(),整理得22320t t +-=,解得2t =-,或t =21(舍去).所以点B 的坐标为(2-,2-). 因为点A ,B 都在抛物线2y ax bx =+(a >0)上,所以4422a b a b +=⎧⎨-=-⎩,, 解得13.a b =⎧⎨=⎩,(2)如图,因为AC ∥x 轴,所以C (4-,4),于是CO =42. 又BO =22,所以2=BOCO.设抛物线2y ax bx =+(a >0)与x 轴负半轴相交于点D , 则点D 的坐标为(3-,0).因为∠COD =∠BOD =45︒,所以∠COB =90︒.(i )将△BOA 绕点O 顺时针旋转90︒,得到△1B OA '.这时,点B '(2-,2)是CO 的中点,点1A 的坐标为(4,1-).延长1OA 到点1E ,使得1OE =12OA ,这时点1E (8,2-)是符合条件的点.(ii )作△BOA 关于x 轴的对称图形△2B OA ',得到点2A (1,4-);延长2OA 到点2E ,使得2OE =22OA ,这时点E 2(2,8-)是符合条件的点.所以,点E 的坐标是(8,2-),或(2,8-).。
数学综合练习一一.选择题1.把不等式组:的解集表示在数轴上,正确的是()A.B.C.D.2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.21×10﹣63.化简÷(1+)的结果是()A. B. C.D.4.如图,一根直尺EF压在三角形30°的角∠BAC上,与两边AC、AB交于M、N,那么∠CME+∠BNF是()A.135°B.150°C.180°D.不能确定5.如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为()A.1 B.C.D.26.设一元二次方程(x﹣2)(x﹣3)=m(m>0)的两实根分别为α、β(α<β),则α、β满足()A.2<α<β<3 B.2<α<3<β C.α<2<β<3 D.α<2且β>37.如图,函数y=﹣x与函数y=﹣的图象相交于A、B两点,过A、B两点分别作y轴的垂线,垂足分别为点C、D,则四边形ACBD的面积为()A.8 B.6 C.4 D.28.如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣πB.4﹣πC.πD.(4﹣π)a29.有四个命题:①两条直线被第三条直线所截,同旁内角互补;②有两边和其中一边的对角对应相等的两个三角形全等;③菱形既是轴对称图形又是中心对称图形;④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1<d<7.其中正确的命题有()A.1个B.2个C.3个D.4个10.在平面直角坐标系中,对于平面任一点(a,b),若规定以下三种变换:①f(a,b)=(﹣a,b),如,f(1,3)=(﹣1,3);②g(a,b)=(b,a),如,g(1,3)=(3,1);③h(a,b)=(﹣a,﹣b),如,h(1,3)=(﹣1,﹣3).按照以下变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),那么f(h(5,﹣3))等于()A.(﹣5,﹣3) B.(5,﹣3)C.(5,3) D.(﹣5,3)11.如图,△OAB中,OA=OB,∠A=30°,⊙O与AB相切,切点为E,并分别交OA,OB于C,D两点,连接CD.若CD等于,则扇形OCED的面积等于()A.π B.π C.π D.π12.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论()A.只有①② B.只有①③ C.只有②③ D.①②③二、填空题13.分解因式:x3﹣4x2﹣12x= .14.风华中学七年级(2)班的“精英小组”有男生4人,女生3人,若选出一人担任班长,则组长是男生的概率为.15.在矩形ABCD中,对角线AC、BD相交于点O,过点O作OE⊥BC,垂足为E,连接DE交AC于点P,过P作PF⊥BC,垂足为F,则的值是.16.如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE 相交于点F,则△AEF的面积等于(结果保留根号).17.如图,在梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于P.已知A(2,3),B(1,1),D(4,3),则点P的坐标为(,).18.如图,抛物线y=x2+bx+与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为.三、解答题19.计算:()﹣2﹣6sin30°+(﹣2)0+|2﹣|;(2)先化简,再求值:÷(x+2﹣),其中x=﹣3.20.童星玩具厂工人的工作时间为:每月22天,每天8小时.工资待遇为:按件计酬,多劳多得,每月另加福利工资500元,按月结算.该厂生产A、B两种产品,工人每生产一件A种产品可得报酬1.50元,每生产一件B种产品可得报酬2.80元.该厂工人可以选择A、B两种产品中的一种或两种进行生产.工人小李生产1件A产品和1件B产品需35分钟;生产3件A产品和2件B产品需85分钟.(1)小李生产1件A产品需要分钟,生产1件B产品需要分钟.(2)求小李每月的工资收入范围.21.关于三角函数有如下的公式:sin(α+β)=sinαcosβ+cosαsinβ①cos(α+β)=cosαcosβ﹣sinαsinβ②tan(α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:tan105°=tan(45°+60°)====﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题:如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.22.如图1,四边形ABCD是正方形,点E、K分别在BC、AB上,点G在BA的延长线上,且CE=BK=AG.(1)求证:①DE=DG;②DE⊥DG;(2)以线段DE、DG为边作出正方形DEFG,连接KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想.23.已知点P在线段AB上,点O在线段AB延长线上,以点O为圆心,OP为半径作圆,点C是圆O 上的一点.(1)如图,如果AP=2PB,PB=BO,求证:△CAO∽△BCO;(2)如果AP=m(m是常数,且m>1),BP=1,OP是OA、OB的比例中项,当点C在圆O上运动时,求AC:BC的值(结果用含m的式子表示).24.如图,在平面直角坐标系中,矩形OABC的顶点O为原点,E为AB上一点,把△CBE沿CE折叠,使点B恰好落在OA边上的点D处,点A,D的坐标分别为(5,0)和(3,0).(1)求点C的坐标;(2)求DE所在直线的解析式;(3)设过点C的抛物线y=2x2+bx+c(b<0)与直线BC的另一个交点为M,问在该抛物线上是否存在点G,使得△CMG为等边三角形?若存在,求出点G的坐标;若不存在,请说明理由.2015年四川省绵阳自主招生考试数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.1.【分析】分别求出各个不等式的解集,再求出这些解集的公共部分即可.【解答】解:解不等式①,得x>﹣1,解不等式②,得x≤1,所以不等式组的解集是﹣1<x≤1.故选:B.2.【考点】科学记数法—表示较小的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:0.000 021=2.1×10﹣5.故选C.3.【考点】分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.4.【考点】三角形内角和定理.【分析】根据三角形内角和可以求得∠AMN+∠ANM的度数,然后根据对顶角相等,从而可以求得∠CME+∠BNF的度数.【解答】解:∵∠A+∠AMN+∠ANM=180°,∠A=30°,∴∠AMN+∠ANM=180°﹣∠A=180°﹣30°=150°,∵∠AMN=∠CME,∠ANM=∠BNF,∴∠AMN+∠ANM=150°,故选B.【点评】本题考查三角形内角和定理、对顶角的性质,解题的关键是明确三角形内角和,利用数形结合的思想解答.5.【考点】等腰直角三角形;解直角三角形.【分析】先作DE⊥AB于E,再根据tan∠DBA=,求得BE=5AE,最后根据AB=AE+BE=AE+5AE=6,求得AE=,并在等腰直角三角形ADE中,由勾股定理求得AD即可.【解答】解:作DE⊥AB于E,∵tan∠DBA==,∴BE=5DE,∵△ABC为等腰直角三角形,∴∠A=45°,∴AE=DE,∴BE=5AE,又∵AC=6,∴AB=6,∴AE+BE=AE+5AE=6,∴AE=,∴在等腰直角三角形ADE中,由勾股定理得AD=2,故选(D)【点评】本题主要考查了等腰直角三角形的性质以及直角三角形,解题的关键是作辅助线,构造直角三角形,运用三角函数的定义建立关系式进行求解.6.【考点】根与系数的关系.【分析】令m=0,根据已知条件得出函数出y=(x﹣2)(x﹣3)的图象与x轴的交点分别为(2,0),(3,0),再根据m>0,得出原顶点沿抛物线对称轴向下移动,两个根沿对称轴向两边逐步增大,从而得出答案.【解答】解:令m=0,则函数出y=(x﹣2)(x﹣3)的图象与x轴的交点分别为(2,0),(3,0),∵m>0,∴原顶点沿抛物线对称轴向下移动,两个根沿对称轴向两边逐步增大,∴α<2且β>3;故选D.7.【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义;平行四边形的判定与性质.【分析】反比例函数y=xk图象中任取一点,向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,据此进行计算即可.【解答】解:∵过A、B两点分别作y轴的垂线,垂足分别为点C、D,∴△AOC的面积=×|﹣4|=2,又∵AO=BO,∠AOC=∠BOD,∴△AOC≌△BOD,∴CO=DO,∴四边形ADBC是平行四边形,∴四边形ACBD的面积=4×△AOC的面积=4×2=8,故选(A).【点评】本题主要考查了反比例函数中k的几何意义以及平行四边形的判定与性质,在反比例函数的图象上任意一点向一条坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.8.【考点】轨迹;正方形的性质.【分析】这张圆形纸片“不能接触到的部分”的面积是就是小正方形的面积与扇形的面积的差的4倍.【解答】解:小正方形的面积是:1;当圆运动到正方形的一个角上时,形成扇形BAO,它的面积是.则这张圆形纸片“不能接触到的部分”的面积是4×(1﹣)=4﹣π.故选:B.【点评】本题主要考查了轨迹、正方形和圆的面积的计算公式,正确记忆公式是关键.9.【考点】命题与定理.【专题】压轴题.【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【解答】解:①两条平行直线被第三条直线所截,同旁内角互补,故错误;②有两边和其中一边的对角对应相等的两个三角形不一定全等,故错误;③菱形既是轴对称图形又是中心对称图形,正确;④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1≤d≤7,故错误.所以只有一个正确,故选A.【点评】此题综合考查平行线的性质,全等三角形的判定,菱形的对称性及两圆的位置与半径的关系.10.【考点】点的坐标.【分析】根据f(a,b)=(﹣a,b),h(a,b)=(﹣a,﹣b),可得答案.【解答】解:f(h(5,﹣3))=f(﹣5,3)=((5,3),故选:C.【点评】本题考查了点的坐标,利用f(a,b)=(﹣a,b),h(a,b)=(﹣a,﹣b)是解题关键.11.【考点】扇形面积的计算;切线的性质.【专题】计算题.【分析】根据切线的性质得到直角△AOE,由∠A=30°,得到∠AOE=60°,然后在直角△COF中,求出圆的半径,再用扇形面积公式计算出扇形的面积.【解答】解:如图:∵AB与⊙O相切,∴OE⊥AB.∵OA=OB,∠A=30°,∴∠AOE=∠BOE=60°,∴OE垂直平分CD.设OE交CD于F,在直角△COF中,CF=CD=,∴CO=2,∴S扇形OCED==π.故选B.【点评】本题考查的是扇形面积的计算,根据切线的性质得到直角三角形,解直角三角形得到圆的半径,然后用扇形的面积公式求出扇形的面积.12.【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;平行线分线段成比例.【专题】压轴题.【分析】①易证△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°.过点C作CM ⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S四边形BCDG=S四边形CMGN,易求后者的面积.③过点F作FP∥AE于P点.根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF.【解答】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,∵,∴△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=CG2.③过点F作FP∥AE于P点.∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=1:6=FG:BG,即 BG=6GF.故选D.【点评】此题综合考查了全等三角形的判定和性质、平行线分线段成比例、不规则图形的面积计算方法等知识点,综合性较强,难度较大.二、填空题:本大题共6小题,每小题3分,共18分.13.分解因式:x3﹣4x2﹣12x= x(x+2)(x﹣6).【考点】因式分解﹣十字相乘法等;因式分解﹣提公因式法.【分析】首先提取公因式x,然后利用十字相乘法求解即可求得答案,注意分解要彻底.【解答】解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).故答案为:x(x+2)(x﹣6).【点评】此题考查了提公因式法、十字相乘法分解因式的知识.此题比较简单,注意因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底.14.风华中学七年级(2)班的“精英小组”有男生4人,女生3人,若选出一人担任班长,则组长是男生的概率为.【考点】概率公式.【分析】由风华中学七年级(2)班的“精英小组”有男生4人,女生3人,直接利用概率公式求解即可求得答案.【解答】解:∵风华中学七年级(2)班的“精英小组”有男生4人,女生3人,∴选出一人担任班长,则组长是男生的为: =.故答案为:.【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.15.在矩形ABCD中,对角线AC、BD相交于点O,过点O作OE⊥BC,垂足为E,连接DE交AC于点P,过P作PF⊥BC,垂足为F,则的值是.【考点】相似三角形的判定与性质;矩形的性质.【专题】综合题;压轴题.【分析】根据题意易证△OBE∽△DBC和△EPF∽△EDC,利用相似三角形的相似比求解.【解答】解:∵OB=OD=BD,OE⊥BC,CD⊥BC,∴△OBE∽△DBC,∴OE:CD=1:2,∵OE∥CD,∴△OEP∽△CDP,∴,∵PF∥DC,∴△EPF∽△EDC,∴,∵CE=BC,∴=.故答案为.【点评】本题考查对相似三角形性质的理解.相似三角形对应边的比相等.16.如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE 相交于点F,则△AEF的面积等于(结果保留根号).【考点】相似三角形的性质;等边三角形的性质.【专题】计算题.【分析】根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,再根据求出其边长,可根据三角函数得出三角形面积.【解答】解:∵△ABC∽△ADE,AB=2AD,∴=,∵AB=2AD,S△ABC=,∴S△ADE=,如图,在△EAF中,过点F作FH⊥AE交AE于H,∵∠EAF=∠BAD=45°,∠AEF=60°,∴∠AFH=45°,∠EFH=30°,∴AH=HF,设AH=HF=x,则EH=xtan30°=x.又∵S△ADE=,作CM⊥AB交AB于M,∵△ABC是面积为的等边三角形,∴×AB×CM=,∠BCM=30°,设AB=2k,BM=k,CM=k,∴k=1,AB=2,∴AE=AB=1,∴x+x=1,解得x==.∴S△AEF=×1×=.故答案为:.【点评】此题主要考查相似三角形的判定与性质和等边三角形的性质等知识点,解得此题的关键是根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,然后问题可解.17.如图,在梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于P.已知A(2,3),B(1,1),D(4,3),则点P的坐标为( 3 ,).【考点】等腰梯形的性质;两条直线相交或平行问题.【分析】过A作AM⊥x轴与M,交BC于N,过P作PE⊥x轴与E,交BC于F,根据点的坐标求出各个线段的长,根据△APD∽△CPB和△CPF∽△CAN得出比例式,即可求出答案.【解答】解:过A作AM⊥x轴与M,交BC于N,过P作PE⊥x轴与E,交BC于F,∵AD∥BC,A(2,3),B(1,1),D(4,3),∴AD∥BC∥x轴,AM=3,MN=EF=1,AN=3﹣1=2,AD=4﹣2=2,BN=2﹣1=1,∴C的坐标是(5,1),BC=5﹣1=4,CN=4﹣1=3,∵AD∥BC,∴△APD∽△CPB,∴===,∴=∵AM⊥x轴,PE⊥x轴,∴AM∥PE,∴△CPF∽△CAN,∴===,∵AN=2,CN=3,∴PF=,PE=+1=,CF=2,BF=2,∴P的坐标是(3,),故答案为:3,.【点评】本题考查了坐标与图形性质,梯形的性质,相似三角形的性质和判定的应用,主要是考查学生综合运用知识进行计算的能力.18.如图,抛物线y=x2+bx+与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为y=x2﹣x+.【考点】二次函数图象与几何变换.【专题】压轴题.【分析】先求出点A的坐标,再根据中位线定理可得顶点C的纵坐标,然后利用顶点坐标公式列式求出b的值,再求出点D的坐标,根据平移的性质设平移后的抛物线的解析式为y=x2+mx+n,把点A、D的坐标代入进行计算即可得解.【解答】解:∵令x=0,则y=,∴点A(0,),根据题意,点A、B关于对称轴对称,∴顶点C的纵坐标为×=,即=,解得b1=3,b2=﹣3,由图可知,﹣>0,∴b<0,∴b=﹣3,∴对称轴为直线x=﹣=,∴点D的坐标为(,0),设平移后的抛物线的解析式为y=x2+mx+n,则,解得,所以,y=x2﹣x+.故答案为:y=x2﹣x+.【点评】本题考查了二次函数图象与几何变换,根据二次函数图象的对称性确定出顶点C的纵坐标是解题的关键,根据平移变换不改变图形的形状与大小确定二次项系数不变也很重要.三、解答题:本大题共6个小题,共46分.19.(1)计算:()﹣2﹣6sin30°+(﹣2)0+|2﹣|;(2)先化简,再求值:÷(x+2﹣),其中x=﹣3.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)根据负整数指数幂、锐角三角函数、零指数幂和绝对值可以解答本题;(2)先化简式子,再将x的值代入即可解答本题.【解答】解:(1)()﹣2﹣6sin30°+(﹣2)0+|2﹣|=4﹣6×+1+|2﹣|=4﹣3+1+﹣2=2;(2)÷(x+2﹣)====,当x=﹣3时,原式=.【点评】本题考查分式的化简求值,解题的关键是明确分式化简求值的方法.20.童星玩具厂工人的工作时间为:每月22天,每天8小时.工资待遇为:按件计酬,多劳多得,每月另加福利工资500元,按月结算.该厂生产A、B两种产品,工人每生产一件A种产品可得报酬1.50元,每生产一件B种产品可得报酬2.80元.该厂工人可以选择A、B两种产品中的一种或两种进行生产.工人小李生产1件A产品和1件B产品需35分钟;生产3件A产品和2件B产品需85分钟.(1)小李生产1件A产品需要15 分钟,生产1件B产品需要20 分钟.(2)求小李每月的工资收入范围.【考点】二元一次方程组的应用.【专题】应用题.【分析】(1)生产1件A产品需要的时间+生产1件B产品需要的时间=35分钟,生产3件A产品需要的时间+生产2件B产品需要的时间=85分钟,可根据这两个等量关系来列方程组求解;(2)可根据(1)中计算的生产1件A,B产品需要的时间,根据“每生产一件A种产品,可得报酬1.50元,每生产一件B种产品,可得报酬2.80元”来计算出生产A,B产品每分钟的获利情况,然后根据他的工作时间,求出这两个获利额,那么他的工资范围就应该在这两个获利额之间.【解答】解:(1)设小李每生产一件A种产品、每生产一件B种产品分别需要x分钟和y分钟,根据题意,得,解得.答:小李每生产一件A种产品、每生产一件B种产品分别需要15分钟和20分钟;(2)w=500+1.5x+2.8(22×8×60﹣15x)÷20,整理得w=﹣0.6x+1978.4,则w随x的增大而减小,由(1)知小李生产A种产品每分钟可获利1.50÷15=0.1元,生产B种产品每分钟可获利2.80÷20=0.14元,若小李全部生产A种产品,每月的工资数目为0.1×22×8×60+500=1556元,若小李全部生产B种产品,每月的工资数目为0.14×22×8×60+500=1978.4元.故小李每月的工资数目不低于1556元而不高于1978.4元.【点评】考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,列出方程组,再求解.21.关于三角函数有如下的公式:sin(α+β)=sinαcosβ+cosαsinβ①cos(α+β)=cosαcosβ﹣sinαsinβ②tan(α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:tan105°=tan(45°+60°)====﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题:如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.【考点】解直角三角形的应用﹣仰角俯角问题.【专题】压轴题;阅读型.【分析】先由俯角β的正切值及BC求得AB,再由俯角α的正切值及BC求得A、D两点垂直距离.CD 的长由二者相减即可求得.【解答】解:由于α=60°,β=75°,BC=42,则AB=BC•tanβ=42tan75°=42•=42•=42(),A、D垂直距离为BC•tanα=42,∴CD=AB﹣42=84(米).答:建筑物CD的高为84米.【点评】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.22.如图1,四边形ABCD是正方形,点E、K分别在BC、AB上,点G在BA的延长线上,且CE=BK=AG.(1)求证:①DE=DG;②DE⊥DG;(2)以线段DE、DG为边作出正方形DEFG,连接KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)①根据正方形性质求出AD=DC,∠GAD=∠DCE=90°,根据全等三角形判定推出即可;②根据全等得出∠GDA=∠CDE,求出∠GDE=∠GDA+∠ADE=∠ADC=90°即可;(2)四边形CEFK是平行四边形,推出EF=CK,EF∥CK,根据平行四边形的判定推出即可.【解答】(1)①证明:∵四边形ABCD是正方形,∴AD=DC,∠GAD=∠DCE=90°,在△GAD和△ECD中∴△GAD≌△ECD(SAS),∴DE=DG;②∵四边形ABCD是正方形,∴∠ADC=90°,∵△GAD≌△ECD,∴∠GDA=∠CDE,∴∠GDE=∠GDA+∠ADE=∠CDE+∠ADE=∠ADC=90°,∴DE⊥DG;(2)四边形CEFK是平行四边形,理由如下:证明:∵四边形ABCD是正方形,∴∠B=∠ECD=90°,BC=CD,在△KBC和△ECD中,∴△KBC≌△ECD(SAS),∴DE=CK,∠DEC=∠BKC,∵∠B=90°,∴∠KCB+∠BKC=90°,∴∠KCB+∠DEC=90°,∴∠EOC=180°﹣90°=90°,∵四边形DGFE是正方形,∴DE=EF=CK,∠FED=90°=∠EOC,∴CK∥EF,∴四边形CEFK是平行四边形.【点评】此题考查的知识点是正方形的性质、全等三角形的判定和性质、平行四边形的判定及作图,解题的关键是先由正方形的性质通过证三角形全等得出结论,此题较复杂.23.已知点P在线段AB上,点O在线段AB延长线上,以点O为圆心,OP为半径作圆,点C是圆O上的一点.(1)如图,如果AP=2PB,PB=BO,求证:△CAO∽△BCO;(2)如果AP=m(m是常数,且m>1),BP=1,OP是OA、OB的比例中项,当点C在圆O上运动时,求AC:BC的值(结果用含m的式子表示).【考点】相似三角形的判定与性质;圆周角定理.【分析】(1)根据夹角相等,对应边成比例可证;(2)OP是OA,OB的比例中项,OC=OP,△CAO∽△BCO可得.【解答】(1)证明:∵AP=2PB=PB+BO=PO,∴AO=2PO.∴==2,∵PO=CO,∴.∵∠COA=∠BOC,∴△CAO∽△BCO;(2)解:设OP=x,则OB=x﹣1,OA=x+m,∵OP是OA,OB的比例中项,∴x2=(x﹣1)(x+m),∴x=.即OP=,∴OB=,∵OP是OA,OB的比例中项,即=,∵OP=OC,∴.设⊙O与线段AB的延长线相交于点Q,当点C与点P,点Q不重合时,∵∠AOC=∠COB,∴△CAO∽△BCO,∴=,∴===m.当点C与点P或点Q重合时,可得=m,∴当点C在圆O上运动时,AC:BC=m.【点评】本题考查了相似三角形的判定和性质,比例的性质,熟练掌握相似三角形的判定和性质是解题的关键.24.如图,在平面直角坐标系中,矩形OABC的顶点O为原点,E为AB上一点,把△CBE沿CE折叠,使点B恰好落在OA边上的点D处,点A,D的坐标分别为(5,0)和(3,0).(1)求点C的坐标;(2)求DE所在直线的解析式;(3)设过点C的抛物线y=2x2+bx+c(b<0)与直线BC的另一个交点为M,问在该抛物线上是否存在点G,使得△CMG为等边三角形?若存在,求出点G的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】综合题;压轴题.【分析】(1)根据折叠的性质可得出BC=CD=AO=5,可在直角三角形OCD中,根据CD和OD的长用勾股定理求出OC的值.即可得出C点的坐标.(2)本题的关键是求出E点的坐标,可设AE=x,那么BE=DE=4﹣x,在直角三角形DEA中,用勾股定理即可求出AE的长,也就求得了E点的坐标,然后用待定系数法即可求出直线DE的解析式.(3)根据C点的坐标即可得出抛物线的待定系数中c=4,根据抛物线的和等边三角形的对称性,如果△CMG是等边三角形,G必为抛物线顶点,可据此表示出G点的坐标.设抛物线的对称轴与直线BC的交点为F,那么可根据G点的坐标和C点的坐标求出CF和FG的长,然后根据△CMG是等边三角形FG=FC,据此可求出b的值,即可确定抛物线的解析式,然后根据抛物线的解析式即可求出G点的坐标.【解答】解:(1)根据题意,得CD=CB=OA=5,OD=3,∵∠COD=90°,∴OC==4.∴点C的坐标是(0,4);(2)∵AB=OC=4,设AE=x,则DE=BE=4﹣x,AD=OA﹣OD=5﹣3=2,在Rt△DEA中,DE2=AD2+AE2.∴(4﹣x)2=22+x2.解之,得x=,即点E的坐标是(5,).设DE所在直线的解析式为y=kx+b,∴解之,得∴DE所在直线的解析式为y=x﹣;(3)∵点C(0,4)在抛物线y=2x2+bx+c上,∴c=4.即抛物线为y=2x2+bx+c.假设在抛物线y=2x2+bx+c上存在点G,使得△CMG为等边三角形,根据抛物线的对称性及等边三角形的性质,得点G一定在该抛物线的顶点上.设点G的坐标为(m,n),∴m=﹣,n==,即点G的坐标为(﹣,).设对称轴x=﹣b与直线CB交于点F,与x轴交于点H.则点F的坐标为(﹣b,4).∵b<0,∴m>0,点G在y轴的右侧,CF=m=﹣,FH=4,FG=4﹣=.(*)∵CM=CG=2CF=﹣,∴在Rt△CGF中,CG2=CF2+FG2,(﹣)2=(﹣)2+()2.解之,得b=﹣2.∵b<0∴m=﹣b=,n==.∴点G的坐标为(,).∴在抛物线y=2x2+bx+c(b<0)上存在点G(,),使得△CMG为等边三角形.在(*)后解法二:Rt△CGF中,∠CGF=×60°=30度.∴tan∠CGF==tan30度.∴.解之,得b=﹣2.【点评】本题着重考查了待定系数法求一次函数解析式、图形翻折变换、等边三角形的判定和性质等重要知识点,综合性强,考查学生数形结合的数学思想方法.。
2016无为县重点高中自主招生统一测试数学试题满分150分,时间120分钟一、填空题(每小题6分,60分)1.已知3251,27212aaaa 则的值等于;2.一次函数,1119,=y kx b xy ykb 当-3时,对应的值为则的值;3.如图,长方形ABCD 中,F 是CD 的中点,E 是BC 的一个三等分点,则长方形的面积是阴影部分面积的()倍;4.已知ab=1,其中2008(322),a则b=;5.⊙O 的直径AB 与弦EF 相交于点P ,交角为45°,若228,PE PFAB 则;6.满足方程235x x的x 的取值范围是;7.已知三个非负实数a,b,c 满足:3a+2b+c=5和2a+b-3c=1,若m=3a+b-7c ,则m 的最小值为;8.如图所示:设M 是△ABC 的重心(即M 是中线AD 上一点,且AM=2MD ),过M 的直线分别交边AB 、AC 于P 、Q 两点,且11,,APAQ m n PBQCmn则;9.一辆客车,一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶。
在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间,过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t 分钟,货车追上了客车,则t=;10.时钟在四点与五点之间,在时刻,时针与分针在同一条直线上?二、选择题(40分)1.如果多项式222242008,p aba b p 则的最小值是()A 、2005B 、2006C 、2007D 、20082.如图,图中平行四边形共有的个数是()A 、40B 、38C 、36D 、393.设22221113,13,a a bb ab ab且,则代数式的值为()A 、5B 、7C 、9D 、114.化简322642的结果是()A 、342B 、322C 、1D 、3225.某商店经销一批衬衣,进价为每件m 元,零售价比进价高a %,后因市场的变化,该商店把零售价调整为原来零售价的b %出售,那么调价后每件衬衣的零售价是()元A 、m(1+ a %)(1- b %)B 、m ﹒a %(1- b %)C 、m(1+ a %) b % D、m(1+ a %b %)6.甲乙两辆汽车进行千米比赛,当甲车到达终点时,乙车距终点还有a 千米(0<a <50),现将甲车起跑处从原点后移a 千米,重新开始比赛,那么比赛的结果是()A 、甲先到达终点B 、乙先到达终点C 、甲乙同时到达终点D 、确定谁先到达与a 值无关7.已知四边形ABCD ,从下列条件中①AB ∥CD ②BC ∥AD ③AB=CD ④BC=AD ⑤∠A=∠C ⑥∠B=∠D ,任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况有()A 、4种 B、9种 C、13种 D、15种DABCEFPDABCMQ EAOB FP8.已知△ABC 的三个内角为A 、B 、C 且,,,A B C A C B 则、、中,锐角的个数最多为()A 、1B 、2C 、3D 、09.如图O 为△ABC 内一点,AO 、BO 、CO 及其延长线把△ABC 分成六个小三角形,它们的面积如图所示,则S △ABC =()A 、292B 、315C 、322D 、35710.若实数a,b 满足21202a ab b,则a 的取值范围是()A 、a ≤-2B 、a ≥4C 、a ≤-2或a ≥4D 、-2≤a ≤4三、解答题(每小题10分,计50分,第4或第5小题二选一)1.已知abc ≠0,且a+b+c=0,求代数式222abcbc ca ab的值.2.有一水池,池底有泉水不断涌出,要将满池的水抽干,用12台水泵需5小时,用10台水泵需7小时,若要在2小时内抽干,至少需水泵几台?3.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0)、A(0,6)、B (4,6)、C (4,4)、D (6,4)、E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,求直线l 的函数表达式.4.某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元,用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件,如果获利润最大的产品是第R 档次(最低档次为第一档次,档次依次随质量增加),那么R 等于多少?5.设二次函数2yaxbxc 的图象开口向下,顶点落在第二象限.(1)确定a 、b 、b 2-4ac 的符号,简述理由。
安徽省巢湖市无为三中2015届九年级上学期月考数学试卷(10月份)一、选择题(每题4分,40分)1.下列函数中,是二次函数的是()A.B.y=x2﹣(x﹣1)2C.D.2.把方程(x﹣)(x+)+(2x﹣1)2=0化为一元二次方程的一般形式是()A.5x2﹣4x﹣4=0 B.x2﹣5=0 C.5x2﹣2x+1=0 D.5x2﹣4x+6=03.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()A.y=x2+2x﹣2 B.y=x2+2x+1 C.y=x2﹣2x﹣1 D.y=x2﹣2x+14.将一元二次方程2x2﹣3x+1=0配方,下列配方正确的是()A.(x﹣)2=16 B.2(x﹣)2=C.(x﹣)2=D.以上都不对5.已知三角形两边长分别为2和9,第三边的长为二次方程x2﹣14x+48=0的根,则这个三角形的周长为()A.11 B.17 C.17或19 D.196.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一,二,三象限B.一,二,四象限C.一,三,四象限D.一,二,三,四象限7.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x ,则由题意列方程应为()A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=10008.抛物线y=ax2+bx+c的图象如图,OA=OC,则()A.a c+1=b B.a b+1=c C.b c+1=a D.以上都不是9.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向上;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<2,y随x的增大而减小;⑤当x=0时,y最小值为1.则其中说法正确的有()A.1个B.2个C.3个D.4个10.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣1二、填空题(每空4分,20分)11.使分式的值等于零的x的值是.12.已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,则a+b=.13.一元二次方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.14.若关于x的方程a(x+m)2+b=0的两个根﹣1和4(a.m.b均为常数,a≠0),则方程a(x+m﹣3)2 +b=0是.15.如图所示的是二次函数y=ax2+bx+c的图象,某学霸从下面五条信息中:(1)a<0;(2)b2﹣4ac>0;(3)c>1;(4)2a﹣b>0;(5)a+b+c<0.准确找到了其中错误的信息,它们分别是(只填序号)三、解答题16.(16分)解方程①(5x﹣1)2=3(5x﹣1)②x2+2x=7.17.若抛物线y=ax2+bx+c的顶点是A(﹣2,1),且经过点B(1,0),求该抛物线的函数解析式.18.若﹣3+是方程x2+kx+4=0的一个根,求另一根和k的值.19.某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?20.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?21.如图,线段AB的长为2,C为线段AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE.(1)设DE的长为y,AC的长为x,求出y与x的函数关系式;(2)求出DE的最小值.22.如图,一位篮球运动员在离篮圈水平距离4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面高度为3.05m.(1)建立图中所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m处出手.问:球出手时,他跳离地面多高?23.如图所示,矩形ABCD的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB在x轴上,点C在直线y=x﹣2上.(1)求矩形各顶点坐标;(2)若直线y=x﹣2与y轴交于点E,抛物线过E、A、B三点,求抛物线的关系式;(3)判断上述抛物线的顶点是否落在矩形ABCD内部,并说明理由.安徽省巢湖市无为三中2015届九年级上学期月考数学试卷(10月份)一、选择题(每题4分,40分)1.下列函数中,是二次函数的是()A.B.y=x2﹣(x﹣1)2C.D.考点:二次函数的定义.分析:根据二次函数的定义逐一进行判断.解答:解:A、等式的右边不是整式,不是二次函数,故本选项错误;B、原式化简后可得,y=2x﹣1,故本选项错误;C、符合二次函数的定义,故本选项正确;D、分母中含有未知数,不是整式方程,因而不是一元二次方程,故本选项错误;故选C.点评:本题考查了二次函数的定义,要知道:形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项.x为自变量,y为因变量.等号右边自变量的最高次数是2.2.把方程(x﹣)(x+)+(2x﹣1)2=0化为一元二次方程的一般形式是()A.5x2﹣4x﹣4=0 B.x2﹣5=0 C.5x2﹣2x+1=0 D.5x2﹣4x+6=0考点:一元二次方程的一般形式.分析:先把(x﹣)(x+)转化为x2﹣2=x2﹣5;然后再把(2x﹣1)2利用完全平方公式展开得到4x2﹣4x+1.再合并同类项即可得到一元二次方程的一般形式.解答:解:(x﹣)(x+)+(2x﹣1)2=0即x2﹣2+4x2﹣4x+1=0移项合并同类项得:5x2﹣4x﹣4=0故选:A.点评:本题主要考查了利用平方差公式和完全平方公式化简成为一元二次方程的一般形式.3.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()A.y=x2+2x﹣2 B.y=x2+2x+1 C.y=x2﹣2x﹣1 D.y=x2﹣2x+1考点:二次函数图象与几何变换.分析:由于抛物线的图象向左平移2个单位,再向下平移1个单位,则x'=x﹣2,y'=y﹣1,代入原抛物线方程即可得平移后的方程.解答:解:由题意得:,代入原抛物线方程得:y'+1=(x'+2)2,变形得:y=x2+2x+1.故选B.点评:本题考查了二次函数图象的几何变换,重点是找出平移变换的关系.4.将一元二次方程2x2﹣3x+1=0配方,下列配方正确的是()A.(x﹣)2=16 B.2(x﹣)2=C.(x﹣)2=D.以上都不对考点:解一元二次方程-配方法.分析:方程移项后,方程两边除以2变形得到结果,即可判定.解答:解:方程移项得:2x2﹣3x=﹣1,方程两边除以2得:x2﹣x=﹣,配方得:x2﹣x+=,即(x﹣)2=,故选C.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.5.已知三角形两边长分别为2和9,第三边的长为二次方程x2﹣14x+48=0的根,则这个三角形的周长为()A.11 B.17 C.17或19 D.19考点:解一元二次方程-因式分解法;三角形三边关系.分析:易得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.解答:解:解方程x2﹣14x+48=0得第三边的边长为6或8,依据三角形三边关系,不难判定边长2,6,9不能构成三角形,2,8,9能构成三角形,∴三角形的周长=2+8+9=19.故选D.点评:求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯.6.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一,二,三象限B.一,二,四象限C.一,三,四象限D.一,二,三,四象限考点:二次函数图象与系数的关系.分析:由a>0可以得到开口方向向上,由b<0,a>0可以推出对称轴x=﹣>0,由c=0可以得到此函数过原点,由此即可确定可知它的图象经过的象限.解答:解:∵a>0,∴开口方向向上,∵b<0,a>0,∴对称轴x=﹣>0,∵c=0,∴此函数过原点.∴它的图象经过一,二,四象限.故选B.点评:此题主要考查二次函数的以下性质.7.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x ,则由题意列方程应为()A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=1000万元,把相关数值代入即可.解答:解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选:D.点评:考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到第一季度的营业额的等量关系是解决本题的关键.8.抛物线y=ax2+bx+c的图象如图,OA=OC,则()A.a c+1=b B.a b+1=c C.b c+1=a D.以上都不是考点:二次函数图象与系数的关系.分析:由OA=OC可以得到点A、C的坐标为(﹣c,0),(0,c),把点A的坐标代入y=ax2+bx+c得ac2﹣bc+c=0,c(ac﹣b+1)=0,然后即可推出ac+1=b.解答:解:∵OA=OC,∴点A、C的坐标为(﹣c,0),(0,c),∴把点A的坐标代入y=ax2+bx+c得,ac2﹣bc+c=0,∴c(ac﹣b+1)=0,∵c≠0∴ac﹣b+1=0,∴ac+1=b.故选A.点评:此题考查了点与函数的关系,解题的关键是灵活应用数形结合思想.9.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向上;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<2,y随x的增大而减小;⑤当x=0时,y最小值为1.则其中说法正确的有()A.1个B.2个C.3个D.4个考点:二次函数的性质.专题:计算题.分析:利用抛物线的顶点式和二次函数的性质分别进行判断.解答:解:∵a=2>,∴抛物线开口向上,所以①正确;∵y=2(x﹣3)2+1,∴抛物线的对称轴为直线x=3,顶点坐标为(3,1),所以②③错误;当x<3时,y随x的增大而减小,所以④错误;当x=3时,y有最小值1,所以⑤错误.故选A.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx +c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.10.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣1考点:根的判别式.分析:根据方程有实数根,得到根的判别式的值大于等于0,且二次项系数不为0,即可求出整数a的最大值.解答:解:根据题意得:△=4﹣12(a﹣1)≥0,且a﹣1≠0,解得:a≤,a≠1,则整数a的最大值为0.故选C.点评:此题考查了根的判别式,一元二次方程的定义,弄清题意是解本题的关键.二、填空题(每空4分,20分)11.使分式的值等于零的x的值是6.考点:分式的值为零的条件.专题:计算题.分析:分式的值为零:分子为0,分母不为0.解答:解:根据题意,得x2﹣5x﹣6=0,即(x﹣6)(x+1)=0,且x+1≠0,解得,x=6.故答案是:6.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,则a+b=﹣2.考点:二次函数图象上点的坐标特征.专题:压轴题.分析:由于P、Q两点的纵坐标相等,故这两点是抛物线上关于对称轴对称的两点;而抛物线y=2x2+4x ﹣3的对称轴为x=﹣1,根据对称轴x=,可求a+b的值.解答:解:已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,因为点P(a,m)和Q(b,m)点的纵坐标相等,所以,它们关于其对称轴对称,而抛物线y=2x2+4x﹣3的对称轴为x=﹣1;故有a+b=﹣2.故答案为:﹣2.点评:本题考查了函数图象上的点的坐标与函数解析式的关系,以及关于y轴对称的点坐标之间的关系.13.一元二次方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.考点:根与系数的关系.专题:计算题.分析:先判断x2﹣x+3=0没有实数解,则两个方程的所有实数根的和就是2x2﹣3x﹣1=0的两根之和,然后根据根与系数的关系求解.解答:解:方程2x2﹣3x﹣1=0的两根之和为∵x2﹣x+3=0没有实数解,∴方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.故答案为.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.14.若关于x的方程a(x+m)2+b=0的两个根﹣1和4(a.m.b均为常数,a≠0),则方程a(x+m﹣3)2 +b=0是x1=2,x2=7.考点:解一元二次方程-直接开平方法.分析:先利用直接开平方法得方程a(x+m)2+b=0的解为x=﹣m±,则﹣m+,=1,﹣m﹣,=﹣2,再解方程a(x+m﹣2)2+b=0得x=3﹣m±,然后利用整体代入的方法得到方程a(x +m﹣3)2+b=0的根.解答:解:解:解方程a(x+m)2+b=0得x=﹣m±,∵方程a(x+m)2+b=0(a,m,b均为常数,a≠0)的根是x1=﹣1,x2=4,∴﹣m+,=﹣1,﹣m﹣,=4,∵解方程a(x+m﹣3)2+b=0得x=3﹣m±,∴x1=3﹣1=2,x2=3+4=7.故答案为x1=2,x2=7.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.15.如图所示的是二次函数y=ax2+bx+c的图象,某学霸从下面五条信息中:(1)a<0;(2)b2﹣4ac>0;(3)c>1;(4)2a﹣b>0;(5)a+b+c<0.准确找到了其中错误的信息,它们分别是(1)(2)(5)(只填序号)考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系;根据抛物线与x轴交点个数判断b2﹣4ac与0的关系;由抛物线与y轴的交点判断c与1的关系;根据对称轴在x=﹣1的左边判断2a﹣b与0的关系;把x=1,y=0代入y =ax2+bx+c,可判断a+b+c<0是否成立.解答:解:(1)∵抛物线的开口向下,∴a<0,故本信息正确;(2)根据图示知,该函数图象与x轴有两个交点,故△=b2﹣4ac>0;故本信息正确;(3)由图象知,该函数图象与y轴的交点在点(0,1)以下,所以c<1,故本信息错误;(4)由图示,知对称轴x=﹣>﹣1;又∵a<0,∴﹣b<﹣2a,即2a﹣b<0,故本信息错误;(5)根据图示可知,当x=1,即y=a+b+c<0,所以a+b+c<0,故本信息正确;故答案为(1)(2)(5).点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.三、解答题16.(16分)解方程①(5x﹣1)2=3(5x﹣1)②x2+2x=7.考点:解一元二次方程-因式分解法;解一元二次方程-配方法.分析:①先移项,再把等号左边因式分解,最后分别解方程即可;②先在等号左右两边加上一次项系数的一半的平方,再进行配方,然后开方即可得出答案.解答:解:①(5x﹣1)2=3(5x﹣1),(5x﹣1)2﹣3(5x﹣1)=0,(5x﹣1)(5x﹣1﹣3)=0,(5x﹣1)(5x﹣4)=0,x1=,x2=;②x2+2x=7,x2+2x+1=8,(x+1)2=8,x+1=±2,x1=﹣1+2,x2=﹣1﹣2.点评:本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.若抛物线y=ax2+bx+c的顶点是A(﹣2,1),且经过点B(1,0),求该抛物线的函数解析式.考点:待定系数法求二次函数解析式.分析:设抛物线的解析式为y=a(x+2)2+1,将点B(1,0)代入解析式即可求出a的值,从而得到二次函数解析式.解答:解:设抛物线的解析式为y=a(x+2)2+1,将B(1,0)代入y=a(x+2)2+1得,a=﹣,函数解析式为y=﹣(x+2)2+1,展开得y=﹣x2﹣x+.所以该抛物线的函数解析式为y=﹣x2﹣x+.点评:本题考查了待定系数法求函数解析式,知道二次函数的顶点式是解题的关键.18.若﹣3+是方程x2+kx+4=0的一个根,求另一根和k的值.考点:根与系数的关系.分析:设方程的另一个根是m,根据韦达定理,可以得到两根的积等于4,两根的和等于﹣k,即可求解.解答:解:设方程的另一个根是m,根据韦达定理,可以得到:(﹣3+)•m=4,且﹣3++m=﹣k,解得:m=﹣3﹣,k=6.即方程的另一根为﹣3﹣,k=6.点评:本题主要考查了一元二次方程的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.19.某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?考点:二次函数的应用.专题:压轴题.分析:本题只要计算大门顶部宽2.4米的部分离地面是否超过2.8米即可.如果设C点是原点,那么A的坐标就是(﹣2,﹣4.4),B的坐标是(2,﹣4.4),可设这个函数为y=kx2,那么将A的坐标代入后即可得出y=﹣1.1x2,那么大门顶部宽2.4m的部分的两点的横坐标就应该是﹣1.2和1.2,因此将x=1.2代入函数式中可得y≈﹣1.6,因此大门顶部宽2.4m部分离地面的高度是4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.解答:解:根据题意知,A(﹣2,﹣4.4),B(2,﹣4.4),设这个函数为y=kx2.将A的坐标代入,得y=﹣1.1x2,∴E、F两点的横坐标就应该是﹣1.2和1.2,∴将x=1.2代入函数式,得y≈﹣1.6,∴GH=CH﹣CG=4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.点评:本题主要结合实际问题考查了二次函数的应用,得出二次函数式进而求出大门顶部宽2.4m部分离地面的高度是解题的关键.20.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?考点:一元二次方程的应用.专题:销售问题.分析:商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利﹣降价数.设每件衬衫应降价x元,然后根据前面的关系式即可列出方程,解方程即可求出结果.解答:解:设每件衬衫应降价x元,可使商场每天盈利2100元.根据题意得(45﹣x)=2100,解得x1=10,x2=30.因尽快减少库存,故x=30.答:每件衬衫应降价30元.点评:需要注意的是:(1)盈利下降,销售量就提高,每件盈利减,销售量就加;(2)在盈利相同的情况下,尽快减少库存,就是要多卖,降价越多,卖的也越多,所以取降价多的那一种.21.如图,线段AB的长为2,C为线段AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE.(1)设DE的长为y,AC的长为x,求出y与x的函数关系式;(2)求出DE的最小值.考点:二次函数的应用.分析:(1)设AC=x,则BC=2﹣x,然后分别表示出DC、EC,继而在RT△DCE中,利用勾股定理求出D E长度的表达式;(2)利用函数的性质进行解答即可.解答:解:如图,设AC=x,则BC=2﹣x,∵△ACD和△BCE分别是等腰直角三角形,∴∠DCA=45°,∠ECB=45°,DC=x,CE=(2﹣x),∴∠DCE=90°,故DE2=DC2+CE2=x2+(2﹣x)2=x2﹣2x+2=(x﹣1)2+1,∴y=.(2)y=当x=1时,DE取得最小值,DE也取得最小值,最小值为1.点评:此题考查了二次函数最值及等腰直角三角形,难度不大,关键是表示出DC、CE,得出DE的表达式,还要求我们掌握配方法求二次函数最值.22.如图,一位篮球运动员在离篮圈水平距离4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面高度为3.05m.(1)建立图中所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m处出手.问:球出手时,他跳离地面多高?考点:二次函数的应用.分析:(1)设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值.(2)设球出手时,他跳离地面的高度为hm,则可得h+2.05=﹣0.2×(﹣2.5)2+3.5.解答:解:(1)∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数关系式为y=ax2+3.5.∵蓝球中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得 3.05=a×1.52+3.5,∴a=﹣,∴y=﹣x2+3.5.(2)设球出手时,他跳离地面的高度为hm,因为(1)中求得y=﹣0.2x2+3.5,则球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2(m).答:球出手时,他跳离地面的高度为0.2m.点评:本题考查了函数类综合应用题,对函数定义、性质,以及在实际问题中的应用等技能进行了全面考查,对学生的数学思维具有很大的挑战性.23.如图所示,矩形ABCD的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB在x轴上,点C在直线y=x﹣2上.(1)求矩形各顶点坐标;(2)若直线y=x﹣2与y轴交于点E,抛物线过E、A、B三点,求抛物线的关系式;(3)判断上述抛物线的顶点是否落在矩形ABCD内部,并说明理由.考点:二次函数综合题.专题:综合题.分析:(1)由于AD=2,即C点的纵坐标为2,将其代入已知的直线解析式中,即可求得C点的横坐标,进而由AB的长,求得A、D的横坐标,由此可确定矩形的四顶点的坐标.(2)根据直线y=x﹣2可求得E点的坐标,进而可利用待定系数法求出该抛物线的解析式.(3)根据(2)所得抛物线的解析式,即可由配方法或公式法求得其顶点坐标,进而根据矩形的四顶点坐标,来判断此顶点是否在矩形的内部.解答:解:(1)如答图所示.∵y=x﹣2,AD=BC=2,设C点坐标为(m,2),把C(m,2)代入y=x﹣2,即2=m﹣2,∴m=4,∴C(4,2),∴OB=4,AB=3,∴OA=4﹣3=1,∴A(1,0),B(4,0),C(4,2),D(1,2).(2)∵y=x﹣2,∴令x=0,得y=﹣2,∴E(0,﹣2).设经过E(0,﹣2),A(1,0),B(4,0)三点的抛物线关系式为y=ax2+bx+c,∴,解得;∴y=.(3)抛物线顶点在矩形ABCD内部.∵y=,∴顶点为,∵,∴顶点在矩形ABCD内部.点评:此题主要考查了函数图象上点的坐标意义、矩形的性质、二次函数解析式的确定等知识,难度不大,细心求解即可.。
2015年全国重点高中阶段自主招生考试数学模拟试题(一)(历年真题汇总)数学试卷(满分:150分;考试时间:120分钟)学校 班级 姓名 号数 准考证号亲爱的同学:欢迎你参加本次考试!请细心审题,用心思考,耐心解答.祝你成功!答题时请注意:请将答案或解答过程写在答题卡...的相应位置上,写在试卷上不得分. 一、选择题(共10小题,每小题4分,满分40分.每小题只有..一个..正确的选项,请把正确答案的代号填写在答题..卡.中相应的表格内) 1.下列计算正确的是A .32a a a =•B . 523)(a a = C . 32a a a =+ D . 326a a a =÷ 2.不等式组⎩⎨⎧≥->+0401x x 的解集是A .41≤≤-xB .41≥-<x x 或C .41<<-xD .41≤<-x3.一组数据:3,4,5,x ,7的众数是4,则x 的值是A .3B .4C .5D .64.下列图案中,既是中心对称又是轴对称的图案是A B C D5.已知两圆的半径分别为6和1,当它们外切时,圆心距为A .5B .6C .7D .86.如果一个定值电阻R 两端所加电压为5伏时,通过它的电流为1安培,那么通过这一电阻的电流I随它的两端电压U 变化的图像是7.下列事件是必然事件的是A .直线b x y +=3经过第一象限;B .方程0222=-+-x x x 的解是2=x ;C .方程34-=+x 有实数根;D .当a 是一切实数时,a a =2.8.如图示,将矩形纸片ABCD 沿虚线EF 折叠,使点A 落在点G 上,点D 落在点H 上;然后再沿虚线GH 折叠,使B 落在点E 上,点C 落在点F 上;叠完后,剪一个直径在BC 上的半圆,再展开,则展开后的图形为9.如图,△ABC 内接于⊙O ,∠BAC=120°,AB=AC=4 ,BD 为⊙O 的直径,则BD 等于A.4B.6C.8D.1210.如图,将n 个边长都为1cm 的正方形按如图所示摆放,点A 1、A 2、…、A n 分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为A .41-n cm 2B .4n cm 2C .41cm 2D .n)41( cm 2二、填空题(共8小题,每小题4分,满分32分.请将答案填在答题卡...的相应位置上)11.2009-的相反数是 .12.分解因式:222-m = .13.生物学家发现目前备受关注的甲H1N1病毒的长度约为0.000056毫米,用科学记数法表示为毫米.14.正方形网格中,∠AOB 如图放置,则cos ∠AOB= .15.海峡两岸血浓于水,“两岸三通”有了新发展,最近大陆与台湾的包机航班改为定期航班,受到两岸人民的欢迎.如图是我国政区图,根据图上信息,台北与北京的实际距离<直线距离>约是 千米(精确到千米).A B D C H G E F F BCG(A) H(D) E G(A)H(D)F(C) E(B) B DC A A B C O A 'B 'C '北京* 台北 * 600千米 O DCBA 第9题 第10题第第14题 第15题16.如图,菱形OABC 中,120A =o ∠,1OA =,将菱形OABC 绕点O 按顺时针方向旋转90o,则图中由弧,,A B B B '''C ,A '弧CB 围成的阴影部分的面积是 .(结果保留根号) 17.若方程组⎩⎨⎧=-=+a by x b y x 2的解是⎩⎨⎧==12y x ,那么b a -= .18.从1-,1,2这三个数中,任取两个不同的数作为一次函数y ax b =+的系数,a b ,则一次函数y ax b =+的图象不经过第三象限的概率是 . 三、解答题(共8小题,满分78分. 请将答案写在答题卡...的相应位置上) 19.(满分8分)计算:20)2(30sin 2)23(-+--ο20.(满分8分)小明和小颖在玩“石头、剪刀、布”的一次游戏中,他们平局的概率是多少?(请列表或画树状图分析)21.(满分8分)如图, 将矩形EFBC 一条对角线FC 向两端延伸,使AF=DC ,连接AB 、ED .求证:AB ∥ED .22.(满分10分)2009年10月1日是中华人民共和国成立六十周年纪念日,某中学举行了一次“建国知识竞赛”,并从中抽取了部分学生成绩(得分取整数,满分为100分)作为样本,绘制了如下的统计图.请根据图中的信息回答下列问题:(1)此样本抽取了多少名学生的成绩?(2)此样本数据的中位数落在哪一个范围内?(请直接写出该组的分数范围)(3)若这次竞赛成绩高于80分为优秀,已知该校有900名学生参加了这次竞赛活动,请估计该校获得优秀成绩的学生人数约为多少名?23.(满分8分)为了更好地宣传“2010年上海世博会”,“和谐之旅”号京沪城际铁路于2009年5月1日正式开通运营,预计高速列车在北京、上海间单程直达运行时间为半小时.某次试车时,试验列车由北京到上海的行驶时间比预计时间多用了6分钟,由上海返回北京的行驶时间与预计时间相同.如果这次试车时,由上海返回北京比去上海时平均每小时多行驶40千米,那么这次试车时由上海返回北京的平均速度是每小时多少千米?24.(满分10分)阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c .过点A作AD ⊥BC 于点D (如图), 则 sin B =c AD ,sin C =bAD ,即AD =c sin B ,AD =b sin C , 于是c sin B =b sin C ,即C c B b sin sin =. A B C D E F 第21题 第22题 学生数50.5 60.5 70.5 80.5 90.5 100.5 222 28 0 32 36同理有A a C c sin sin =,Bb A a sin sin =. 所以 Cc B b A a sin sin sin ==………(*) 即:在一个三角形中,各边和它所对角的正弦的比相等.(1)在锐角三角形中,若已知三个元素a 、b 、∠B ,运用上述结论....(*)...和有关定理.....就可以求出其余三个未知元素c 、∠A 、∠C ,请你按照下列步骤填空,完成求解过程:第一步:由条件 a 、b 、∠B∠A ; 第二步:由条件 ∠A 、∠B ∠C ; 第三步:由条件 c .(2)如图,已知:∠A =60°,∠C =75°,a =6,运用上述结论(*)试求b .25.(满分12分)如图,抛物线)0(2≠++=a c bx ax y 与y 轴正半轴交于点C ,与x 轴交于点),(、08)0,2(B A ,OBC OCA ∠=∠。
安徽省巢湖市无为实验中学2015-2016学年八年级数学下学期期中试题一、选择题1.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠2.一直角三角形的两直角边长为12和16,则斜边上中线长为()A.20 B.10 C.18 D.253.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm4.下列二次根式中,是最简二次根式的是()A.B.C.D.5.已知,则=()A.B.﹣C.D.6.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行.当电子甲虫爬行2015cm时停下,则它停的位置是()A.点F B.点G C.点A D.点C7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形 D.当AC=BD时,它是正方形8.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16B.16 C.8 D.89.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF 沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.2﹣2 B.6 C.2﹣2 D.410.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为()A.B.C.D.2二、填空题11.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B 落在AD边的F点上,则DF的长为.12.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于.13.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.14.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE ≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是(只填写序号).三、解答题(共90分)15.计算:.16.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM 的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB:AD= 时,四边形MENF是正方形.17.如图,E、F、G、H分别是边AB、BC、CD、DA的中点.当BD、AC满足什么条件时,四边形EFGH是正方形.18.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?19.如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.20.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,即当AE为多少米时?有DC2=AE2+BC2.21.已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP是腰长为5的等腰三角形时,求点P的坐标.22.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF,请回答下列问题:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?23.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2015-2016学年安徽省巢湖市无为实验中学八年级(下)期中数学试卷参考答案与试题解析一、选择题1.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,2x﹣1>0,解得x>.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.一直角三角形的两直角边长为12和16,则斜边上中线长为()A.20 B.10 C.18 D.25【考点】直角三角形斜边上的中线;勾股定理.【分析】根据勾股定理求出斜边长,根据直角三角形斜边上的中线等于斜边的一半求出答案.【解答】解:∵两直角边分别为12和16,∴斜边==20,∴斜边上的中线的长为10,故选B.【点评】本题考查的是直角三角形的性质和勾股定理,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.3.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm【考点】平行四边形的性质.【专题】几何图形问题.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,所以根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.4.下列二次根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、被开方数含分母,故A错误;B、被开方数含开的尽的因数,故B错误;C、被开方数不含分母,被开方数不含开的尽的因数或因式,故C正确;D、被开方数含开的尽的因数因式,故D错误;故选:C.【点评】本题考查了最简二次根式,最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式.5.已知,则=()A.B.﹣C.D.【考点】二次根式的化简求值.【分析】由平方关系:()2=(a+)2﹣4,先代值,再开平方.【解答】解:∵()2=(a+)2﹣4=7﹣4=3,∴=±.故选C .【点评】本题考查了已知代数式与所求代数式关系的灵活运用,开平方运算,开平方运算时,一般要取“±”. 6.如图,两个连接在一起的菱形的边长都是1cm ,一只电子甲虫从点A 开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行.当电子甲虫爬行2015cm 时停下,则它停的位置是( )A .点FB .点GC .点AD .点C 【考点】菱形的性质. 【专题】规律型.【分析】利用菱形的性质,电子甲虫从出发到第1次回到点A 共爬行了8cm ,即每移动8cm 为一个循环组依次循环,用2015除以8,根据商和余数的情况确定最后停的位置所在的点即可.【解答】解:一只电子甲虫从点A 开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A 共爬行了8cm , 而2015÷8=251…7,所以当电子甲虫爬行2015cm 时停下,它停的位置是G 点. 故选B .【点评】本题考查了菱形四边相等的性质,以及规律型﹣﹣图形的变化类,观察图形得到每移动8cm 为一个循环组依次循环是解题的关键.7.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB=BC 时,它是菱形B .当AC⊥BD 时,它是菱形C .当∠ABC=90°时,它是矩形D .当AC=BD 时,它是正方形【考点】正方形的判定;平行四边形的性质;菱形的判定;矩形的判定. 【专题】证明题.【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A 、根据邻边相等的平行四边形是菱形可知:四边形ABCD 是平行四边形,当AB=BC 时,它是菱形,故A 选项正确;B 、∵四边形ABCD 是平行四边形,∴BO=OD,∵AC⊥BD,∴AB 2=BO 2+AO 2,AD 2=DO 2+AO 2,∴AB=AD,∴四边形ABCD 是菱形,故B 选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.8.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16B.16 C.8 D.8【考点】菱形的性质.【分析】首先由四边形ABCD是菱形,求得AC⊥BD,OA=AC,∠BAC=∠BAD,然后在直角三角形AOB中,利用30°角所对的直角边等于斜边的一半与勾股定理即可求得OB的长,然后由菱形的面积等于其对角线积的一半,即可求得该菱形的面积.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=×4=2,∠BAC=∠BAD=×120°=60°,∴AC=4,∠AOB=90°,∴∠ABO=30°,∴AB=2OA=4,OB=2,∴BD=2OB=4,∴该菱形的面积是: ACBD=×4×4=8.故选C.【点评】此题考查了菱形的性质,直角三角形的性质.解题的关键是注意数形结合与方程思想的应用,注意菱形的面积等于其对角线积的一半.9.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF 沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.2﹣2 B.6 C.2﹣2 D.4【考点】翻折变换(折叠问题).【专题】压轴题.【分析】当∠BFE=∠B'FE,点B′在DE上时,此时B′D的值最小,根据勾股定理求出DE,根据折叠的性质可知B′E=BE=2,DE﹣B′E即为所求.【解答】解:如图,当∠BFE=∠B'FE,点B′在DE上时,此时B′D的值最小,根据折叠的性质,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB边的中点,AB=4,∴AE=EB′=2,∵AD=6,∴DE==2,∴DB′=2﹣2.故选:A.【点评】本题主要考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,确定点B′在何位置时,B′D的值最小,是解决问题的关键.10.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为()A .B .C .D .2【考点】坐标与图形性质;等边三角形的性质;勾股定理.【专题】压轴题.【分析】过P 点作PD⊥x 轴,垂足为D ,根据A (﹣,0)、B (0,1)求OA 、OB ,利用勾股定理求AB ,可得△ABC 的面积,利用S △ABP =S △AOB +S 梯形BODP ﹣S △ADP ,列方程求a .【解答】解:过P 点作PD⊥x 轴,垂足为D ,由A (﹣,0)、B (0,1),得OA=,OB=1,∵△ABC 为等边三角形,由勾股定理,得AB==2,∴S △ABC =×2×=, 又∵S △ABP =S △AOB +S 梯形BODP ﹣S △ADP=××1+×(1+a )×3﹣×(+3)×a,=,由2S △ABP =S △ABC ,得=,∴a=.故选C .【点评】本题考查了点的坐标与线段长的关系,不规则三角形面积的表示方法.二、填空题11.如图,在矩形ABCD 中,AB=8,BC=10,E 是AB 上一点,将矩形ABCD 沿CE 折叠后,点B 落在AD 边的F 点上,则DF 的长为 6 .【考点】翻折变换(折叠问题).【分析】根据矩形的性质得出CD=AB=8,∠D=90°,根据折叠性质得出CF=BC=10,根据勾股定理求出即可.【解答】解:∵四边形ABCD是矩形,∴AB=DC=8,∠D=90°,∵将矩形ABCD沿CE折叠后,点B落在AD边的F点上,∴CF=BC=10,在Rt△CDF中,由勾股定理得:DF===6,故答案为:6.【点评】本题考查了勾股定理,折叠的性质,矩形的性质的应用,解此题的关键是求出CF 和DC的长,题目比较典型,难度适中.12.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于2π.【考点】勾股定理.【专题】计算题.【分析】根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆面积.【解答】解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故答案为:2π.【点评】此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.13.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是25 .【考点】平面展开-最短路径问题.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.故答案为25.【点评】本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.14.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是①②③⑤(只填写序号).【考点】正方形的性质;全等三角形的判定与性质.【专题】压轴题.【分析】由已知得AB=AD,AE=AF,利用“HL”可证△ABE≌△ADF,利用全等的性质判断①②③正确,在AD上取一点G,连接FG,使AG=GF,由正方形,等边三角形的性质可知∠DAF=15°,从而得∠DGF=30°,设DF=1,则AG=GF=2,DG=,分别表示AD,CF,EF的长,判断④⑤的正确性.【解答】解:∵AB=AD,AE=AF=EF,∴△ABE≌△ADF(HL),△AEF为等边三角形,∴BE=DF,又BC=CD,∴CE=CF,∴∠BAE=(∠BAD﹣∠EAF)=(90°﹣60°)=15°,∴∠AEB=90°﹣∠BAE=75°, ∴①②③正确,在AD 上取一点G ,连接FG ,使AG=GF , 则∠DAF=∠GFA=15°, ∴∠DGF=2∠DAF=30°,设DF=1,则AG=GF=2,DG=,∴AD=CD=2+,CF=CE=CD ﹣DF=1+,∴EF=CF=+,而BE+DF=2,∴④错误,⑤∵S △ABE +S △ADF =2×AD×DF=2+,S △CEF =CE×CF==2+,∴⑤正确.故答案为:①②③⑤.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的运用.关键是利用全等三角形的性质,把条件集中到直角三角形中,运用勾股定理求解.三、解答题(共90分)15.计算:.【考点】实数的运算.【分析】先把二次根式化简后再计算.【解答】解:原式=4+2﹣﹣,=.【点评】本题主要考查了实数的运算,关键是二次根式的化简求值,是中学阶段的重点.16.已知:如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB:AD= 1:2 时,四边形MENF是正方形.【考点】矩形的性质;全等三角形的判定与性质;平行四边形的判定;正方形的判定.【专题】几何图形问题.【分析】(1)根据矩形性质得出AB=DC,∠A=∠D=90°,根据全等三角形的判定推出即可;(2)求出四边形MENF是平行四边形,求出∠BMC=90°和ME=MF,根据正方形的判定推出即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵M为AD的中点,∴AM=DM,在△ABM和△DCM中∴△ABM≌△DCM(SAS).(2)解:当AB:AD=1:2时,四边形MENF是正方形,理由是:∵AB:AD=1:2,AM=DM,AB=CD,∴AB=AM=DM=DC,∵∠A=∠D=90°,∴∠ABM=∠AMB=∠DMC=∠DCM=45°,∴∠BMC=90°,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,∴∠MBC=∠MCB=45°,∴BM=CM,∵N、E、F分别是BC、BM、CM的中点,∴BE=CF,ME=MF,NF∥BM,NE∥CM,∴四边形MENF是平行四边形,∵ME=MF,∠BMC=90°,∴四边形MENF是正方形,即当AB:AD=1:2时,四边形MENF是正方形,故答案为:1:2.【点评】本题考查了矩形的性质和判定,平行四边形的判定,正方形的判定,全等三角形的性质和判定,三角形的中位线的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.17.如图,E、F、G、H分别是边AB、BC、CD、DA的中点.当BD、AC满足什么条件时,四边形EFGH是正方形.【考点】三角形中位线定理;正方形的判定.【分析】在△ABC中,E、F分别是边AB、BC中点,得到EF∥AC,且EF=AC,GH∥AC,且GH=AC,得到四边形EFGH是平行四边形,知四边形EFGH是平行四边形,再由AC=BD,得出EH=EF,从而证得四边形EFGH是菱形.对角线相等,推知四边形EFGH是正方形【解答】解:当AC=BD且AC⊥BD时,四边形EFGH是正方形.理由如下:在△ABC中,E、F分别是边AB、BC中点,所以EF∥AC,且EF=AC,同理有GH∥AC,且GH=AC,∴EF∥GH且EF=GH,故四边形EFGH是平行四边形.EH∥BD且EH=BD,若AC=BD,则有EH=EF,又因为四边形EFGH是平行四边形,∴四边形EFGH是菱形.即:当AC=BD且AC⊥BD时,四边形EFGH是正方形.【点评】本题考查了三角形的中位线定理、菱形的判定及性质、平行四边形的判定及性质以及正方形的判定,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.18.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?【考点】勾股定理的应用.【专题】应用题.【分析】关键描述语:产品收购站E,使得C、D两村到E站的距离相等,在Rt△DAE和Rt△CBE 中,设出AE的长,可将DE和CE的长表示出来,列出等式进行求解即可.【解答】解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=102+(25﹣x)2,x=10.故:E点应建在距A站10千米处.【点评】本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.19.如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.【考点】矩形的判定;全等三角形的判定与性质;平行四边形的判定与性质.【专题】几何综合题.【分析】(1)根据平行四边形的性质得到两角一边对应相等,利用AAS判定△ABE≌△FCE,从而得到AB=CF;(2)由已知可得四边形ABFC是平行四边形,BC=AF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAE=∠CFE,∠ABE=∠FCE,∵E为BC的中点,∴EB=EC,∴△ABE≌△FCE,∴AB=CF.(2)解:当BC=AF时,四边形ABFC是矩形.理由如下:∵AB∥CF,AB=CF,∴四边形ABFC是平行四边形,∵BC=AF,∴四边形ABFC是矩形.【点评】此题主要考查了学生对全等三角形的判定,平行四边形的性质及矩形的判定等知识点的掌握情况.20.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,即当AE为多少米时?有DC2=AE2+BC2.【考点】勾股定理;含30度角的直角三角形;正方形的性质.【专题】动点型.【分析】根据已知得出设AE=x米,可得EC=(12﹣x)米,利用勾股定理得出DC2=DE2+EC2=4+(12﹣x)2,AE2+BC2=x2+36,即可求出x的值.【解答】解:如图,连接CD,设AE=x米,∵坡角∠A=30°,∠B=90°,BC=6米,∴AC=12米,∴EC=(12﹣x)米,∵正方形DEFH的边长为2米,即DE=2米,∴DC2=DE2+EC2=4+(12﹣x)2,AE2+BC2=x2+36,∵DC2=AE2+BC2,∴4+(12﹣x)2=x2+36,解得:x=米,答:当AE为米时,有DC2=AE2+BC2.【点评】此题主要考查了勾股定理的应用以及一元二次方程的应用,根据已知表示出CE,AE的长度是解决问题的关键.21.已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP是腰长为5的等腰三角形时,求点P的坐标.【考点】矩形的性质;坐标与图形性质;等腰三角形的性质;勾股定理.【分析】根据当OP=OD时,以及当OD=PD时和当OP=PD时,分别进行讨论得出P点的坐标.【解答】解:过P作PM⊥OA于M.(1)当OP=OD时,OP=5,CO=4,∴易得CP=3,∴P(3,4);(2)当OD=PD时,PD=DO=5,PM=4,∴易得MD=3,从而CP=2或CP'=8,∴P(2,4)或(8,4);综上,满足题意的点P的坐标为(3,4)、(2,4)、(8,4),【点评】此题主要考查了矩形的性质以及坐标与图形的性质和等腰三角形的性质,根据△ODP 是腰长为5的等腰三角形进行分类讨论是解决问题的关键.22.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF,请回答下列问题:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?【考点】矩形的判定;全等三角形的判定与性质;平行四边形的判定.【分析】(1)四边形ADEF平行四边形.根据△ABD,△EBC都是等边三DAE角形容易得到全等条件证明△DBE≌△ABC,然后利用全等三角形的性质和平行四边形的判定可以证明四边形ADEF平行四边形.(2)若边形ADEF是矩形,则∠DAE=90°,然后根据已知可以得到∠BAC=150°.(3)当∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F 为顶点的四边形就不存在.【解答】解:(1)四边形ADEF是平行四边形.理由:∵△ABD,△EBC都是等边三角形.∴AD=BD=AB,BC=BE=EC∠DBA=∠EBC=60°∴∠DBE+∠EBA=∠ABC+∠EBA.∴∠DBE=∠ABC.在△DBE和△ABC中∵BD=BA∠DBE=∠ABCBE=BC,∴△DBE≌△ABC.∴DE=AC.又∵△ACF是等边三角形,∴AC=AF.∴DE=AF.同理可证:AD=EF,∴四边形ADEF平行四边形.(2)∵四边形ADEF是矩形,∴∠FAD=90°.∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.∴∠BAC=150°时,四边形ADEF是矩形.(3)当∠BAC=60°时,以A,D,E,F为顶点的四边形不存在.理由如下:若∠BAC=60°,则∠DAF=360°﹣∠BAC﹣∠DAB﹣∠FAC=360°﹣60°﹣60°﹣60°=180°.此时,点A、D、E、F四点共线,∴以A、D、E、F为顶点的四边形不存在.【点评】此题主要用等边三角形的性质,全等三角形的性质与判定来解决平行四边形的判定问题,也探讨了矩形,平行四边形之间的关系.23.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【考点】相似形综合题.【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)分两种情况讨论即可求解.【解答】(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴D F=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).【点评】本题考查了直角三角形的性质,菱形的判定与性质,正确利用t表示DF、AD的长是关键.。
2015年自主招生数学试卷一、选择题:(每小题6分,共30分)1. 计算=⨯+⨯--2201120132011201220112012222( ) A . 1 B . -1 C. -2012 D.20122. 已知:13=-xx ,则94242+-x x x 的值是( )A . 1B .21 C. 31 D. 413. 已知:)62(21---x x >0,则满足条件的自然数x 的个数是( ) A . 1 B . 2 C . 3 D. 44. 如图是正方体的平面展开图,则d 所对的面是( )fA . a B . b C. c D. 5. 如图1,在直角梯形ABCD 中,090=∠B ,点P 从点B 出发,沿A D C B →→→运动,记∆ABP 面积为y ,点P 运动的路程为x ,右图2是y 关于x 的函数图象,则直角梯形ABCD 的面积是 ( ) A . 28.5 B . 26.5 C. 26 D. 52二、填空题:(每小题6分,共30分)6. 已知b a ,为不等于0的实数,则bb a a +的最小值是 .7. 如图在⊙O 中,圆内接等腰ABC ∆,AC AB =,AE 是直径,BC 交A E于D 点,F是OD 的中点,若FC 平行BE ,52=BC ,则AB= .8. 若方程02=++c bx ax 的两根为2,121==x x ,则方程02=+-a bx cx 的根是 .9. 如图在矩形ABC D中,点E =10,将BCE ∆翻折,使C 点= .10. 已知:六边形OABCDE 中,A D(12,8),E(12,0),M(4,6)f edc ba图1EAEC的面积分成相等的两部分,则直线l 的解析式为 .三、解答题:(第11题8分,第12题10分,第13题12分,共30分) 11. 已知:.121,11,11,1133333=+++=+=+-=+yz xz xy xyz b a x z a z y b a y x 求a 的值.12. 如图,正方形ABC D的边长为1,点E 、F 分别在AB 、AD 边上,AEF ∆的周长为2,求ECF ∠的度数.13.如图,已知抛物线bx ax y +=2与双曲线xky =都经过点A(1,4),∆AOB的面积是3. (1)求k b a ,,的值;使∆EC B21012年义乌中学自主招生数学答案一、选择题: 1. A 2. C 3. C 4. A 5. C二、填空题: 6. -2 7.308. 21,121-=-=x x 9. 20 10. 32231+-=x y 三、解答题:11. 2=a12. 045=∠ECF13. (1)4,3,1===k b a(2))8,2(),2,8(21--E E解:(1)因为点A (1,4)在双曲线ky x=上, 所以k=4. 故双曲线的函数表达式为xy 4=.设点B (t ,4t),0t <,AB 所在直线的函数表达式为y mx n =+,则有44m n mt n t=+⎧⎪⎨=+⎪⎩,, 解得4m t =-,4(1)t n t +=. 于是,直线A B与y 轴的交点坐标为4(1)0,t t +⎛⎫⎪⎝⎭,故 ()141132AOB t S t t∆+=⨯-=(),整理得22320t t +-=,解得2t =-,或t=21(舍去).所以点B 的坐标为(2-,2-).因为点A ,B 都在抛物线2y ax bx =+(a>0)上,所以4422a b a b +=⎧⎨-=-⎩,, 解得13.a b =⎧⎨=⎩,(2)如图,因为AC ∥x 轴,所以C (4-,4),于是C O=42. 又BO =22,所以2=BOCO. 设抛物线2y ax bx =+(a >0)与x 轴负半轴相交于点D , 则点D 的坐标为(3-,0).因为∠COD =∠BOD =45︒,所以∠COB =90︒.(i )将△BOA 绕点O 顺时针旋转90︒,得到△1B OA '.这时,点B '(2-,2)是CO 的中点,点1A 的坐标为(4,1-).延长1OA 到点1E ,使得1OE =12OA ,这时点1E (8,2-)是符合条件的点.(ii )作△BOA 关于x 轴的对称图形△2B OA ',得到点2A (1,4-);延长2OA 到点2E ,使得2OE =22OA ,这时点E 2(2,8-)是符合条件的点.所以,点E 的坐标是(8,2-),或(2,8-).(第13题)。
,若使A.0B.1C.2D.3,那么A.2a B.2x C.﹣2a D.﹣2x 成立,则A.1999 B.2000 C.2001 D.不能确定能确定y=和(其中A.k1+k2B.k1﹣k2C.k1•k2D.A.(2010,2)B.(2010,﹣2)C.(2012,﹣2)D.(0,2)A.B.C.D.的积为负数,和为正数,且,则的值是 _________.面积是 _________.面积是9.(2013•沐川县二模)如图,点A 1,A 2,A 3,A 4,…,A n 在射线OA 上,点B 1,B 2,B 3,…,B n ﹣1在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3∥…∥A n ﹣1B n ﹣1,A 2B 1∥A 3B 2∥A 4B 3∥…∥A n B n ﹣1,△A 1A 2B 1,△A 2A 3B 2,…,△A n ﹣1A n B n﹣1为阴影三角形,若△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4,则△A 1A 2B 1的面积为的面积为 _________ ;面积小于2011的阴影三角形共有的阴影三角形共有 _________ 个.个.10.你见过像,,…这样的根式吗?这一类根式叫做复合二次根式.有一些复合二次根式可以化简,如.请用上述方法化简:= _________ .11.不等式组有六个整数解,则a 的取值范围为的取值范围为 _________ .12.小明是一位刻苦学习、勤于思考、勇于创新的同学,一天他在解方程x 2=﹣1时,突发奇想:x 2=﹣1在实数范围内无解,如果存在一个数i ,使i 2=﹣1,那么若x 2=﹣1,则x=±i ,从而x=±i 是方程x 2=﹣1的两个根.据此可知:①i 可以运算,例如:i 3=i 2•i=﹣1×i=﹣i ,则i 2011= _________ ,②方程x 2﹣2x+2=0的两根为的两根为_________ (根用i 表示)表示)13.(2013•日照)日照)如右图,如右图,如右图,直线直线AB 交双曲线于A 、B ,交x 轴于点C ,B 为线段AC 的中点,的中点,过点过点B 作BM ⊥x轴于M ,连结OA .若OM=2MC ,S △OAC =12.则k 的值为的值为 _________ .三.解答题(共7小题)14.在“学科能力”展示活动中,某区教委决定在甲、乙两校举行“学科能力”比赛,为此甲、乙两学校都选派相同人数的选手参加,比赛结束后,发现每名参赛选手的成绩都是70分、80分、90分、l00分这四种成绩中的一种,并且甲、乙两校的选手获得100分的人数也相等.现根据甲、乙两校选手的成绩绘制如下两幅不完整统计图:分的人数也相等.现根据甲、乙两校选手的成绩绘制如下两幅不完整统计图:(1)甲校选手所得分数的中位数是)甲校选手所得分数的中位数是 _________ ,乙校选手所得分数的众数是,乙校选手所得分数的众数是 _________ ;(2)请补全条形统计图;)请补全条形统计图;(3)比赛后,教委决定集中甲、乙两校获得100分的选手进行培训,培训后,从中随机选取两位选手参加市里的决赛,请用列表法或树状图的方法,求所选两位选手来自同一学校的概率.决赛,请用列表法或树状图的方法,求所选两位选手来自同一学校的概率.15.(2012•兰州)若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1﹣x2|====;参考以上定理和结论,解答下列问题:参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.为等腰三角形.(1)当△ABC为直角三角形时,求b2﹣4ac的值;的值;(2)当△ABC为等边三角形时,求b2﹣4ac的值.的值.16.(2013•威海)如图,在平面直角坐标系中,直线y=x+与直线y=x交于点A,点B在直线y=x+上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.(1)求点A,B的坐标;的坐标;(2)求抛物线的函数表达式及顶点E的坐标;的坐标;(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.是否平行,并说明理由.17.(2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a22﹣15a﹣5=0,b22﹣15b﹣5=0,求的值;的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.的最小值.18.(2013•钦州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;的切线;(3)求图中两部分阴影面积的和.)求图中两部分阴影面积的和.19.(2013•益阳)如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AEʹFʹ,连结CEʹ,BFʹ,求证:CEʹ=BFʹ;(3)在(2)的旋转过程中是否存在CEʹ∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.;若不存在,请说明理由.20.(2013•昭通)如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a≠0)上.)上.(1)求抛物线的解析式.)求抛物线的解析式.的坐标. (2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标.(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P 的坐标(点P、O、D分别与点N、O、B对应)对应)答案:, A . 0 B . 1 C .2 D . 3考点: 二次函数的图象. 专题: 压轴题;数形结合.压轴题;数形结合. 分析:首先在坐标系中画出已知函数的图象,利用数形结合的方法即可找到使y=k 成立的x 值恰好有三个的k 值.值.解答:解:函数的图象如图:的图象如图:根据图象知道当y=3时,对应成立的x 有恰好有三个,有恰好有三个,∴k=3. 故选D .点评: 此题主要考查了利用二次函数的图象解决交点问题,解题的关键是把解方程的问题转换为根据函数图象找交点的问题.交点的问题.,那么A . 2a B . 2x C . ﹣2a D . ﹣2x 考点: 二次根式的性质与化简;绝对值;完全平方公式;含绝对值符号的一元一次方程.专题: 计算题.计算题.分析: 由绝对值的定义可知,一个数的绝对值要么等于它本身,一个数的绝对值要么等于它本身,要么等于它的相反数,要么等于它的相反数,要么等于它的相反数,根据已知条件根据已知条件|x ﹣a|=a ﹣|x|,得出|x|=x 且x ≤a .再根据完全平方公式及二次根式的性质=|a|进行化简,最后去括号、合并同类项即可得出结果.得出结果.解答: 解:∵|x ﹣a|=a ﹣|x|,∴|x|=x 且x ≤a .∴a ﹣x >0,a+x >0.∴=﹣=|a﹣x|﹣|a+x| =a﹣x﹣(a+x)=a﹣x﹣a﹣x =﹣2x.故选D.点评:本题考查了绝对值的定义,完全平方公式,二次根式的性质,二次根式的化简及整式的加减运算,难度中是解题的关键.等,其中根据绝对值的定义,结合已知条件得出|x|=x且x≤a是解题的关键.3.a,b,c为有理数,且等式成立,则2a+999b+1001c的值是(的值是( )A.1999 B.2000 C.2001 D.不能确定能确定考点:二次根式的性质与化简.分析:将已知等式右边化简,两边比较系数可知a、b、c的值,再计算式子的值.的值,再计算式子的值.解答:解:∵==,∴a+b+c=,∴a=0,b=1,c=1,2a+999b+1001c=2000.故选B.本题考查了二次根式的性质与化简,将复合二次根式化简并比较系数是解题的关键.点评:本题考查了二次根式的性质与化简,将复合二次根式化简并比较系数是解题的关键.4.(2013•莒南县一模)如图,两个反比例函数y=和y=(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形P AOB的面积为()A.k1+k2B.k1﹣k2C.k1•k2D.考点:反比例函数系数k的几何意义.压轴题;数形结合.专题:压轴题;数形结合.分析:四边形P AOB的面积为矩形OCPD的面积减去三角形ODB与三角形OAC的面积,根据反比例函数中k的几何意义,其面积为k1﹣k2.解答:解:根据题意可得四边形P AOB的面积=S矩形OCPD﹣S OBD﹣S OAC,由反比例函数中k的几何意义,可知其面积为k1﹣k2.故选B.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.是经常考查的一个知识点.5.(2012•南开区一模)如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是( )的坐标是(A.(2010,2)B.(2010,﹣2)C.(2012,﹣2)D.(0,2)考点:坐标与图形变化-旋转;等腰梯形的性质.专题:规律型.规律型.分析:由P、A两点坐标可知,点P绕点A旋转180°得点P1,即为直线P A与x轴的交点,依此类推,点P2为直线P1B与y轴的交点,由此发现一般规律.轴的交点,由此发现一般规律.解答:解:由已知可以得到,点P1,P2的坐标分别为(2,0),(2,﹣2).记P2(a2,b2),其中a2=2,b2=﹣2.根据对称关系,依次可以求得:P3(﹣4﹣a2,﹣2﹣b2),P4(2+a2,4+b2),P5(﹣a2,﹣2﹣b2),P6(4+a2,b2).令P6(a6,b2),同样可以求得,点P10的坐标为(4+a6,b2),即P10(4×2+a2,b2),由于2010=4×502+2,所以点P2010的坐标为(2010,﹣2).故选B.本题考查了旋转变换的规律.关键是根据等腰梯形,点的坐标的特殊性,寻找一般规律.点评:本题考查了旋转变换的规律.关键是根据等腰梯形,点的坐标的特殊性,寻找一般规律.6.(2013•荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为(的值为( )A.B.C.D.考点:圆周角定理;勾股定理;锐角三角函数的定义.压轴题.专题:压轴题.分析:首先过点A作AD⊥OB于点D,由在Rt△AOD中,∠AOB=45°,可求得AD与OD的长,继而可得BD的值.的长,然后由勾股定理求得AB的长,继而可求得sinC的值.解答:解:过点A作AD⊥OB于点D,∵在Rt△AOD中,∠AOB=45°,∴OD=AD=OA•cos45°=×1=,∴BD=OB﹣OD=1﹣,∴AB==,的直径,∵AC是⊙O的直径,∴∠ABC=90°,AC=2,∴sinC=.故选B.点评:此题考查了圆周角定理、三角函数以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.思想的应用.的积为负数,和为正数,且,则的值是 1.考点:代数式求值;绝对值.计算题.专题:计算题.分析:由三个数a、b、c的积为负数,可知三数中只有一个是负数,或三个都是负数;又三数的和为正,故a、b、c中只有一个是负数,根据对称轮换式的性质,不妨设a<0,b>0,c>0,求x的值即可.的值即可.解答:解:∵abc<0,∴a、b、c中只有一个是负数,或三个都是负数;中只有一个是负数,或三个都是负数;又∵a+b+c>0,中只有一个是负数.∴a、b、c中只有一个是负数.不妨设a<0,b>0,c>0,则ab<0,ac<0,bc>0,x=﹣1+1+1﹣1﹣1+1=0,时,当x=0时,ax3+bx2+cx+1=0a+0b+0c=0+1=1.故本题答案为1.点评:观察代数式,交换a、b、c的位置,我们发现代数式不改变,这样的代数式成为轮换式,我们不用对a、b、c再讨论.有兴趣的同学可以在课下查阅资料,看看轮换式有哪些重要的性质.重要的性质.积是 6.积是考点:面积及等积变换.分析:先设△BEF的面积是x,由于E是BC中点,那么S△DBE=S△DCE,易求S正方形=4(1+x),又四边形ABCD 是正方形,那么是正方形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△BEF∽△DAF,于是S△BEF:S△DAF=()2,E是BC中点可知BE:AD=1:2,于是S△DAF=4x,进而可得S正方形=S△ABF+S△BEF+S△ADF+S△DEF+S△DCE=1+x+4x+1+1+x,等量代换可得4(1+x)=1+x+4x+1+1+x,解可求x,进而可求正方形的面积.进而可求正方形的面积.解答:解:如右图,设△BEF的面积是x,中点,∵E是BC中点,∴S△DBE=S△DCE,∴S△BCD=2(1+x),∴S正方形=4(1+x),是正方形,∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∴△BEF∽△DAF,∴S△BEF:S△DAF=()2,中点,∵E是BC中点,∴BE=CE,∴BE:AD=1:2,∴S△DAF=4x,∵S△ABE=S△BED,∴S△ABF=S△DEF=1,∴S正方形=S△ABF+S△BEF+S△ADF+S△DEF+S△DCE=1+x+4x+1+1+x,∴4(1+x)=1+x+4x+1+1+x,解得x=0.5,∴S正方形=4(1+x)=4(1+0.5)=6.点评:本题考查了面积以及等积变换、相似三角形的判定和性质,解题的关键是找出正方形面积的两种表示方式.9.(2013•沐川县二模)如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n﹣1为阴影三角形,若△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4,则△A 1A 2B 1的面积为的面积为;面积小于2011的阴影三角形共有影三角形共有 6 个.个.考点: 相似三角形的判定与性质;平行线的性质;三角形的面积. 分析:根据面积比等于相似比的平方,可得出=,=,再由平行线的性质可得出==,==,从而可推出相邻两个阴影部分的相似比为1:2,面积比为1:4,先利用等底三角形的面积之比等于高之比可求出第一个及第二个阴影部分的面积,再由相似比为1:2可求出面积小于2011的阴影部分的个数.影部分的个数.解答: 解:由题意得,△A 2B 1B 2∽△A 3B 2B 3,∴==,==,又∵A 1B 1∥A 2B 2∥A 3B 3, ∴===,==,∴OA 1=A 1A 2,B 1B 2=B 2B 3继而可得出规律:A 1A 2=A 2A 3=A 3A 4…;B 1B 2=B 2B 3=B 3B 4… 又△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4, ∴S △A1B1A2=,S △A2B2A3=2,继而可推出S △A3B3A4=8,S △A ,4B4A5=32,S △A5B5A6=128,S △A6B6A7=512,S △A7B7A8=2048,故可得小于2011的阴影三角形的有:△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,△A 4B 4A 5,△A 5B 5A 6,△A 6B 6A 7,共6个.个. 故答案是:;6.点评: 此题考查了相似三角形的判定与性质及平行线的性质,解答本题的关键是掌握相似比等于面积比的平方,及平行线分线段成比例,难度较大,注意仔细观察图形,得出规律.及平行线分线段成比例,难度较大,注意仔细观察图形,得出规律.10.你见过像,,…这样的根式吗?这一类根式叫做复合二次根式.有一些复合二次根式可以化简,如.请用上述方法化简:=.考点: 二次根式的性质与化简.分析: 因为5=2+3=()2+()2,且2=2××,由此把原式改为完全平方式,进一步因式分解,化简得出答案即可.得出答案即可.解答:解:===+.故答案为:+.点评: 此题考查活用完全平方公式,把数分解成完全平方式,进一步利用公式因式分解化简,注意在整数分解时参考后面的二次根号里面的数值.参考后面的二次根号里面的数值.11.不等式组有六个整数解,则a 的取值范围为的取值范围为<a ≤ .考点: 一元一次不等式组的整数解.分析: 先求出不等式组的解集,再根据整数解有六个得到关于a 的不等式组,然后解不等式组即可求解.的不等式组,然后解不等式组即可求解. 解答:解:解不等式组,得﹣4<x ≤5﹣4a .由题意,知此不等式组的六个整数解为﹣3,﹣2,﹣1,0,1,2, 则2≤5﹣4a <3,解得<a ≤. 故答案为<a ≤.点评: 本题考查了一元一次不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.同小取较小,小大大小中间找,大大小小解不了.12.小明是一位刻苦学习、勤于思考、勇于创新的同学,一天他在解方程x 2=﹣1时,突发奇想:x 2=﹣1在实数范围内无解,如果存在一个数i ,使i 2=﹣1,那么若x 2=﹣1,则x=±i ,从而x=±i 是方程x 2=﹣1的两个根.据此可知:①i 可以运算,例如:i 3=i 2•i=﹣1×i=﹣i ,则i 2011= ﹣i . ,②方程x 2﹣2x+2=0的两根为的两根为1±i . (根用i 表示)表示)考点: 一元二次方程的应用. 专题: 新定义.新定义.分析: (1)根据题中规律可知i 1=1,i 2=﹣1,i 3=﹣i ,i 4=1,可以看出4个一次循环,可以此求解.个一次循环,可以此求解. (2)把方程x 2﹣2x+2=0变形为(x ﹣1)2=﹣1,根据题目规律和平方根的定义可求解.,根据题目规律和平方根的定义可求解.解答: 解:(1)i 2011=i 502×4+3=﹣i .(2)x 2﹣2x+2=0 (x ﹣1)2=﹣1 x ﹣1=±i x=1+i 或x=1﹣i . 故答案为:﹣i ;1±i . 点评: 本题考查了用配方法解一元二次方程以及找出题目中的规律,从而求得解.本题考查了用配方法解一元二次方程以及找出题目中的规律,从而求得解.13.(2013•日照)日照)如右图,如右图,如右图,直线直线AB 交双曲线于A 、B ,交x 轴于点C ,B 为线段AC 的中点,的中点,过点过点B 作BM ⊥x轴于M ,连结OA .若OM=2MC ,S △OAC =12.则k 的值为的值为 8 .考点:反比例函数与一次函数的交点问题.压轴题.专题:压轴题.分析:过A作AN⊥OC于N,求出ON=MN=CM,设A的坐标是(a,b),得出B(2a,b),根据三角形AOC的坐标代入即可求出答案.的面积求出ab=8,把B的坐标代入即可求出答案.解答:解:过A作AN⊥OC于N,∵BM⊥OC ∴AN∥BM,中点,∵,B为AC中点,∴MN=MC,∵OM=2MC,∴ON=MN=CM,设A的坐标是(a,b),则B(2a,b),∵S△OAC=12.∴•3a•b=12,∴ab=8,上,∵B在y=上,∴k=2a•b=ab=8,故答案为:8.本题考查了一次函数和反比例函数的交点问题和三角形的面积的应用,主要考查学生的计算能力.点评:本题考查了一次函数和反比例函数的交点问题和三角形的面积的应用,主要考查学生的计算能力.)甲校选手所得分数的中位数是 90分,乙校选手所得分数的众数是,乙校选手所得分数的众数是 80分;(1)甲校选手所得分数的中位数是)请补全条形统计图;(2)请补全条形统计图;(3)比赛后,教委决定集中甲、乙两校获得100分的选手进行培训,培训后,从中随机选取两位选手参加市里的决赛,请用列表法或树状图的方法,求所选两位选手来自同一学校的概率.决赛,请用列表法或树状图的方法,求所选两位选手来自同一学校的概率.考点:条形统计图;扇形统计图;中位数;众数;列表法与树状图法.分析:(1)先设甲学校学生获得100分的人数为x,根据甲、乙两学校参加数学竞赛的学生人数相等,可得出方的值,继而可得出甲校选手所得分数的中位数,及乙校选手所得分数的众数;程,解出x的值,继而可得出甲校选手所得分数的中位数,及乙校选手所得分数的众数;)列出树状图后,求解即可得出所选两位选手来自同一学校的概率.(2)列出树状图后,求解即可得出所选两位选手来自同一学校的概率.解答:解:(1)先设甲学校学生获得100分的人数为x,由题意得,x=(x+2+3+5)×,人.解得:x=2,即获得100分的人数有2人.分.故可得甲校选手所得分数的中位数是90分;乙校选手所得分数的众数80分.(2)则两位选手来自同一学校的概率==.点评:本题考查了条形统计图及扇形统计图的知识,要求同学们有一定的读图能力,能在条形统计图及扇形统计图中得到解题需要用到的信息,有一定难度.图中得到解题需要用到的信息,有一定难度.15.(2012•兰州)若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1﹣x2|====;参考以上定理和结论,解答下列问题:参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC 为等腰三角形.为等腰三角形.的值;(1)当△ABC为直角三角形时,求b2﹣4ac的值;的值.(2)当△ABC为等边三角形时,求b2﹣4ac的值.考点:抛物线与x轴的交点;根与系数的关系;等腰三角形的性质;等边三角形的性质.压轴题.专题:压轴题.分析:(1)当△ABC为直角三角形时,由于AC=BC,所以△ABC为等腰直角三角形,过C作CE⊥AB于E,则AB=2CE.根据本题定理和结论,得到AB=,根据顶点坐标公式,得到CE=||=,的值;列出方程,解方程即可求出b2﹣4ac的值;(2)当△ABC为等边三角形时,解直角△ACE,得CE=AE=,据此列出方程,解方程即可求出b2﹣4ac的值.的值.解答:解:(1)当△ABC为直角三角形时,过C作CE⊥AB于E,则AB=2CE.轴有两个交点,∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,则|b2﹣4ac|=b2﹣4ac.∵a>0,∴AB=,又∵CE=||=,∴,∴,∴,∵b22﹣4ac>0,∴b2﹣4ac=4;为等边三角形时,(2)当△ABC为等边三角形时,由(1)可知CE=,∴,∵b2﹣4ac>0,∴b 2﹣4ac=12.点评:本题考查了等腰直角三角形、等边三角形的性质,抛物线与x轴的交点及根与系数的关系定理,综合性较强,难度中等.强,难度中等.16.(2013•威海)如图,在平面直角坐标系中,直线y=x+与直线y=x交于点A,点B在直线y=x+上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.(1)求点A,B的坐标;的坐标;(2)求抛物线的函数表达式及顶点E的坐标;的坐标;(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.是否平行,并说明理由.考点:二次函数综合题.专题:压轴题.压轴题.分析:(1)由直线y=x+与直线y=x交于点A,列出方程组,通过解该方程组即可求得点A的坐标;根据∠BOA=90°得到直线OB的解析式为y=﹣x,则,通过解该方程组来求点B的坐标即可;的坐标即可;(2)把点A、B、O的坐标分别代入已知二次函数解析式,列出关于系数a、b、c的方程组,通过解方程组即可求得该抛物线的解析式;组即可求得该抛物线的解析式;(3)如图,作DN⊥x轴于点N.欲证明OD与CF平行,只需证明同位角∠CMN与∠DON相等即可.相等即可.解答:解:(1)由直线y=x+与直线y=x交于点A,得,得,解得,,∴点A的坐标是(3,3).∵∠BOA=90°,∴OB⊥OA,∴直线OB的解析式为y=﹣x.上,又∵点B在直线y=x+上,∴,解得,,∴点B的坐标是(﹣1,1).综上所述,点A、B的坐标分别为(3,3),(﹣1,1).(2)由(1)知,点A、B的坐标分别为(3,3),(﹣1,1).∵抛物线y=ax2+bx+c过点A,O,B,∴,解得,,∴该抛物线的解析式为y=x2﹣x,或y=(x﹣)2﹣.∴顶点E的坐标是(,﹣);平行.理由如下:(3)OD与CF平行.理由如下:由(2)知,抛物线的对称轴是x=.∵直线y=x与抛物线的对称轴交于点C,∴C(,).设直线BC的表达式为y=kx+b(k≠0),把B(﹣1,1),C(,)代入,得)代入,得 ,解得,,∴直线BC的解析式为y=﹣x+.∵直线BC与抛物线交于点B、D,∴﹣x+=x2﹣x,解得,x1=,x2=﹣1.把x1=代入y=﹣x+,得y1=,∴点D的坐标是(,).如图,作DN⊥x轴于点N.则tan∠DON==.∵FE∥x轴,点E的坐标为(,﹣).∴点F的纵坐标是﹣.把y=﹣代入y=x+,得x=﹣,∴点F的坐标是(﹣,﹣),∴EF=+=.∵CE=+=,∴tan∠CFE==,∴∠CFE=∠DON.轴,又∵FE∥x轴,∴∠CMN=∠CFE,∴∠CMN=∠DON,平行.∴OD∥CF,即OD与CF平行.点评:本题考查了二次函数综合题.其中涉及到的知识点有:待定系数法求二次函数解析式,一次函数与二次函数交点问题,平行线的判定以及锐角三角函数的定义等知识点.此题难度较大.数交点问题,平行线的判定以及锐角三角函数的定义等知识点.此题难度较大.17.(2012•内江)如果方程x 22+px+q=0的两个根是x 1,x 2,那么x 1+x 2=﹣p ,x 1.x 2=q ,请根据以上结论,解决下列问题:列问题:(1)已知关于x 的方程x 2+mx+n=0,(n ≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数; (2)已知a 、b 满足a 22﹣15a ﹣5=0,b 22﹣15b ﹣5=0,求的值;的值;(3)已知a 、b 、c 满足a+b+c=0,abc=16,求正数c 的最小值.的最小值.考点: 根与系数的关系;根的判别式. 专题: 压轴题.压轴题.分析: (1)先设方程x 2+mx+n=0,(n ≠0)的两个根分别是x 1,x 2,得出+=﹣,•=,再根据这个一元二次方程的两个根分别是已知方程两根的倒数,即可求出答案.元二次方程的两个根分别是已知方程两根的倒数,即可求出答案.(2)根据a 、b 满足a 2﹣15a ﹣5=0,b 2﹣15b ﹣5=0,得出a ,b 是x 2﹣15x ﹣5=0的解,求出a+b 和ab 的值,即可求出的值.的值.(3)根据a+b+c=0,abc=16,得出a+b=﹣c ,ab=,a 、b 是方程x 22+cx+=0的解,再根据c 2﹣4•≥0,即可求出c 的最小值.的最小值.解答: 解:(1)设方程x 2+mx+n=0,(n ≠0)的两个根分别是x 1,x 2,则:+==﹣, •==,若一个一元二次方程的两个根分别是已知方程两根的倒数,若一个一元二次方程的两个根分别是已知方程两根的倒数,则这个一元二次方程是:x 2+x+=0;(2)∵a 、b 满足a 2﹣15a ﹣5=0,b 2﹣15b ﹣5=0,∴a ,b 是x 2﹣15x ﹣5=0的解,的解, 当a ≠b 时,a+b=15,ab=﹣5,====﹣47.当A=B 时,原式=2;(3)∵a+b+c=0,abc=16, ∴a+b=﹣c ,ab=,∴a 、b 是方程x 2+cx+=0的解,的解,∴c 2﹣4•≥0,c 2﹣≥0,∵c 是正数,是正数,∴c 3﹣43≥0, c 3≥43, c ≥4,∴正数c的最小值是4.点评:本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.18.(2013•钦州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;的切线;(2)求证:AE是⊙O的切线;)求图中两部分阴影面积的和.(3)求图中两部分阴影面积的和.考点:切线的判定与性质;扇形面积的计算.计算题;压轴题.专题:计算题;压轴题.分析:(1)由AB为圆O的切线,利用切线的性质得到OD垂直于AB,在直角三角形BDO中,利用锐角三角函的值即可;数定义,根据tan∠BOD及BD的值,求出OD的值即可;(2)连接OE,由AE=OD=3,且OD与AE平行,利用一组对边平行且相等的四边形为平行四边形,根据垂直,即可得证;平行四边形的对边平行得到OE与AD平行,再由DA与AE垂直得到OE与AC垂直,即可得证;(3)阴影部分的面积由三角形BOD的面积+三角形ECO的面积﹣扇形DOF的面积﹣扇形EOG的面积,求出即可.求出即可.相切,解答:解:(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,为平行四边形,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,为圆的半径,又∵OE为圆的半径,的切线;∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.点评:此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.的性质,熟练掌握切线的判定与性质是解本题的关键.19.(2013•益阳)如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AEʹFʹ,连结CEʹ,BFʹ,求证:CEʹ=BFʹ;;若不存在,请说明理由.(3)在(2)的旋转过程中是否存在CEʹ∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.考点:旋转的性质;等腰三角形的性质;等腰梯形的判定.压轴题.专题:压轴题.分析:(1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;,根据全等三角形证明方法得出即可;(2)由旋转的性质可知:∠EʹAC=∠FʹAB,AEʹ=AFʹ,根据全等三角形证明方法得出即可;(3)分别根据①当点E的像Eʹ与点M重合时,则四边形ABCM为等腰梯形,②当点E的像Eʹ与点N重即可.合时,求出α即可.解答:(1)证明:∵AB=BC,∠A=36°,∴∠ABC=∠C=72°,又∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠BEC=180°﹣∠C﹣∠CBE=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BC.(2)证明:∵AC=AB且EF∥BC,∴AE=AF;由旋转的性质可知:∠EʹAC=∠FʹAB,AEʹ=AFʹ,∵在△CAEʹ和△BAFʹ中,∴△CAEʹ≌△BAFʹ,∴CEʹ=BFʹ.(3)存在CEʹ∥AB,理由:由(1)可知AE=BC,所以,在△AEF绕点A逆时针旋转过程中,E点经过的路径(圆弧)与过点C且与AB平行的直线l交于M、N两点,两点,为等腰梯形,如图:①当点E的像Eʹ与点M重合时,则四边形ABCM为等腰梯形,∴∠BAM=∠ABC=72°,又∠BAC=36°,∴α=∠CAM=36°.②当点E的像Eʹ与点N重合时,重合时,由AB∥l得,∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣2×72°=36°,∴α=∠CAN=∠CAM+∠MAN=72°.所以,当旋转角为36°或72°时,CEʹ∥AB.点评:此题主要考查了旋转的性质以及等腰三角形的性质和等腰梯形的性质等知识,根据数形结合熟练掌握相关定理是解题关键.定理是解题关键.20.(2013•昭通)如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a≠0)上.)上. )求抛物线的解析式.(1)求抛物线的解析式.的坐标. (2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标.(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P对应)的坐标(点P、O、D分别与点N、O、B对应)考点:二次函数综合题.压轴题.专题:压轴题.。
无为县 2014-2015 第二学期其中考试八年级数学试题温馨提示:本卷共八大题,计 23 小题,满分 150 分,考试时间 120 分钟 .一、选择题(本大题共 10 个小题,每小题 4 分,满分 40 分)每个小题给出 A 、 B 、C 、D 四个选项,其中只有一个是正确的,请请把正确选项写在题 后的括号内 . 不选、错选或多选的(不论是否写在括号内)一律得0 分 .21.计算 (- 2) 的结果是 ( B )A .- 2B . 2C .- 4D . 42.一次函数 y4x 3 的图象不经过下列哪个象限(A )A .第一象限B . 第二象限C . 第三象限D . 第四象限3.为筹备班级联欢会,班长对全班同学爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据最值得关注的是( C )A .中位数B .平均数C .众数D .加权平均数4.在平面中,下列命题为真命题的是( B)A .四边相等的四边形是正方形B .四个角相等的四边形是矩形C .对角线相等的四边形是菱形D .对角线互相垂直的四边形是平行四边形5.下列运算正确的是( C )A.2323B.39 3C. ( 3)2 =3D. 2 5 2 56.如图,菱形 ABCD 的对角线 AC 、BD 的长分别是 6cm 、8cm ,AE ⊥BC 于点 E ,AE 的长是( D )A . 5 3 cmB . 2 5 cm48 24C .cmD .cm55ADADEOFBECBC第6题图第 7 题图7.如图,在正方形 ABCD 中, AD =5,点 E 、F 是正方形 ABCD 内的两点,且AE=FC =3,BE=DF =4,则 E 、F 两点之间的距离是(D )3 2 C .7 2A .B .2D .2358.为了更好地迎接庐阳区排球比赛,某校积极准备,从全校学生中遴选出21 名同学进行相应的排球训练,该训练队成员的身高如下表:则该校排球队 21 名同学身高的众数和中位数分别是( D )A.185,178B.178,175C.175,178D.175,1759.2 ,则直线 yax b一定经过点(D)若 3a 2bA .( 0,2)B .( 3,2)C .(3,24)D .( 3,1)2210.如下左图,矩形 ABCD 中, AB =1,BC =2,点 P 从点 B 出发,沿 B →C→ D 向终点D 匀速运动,设点 P 走过的路程为x , ABP 的面积为 S ,能正确反映 S 与 x 之间函数关系的图象是( C )二、填空题( 本大题共 4 个小题,每小题 5 分,满分 20 分)11.若二次根式3a 5 是最简二次根式,则最小的正整数 a =. 212.一个样本为 1, 3, 2, 2, a , b , c .已知这个样本唯一的众数为 3,平均数为 2,则这个样本的方差为.8713.如图,函数 y=2x 和 y=ax+b 的图象相交于点 A ,且点 A 的纵坐标为 4,则不等式 2x ≥ax+b的解集为 .x ≥214.将矩形纸片 ABCD 折叠,使点 B 落在边 CD 上的 B 处,折痕为 AE ,过 B 作 B P ∥ BC ,交 AE 于点 P ,连接 BP.已知 BC = 3,CB1,下列结论:① AB = 5;② BE = 2;③四边形 BEB P为菱形;④ S 四边形 BEBP S ECB1 ,其中正确的是① ③ ④ .(把所有正确结论的序号都填在横线上)三、( 本大题共 2 个小题,每小题 8 分,满分 16 分)15.已知 x 2 1, y2 1,求 x 2y 2 的值.解:∵ x 2 y 2 x y x y , ⋯⋯⋯⋯ 4 分∴原式 =2 12 1 2 12 1 2 2 2 4 2⋯⋯⋯8分16.已知 y 与 x - 3 成正比例,且 x = 0 时, y = 3.⑴求出 y 与 x 的函数关系式. ⑵自变量 x 取何值时,函数值为 4? 3y k x 3yx解:⑴设y k x 3 ,把x 0 y=代入,解得 k 1 ,即与的函= ,数关系式是 yx3.⋯⋯⋯⋯4分⑵把 y=4 代入y x 3 ,得x=-1,所以当x=-1,函数值为4.⋯⋯⋯ 8 分四、(本大题共 2 个小题,每小题8 分,满分16 分)17.如图所示,直线 a 经过正方形ABCD 的顶点A ,、 D 作分别过此正方形的顶点BBF a 于点 F 、 DE a 于点E.若 DE 8,BF5,求 EF 的长.第17题图解:∵ BF a , DE a ,∴AFB DEA 90 .∴FBA FAB 90 .又∵FAB DAE 90 ,∴FBA DAE .∵四边形ABCD 是正方形,∴AB=AD.∴△A BF ≌△ DAE( AAS).⋯⋯⋯⋯ 4 分∴ AF=DE, AE=BF .而DE8, BF 5 ,∴EF=AE+AF=8+5=13.⋯⋯⋯8分18.我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察: 3、 4、 5;5、 12、13;7、 24、 25; 9、 40、 41;⋯⋯,发现这些勾股数的勾都是奇数,且从 3 起就没有间断过.⑴请你根据上述的规律写出下一组勾股数:;⑵若第一个数用字母n ( n 为奇数,且n 3 )表示,那么后两个数用含n 的代数式分别表示为和,请用所学知识说明它们是一组勾股数.解:⑴ 11, 60, 61(答案不唯一)⋯⋯⋯ 2 分⑵后两个数表示为n2 1 和 n21⋯⋯⋯⋯ 4 分22∵ n2( n2 1)2n2n42n2 1 n42n2 1 ,( n2 1)2 n42n2 1 ,24424∴ n2( n2 1)2( n21)2.又∵ n 3 ,且n为奇数,∴由n,n2 1 , n21三个2222数组成的数是勾股数.⋯⋯ 8分五、(本大题共 2 个小题,每小题10 分,满分20 分)19.某商场为庆祝正式营业,推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳 300 元会费成为该商场会员,则所有商品价格可获九折优惠.⑴以 x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y 关于 x 的函数解析式;⑵若某人计划在商场购买价格为5880 元的电视机一台,请分析选择哪种方案更省钱?解:⑴方案一:y=0.95 x;方案二: y=0.9 x+300 ;⋯⋯4 分⑵当 x=5880 时,方案一: y=0.95 x=5586,方案二: y=0.9x+300=5592,因为 5586 <5592,所以选择方案一更省钱.⋯⋯10 分20.已知:如图,在平行四边形 ABCD 中, O 为对角线 BD 的中点,过点 O 的直线 EF 分别交3⑴求证:△ DOE ≌△ BOF.⑵当∠ DOE 等于多少度时,四边形BFED 为菱形?请说明理由.第 20题图⑴证明:∵在平行四边形 ABCD 中,O 为对角线 BD 的中点,∴BO=DO ,∠ EDB =∠ FBO ,在△EOD 和△ FOB 中:EDO OBF,∴△ DOE≌△ BOF ( ASA);⋯⋯ 5 分DO BOEOD FOB⑵当∠ DOE =90°时,四边形BFED 为菱形,理由:∵△DOE≌△ BOF ,∴ BF=DE,又∵B F ∥DE,∴四边形 EBFD 是平行四边形,∵ BO=DO,∠ EOD =90°,∴ EB=DE ,∴四边形BFED 为菱形.⋯⋯10 分六、(本题满分12 分)21.某校举行“汉字听写”比赛,每位学生听写汉字39 个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.根据以上信息解决下列问题:⑴在统计表中,m=,n=,并补全条形统计图⑵扇形统计图中“C组”所对应的圆心角的度数是.⑶若该校共有900 名学生,如果听写正确的个数少于24 个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.解:⑴ m= 30,n= 20,画图正确 .⋯⋯ 6 分⑵90 .⋯⋯8分⑶解:抽查学生中“听写正确的个数少于24 个”的人数有: 10+15+25=50人,抽查比赛学生总人数有: 15÷15%=100 人 ,所以 900×50= 450 人.100450 人. ⋯⋯12 分答:这所学校本次比赛听写不合格的学生人数约为七、(本题满分 12 分)22.如图,已知一次函数 y kxb 的图象经过 A 2, 1 ,B1,3两点,并且交 x 轴于点 C ,交 y 轴于点 D .( 1)求该一次函数的解析式; ( 2)求 △ AOB 的面积.第 22题图2k b1k4解:⑴把 A2, 1 , B1,3 代入 y kx b ,得3.所以b 3,解得kb 53一次函数解析式为 y4 x5 ; ⋯⋯6 分3 3⑵把 x=0 代入 y4 x5 得 y 5 ,所以 D 点坐标为( 0, 5),所以 △ AOB 的面积333 3=S△AOD+S△BOD1 5 21 5 1 5. ⋯⋯ 12分2 32 3 2八、(本题满分14 分)23.我们定义: 有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形. 请解决下列问题:⑴已知:如图 1,四边形 ABCD 是等对角四边形, A C , A =70=750,则 C = , D =,B. ⑵在探究等对角四边形性质时:①丁丁画了一个如图 2 所示的等对角四边 形 ABCD ,其中ABC = ADC , AB = AD ,此时她发现 CB = CD 成立,请你证明该结论;②由此丁丁猜想: “对于任意等对角四边形, 当一组邻边相等时, 另一组邻边也相等” . 你认为她的猜想正确吗?若正确,请给与证明;若不正确,请举出反例 . ⑶已知:如图 3,在等对角四边形 ABCD 中, DAB =600 ,ABC = ADC =900 ,AB = 5, AD = 4,求对角线 AC 的长 .第23题图 1第23题图2第23题图223.⑴C=1400,D=750⋯⋯⋯⋯ 2 分⑵①证明:连接 BD ,∵ AB=AD ,∴ABD=ADB . ∵四边形 ABCD 为等对角四边形,∴ABC= ADC .∴CBD=CDB ,即CB=CD .⋯⋯⋯⋯5分②不正确 . ⋯⋯⋯6分如图,在等对角四边形ABCD 中,A=C,B D ,AB=BC,但显然AD DC⋯⋯⋯⋯⋯⋯⋯8 分⑶如图,延长BC、 AD 相交于点 E.∵DAB=600,∴ E=300.∵AB= 5,∴ AE =10.又∵ AD=4,∴DE=6.在 Rt DCE 中,CD2DE 2CE2,而 CE2CD ,∴ CD2624CD2,∴ CD212 ,∴CD 2 3 .在 Rt ACD 中, AC2AD 2CD 2421228,AC 2 7.⋯⋯⋯⋯14分。
自主招生数学试题一.选择题(共6小题)1.已知函数,若使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.32.如果|x﹣a|=a﹣|x|(x≠0,x≠a),那么=()A.2a B.2x C.﹣2a D.﹣2x3.a,b,c为有理数,且等式成立,则2a+999b+1001c的值是()A.1999 B.2000 C.2001 D.不能确定4.(2013•莒南县一模)如图,两个反比例函数y=和y=(其中k1>k2>0)在第一象限的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为()A.k+k2B.k1﹣k2C.k1•k2D.15.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D (﹣1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2)B.(2010,﹣2)C.(2012,﹣2)D.(0,2)6.如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()A.B.C.D.二.填空题(共7小题)7.三个数a、b、c的积为负数,和为正数,且,则ax3+bx2+cx+1的值是_________ .8.如图正方形ABCD中,E是BC边的中点,AE与BD相交于F点,△DEF的面积是1,那么正方形ABCD的面积是_________ .9.(2013•沐川县二模)如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为_________ ;面积小于2011的阴影三角形共有_________ 个.10.你见过像,,…这样的根式吗?这一类根式叫做复合二次根式.有一些复合二次根式可以化简,如.请用上述方法化简:= _________ .11.不等式组有六个整数解,则a的取值围为_________ .12.小明是一位刻苦学习、勤于思考、勇于创新的同学,一天他在解方程x2=﹣1时,突发奇想:x2=﹣1在实数围无解,如果存在一个数i,使i2=﹣1,那么若x2=﹣1,则x=±i,从而x=±i是方程x2=﹣1的两个根.据此可知:①i 可以运算,例如:i3=i2•i=﹣1×i=﹣i,则i2011= _________ ,②方程x2﹣2x+2=0的两根为_________ (根用i表示)13.(2013•日照)如右图,直线AB交双曲线于A、B,交x轴于点C,B为线段AC的中点,过点B作BM⊥x轴于M,连结OA.若OM=2MC,S△OAC=12.则k的值为_________ .三.解答题(共7小题)14.在“学科能力”展示活动中,某区教委决定在甲、乙两校举行“学科能力”比赛,为此甲、乙两学校都选派相同人数的选手参加,比赛结束后,发现每名参赛选手的成绩都是70分、80分、90分、l00分这四种成绩中的一种,并且甲、乙两校的选手获得100分的人数也相等.现根据甲、乙两校选手的成绩绘制如下两幅不完整统计图:(1)甲校选手所得分数的中位数是_________ ,乙校选手所得分数的众数是_________ ;(2)请补全条形统计图;(3)比赛后,教委决定集中甲、乙两校获得100分的选手进行培训,培训后,从中随机选取两位选手参加市里的决赛,请用列表法或树状图的方法,求所选两位选手来自同一学校的概率.15.(2012•)若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c 有如下关系:x1+x2=﹣,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1﹣x2|====;参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为直角三角形时,求b2﹣4ac的值;(2)当△ABC为等边三角形时,求b2﹣4ac的值.16.(2013•威海)如图,在平面直角坐标系中,直线y=x+与直线y=x交于点A,点B在直线y=x+上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.(1)求点A,B的坐标;(2)求抛物线的函数表达式及顶点E的坐标;(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.17.(2012•江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.自主招生数学试题参考答案与试题解析一.选择题(共6小题)4.(2013•莒南县一模)如图,两个反比例函数y=和y=(其中k1>k2>0)在第一象限的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为()5.(2012•南开区一模)如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()6.(2013•)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()二.填空题(共7小题)7.三个数a、b、c的积为负数,和为正数,且,则ax3+bx2+cx+1的值是 1 .故本题答案为1.点评:观察代数式,交换a、b、c的位置,我们发现代数式不改变,这样的代数式成为轮换式,我们不用对a、b、c再讨论.有兴趣的同学可以在课下查阅资料,看看轮换式有哪些重要的性质.8.如图正方形ABCD中,E是BC边的中点,AE与BD相交于F点,△DEF的面积是1,那么正方形ABCD的面积是 6 .考点:面积及等积变换.分析:先设△BEF的面积是x,由于E是BC中点,那么S=S△DCE,易求S正方形=4(1+x),又四边形ABCD是正方形,△DBE那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△BEF∽△DAF,于是S△BEF:S△DAF=()2,E是BC 中点可知BE:AD=1:2,于是S△DAF=4x,进而可得S正方形=S△ABF+S△BEF+S△ADF+S△DEF+S△DCE=1+x+4x+1+1+x,等量代换可得4(1+x)=1+x+4x+1+1+x,解可求x,进而可求正方形的面积.解答:解:如右图,设△BEF的面积是x,∵E是BC中点,∴S△DBE=S△DCE,∴S△BCD=2(1+x),∴S正方形=4(1+x),∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∴△BEF∽△DAF,∴S△BEF:S△DAF=()2,∵E是BC中点,∴BE=CE,∴BE:AD=1:2,∴S△DAF=4x,∵S△ABE=S△BED,∴S△ABF=S△DEF=1,∴S正方形=S△ABF+S△BEF+S△ADF+S△DEF+S△DCE=1+x+4x+1+1+x,∴4(1+x)=1+x+4x+1+1+x,解得x=0.5,∴S正方形=4(1+x)=4(1+0.5)=6.点评:本题考查了面积以及等积变换、相似三角形的判定和性质,解题的关键是找出正方形面积的两种表示方式.9.(2013•沐川县二模)如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为;面积小于2011的阴影三角形共有 6 个.考点:相似三角形的判定与性质;平行线的性质;三角形的面积.分析:根据面积比等于相似比的平方,可得出=,=,再由平行线的性质可得出==,==,从而可推出相邻两个阴影部分的相似比为1:2,面积比为1:4,先利用等底三角形的面积之比等于高之比可求出第一个及第二个阴影部分的面积,再由相似比为1:2可求出面积小于2011的阴影部分的个数.解答:解:由题意得,△AB1B2∽△A3B2B3,2∴==,==,又∵A1B1∥A2B2∥A3B3,∴===,==,∴OA1=A1A2,B1B2=B2B3继而可得出规律:A1A2=A2A3=A3A4…;B1B2=B2B3=B3B4…又△A2B1B2,△A3B2B3的面积分别为1、4,∴S△A1B1A2=,S△A2B2A3=2,继而可推出S△A3B3A4=8,S△A,4B4A5=32,S△A5B5A6=128,S△A6B6A7=512,S△A7B7A8=2048,故可得小于2011的阴影三角形的有:△A1B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5B5A6,△A6B6A7,共6个.故答案是:;6.点评:此题考查了相似三角形的判定与性质及平行线的性质,解答本题的关键是掌握相似比等于面积比的平方,及平行线分线段成比例,难度较大,注意仔细观察图形,得出规律.10.你见过像,,…这样的根式吗?这一类根式叫做复合二次根式.有一些复合二次根式可以化简,如.请用上述方法化简:= .考点:二次根式的性质与化简.分析:因为5=2+3=()2+()2,且2=2××,由此把原式改为完全平方式,进一步因式分解,化简得出答案即可.解答:解:===+.故答案为:+.点评:此题考查活用完全平方公式,把数分解成完全平方式,进一步利用公式因式分解化简,注意在整数分解时参考后面的二次根号里面的数值.11.不等式组有六个整数解,则a的取值围为<a≤.考点:一元一次不等式组的整数解.分析:先求出不等式组的解集,再根据整数解有六个得到关于a的不等式组,然后解不等式组即可求解.解答:解:解不等式组,得﹣4<x≤5﹣4a.由题意,知此不等式组的六个整数解为﹣3,﹣2,﹣1,0,1,2,则2≤5﹣4a<3,解得<a≤.故答案为<a≤.点评:本题考查了一元一次不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.小明是一位刻苦学习、勤于思考、勇于创新的同学,一天他在解方程x2=﹣1时,突发奇想:x2=﹣1在实数围无解,如果存在一个数i,使i2=﹣1,那么若x2=﹣1,则x=±i,从而x=±i是方程x2=﹣1的两个根.据此可知:①i 可以运算,例如:i3=i2•i=﹣1×i=﹣i,则i2011= ﹣i.,②方程x2﹣2x+2=0的两根为1±i.(根用i表示)考点:一元二次方程的应用.专题:新定义.分析:(1)根据题中规律可知i1=1,i2=﹣1,i3=﹣i,i4=1,可以看出4个一次循环,可以此求解.(2)把方程x2﹣2x+2=0变形为(x﹣1)2=﹣1,根据题目规律和平方根的定义可求解.解答:解:(1)i2011=i502×4+3=﹣i.(2)x2﹣2x+2=0(x﹣1)2=﹣1x﹣1=±ix=1+i或x=1﹣i.故答案为:﹣i;1±i.点评:本题考查了用配方法解一元二次方程以及找出题目中的规律,从而求得解.13.(2013•日照)如右图,直线AB交双曲线于A、B,交x轴于点C,B为线段AC的中点,过点B作BM⊥x轴于M,连结OA.若OM=2MC,S△OAC=12.则k的值为8 .考点:反比例函数与一次函数的交点问题.专题:压轴题.分析:过A作AN⊥OC于N,求出ON=MN=CM,设A的坐标是(a,b),得出B(2a,b),根据三角形AOC的面积求出ab=8,把B的坐标代入即可求出答案.解答:解:过A作AN⊥OC于N,∵BM⊥OC∴AN∥BM,∵,B为AC中点,∴MN=MC,∵OM=2MC,∴ON=MN=CM,设A的坐标是(a,b),则B(2a,b),∵S△OAC=12.∴•3a•b=12,∴ab=8,∵B在y=上,∴k=2a•b=ab=8,故答案为:8.点评:本题考查了一次函数和反比例函数的交点问题和三角形的面积的应用,主要考查学生的计算能力.三.解答题(共7小题)14.在“学科能力”展示活动中,某区教委决定在甲、乙两校举行“学科能力”比赛,为此甲、乙两学校都选派相同人数的选手参加,比赛结束后,发现每名参赛选手的成绩都是70分、80分、90分、l00分这四种成绩中的一种,并且甲、乙两校的选手获得100分的人数也相等.现根据甲、乙两校选手的成绩绘制如下两幅不完整统计图:(1)甲校选手所得分数的中位数是90分,乙校选手所得分数的众数是80分;(2)请补全条形统计图;(3)比赛后,教委决定集中甲、乙两校获得100分的选手进行培训,培训后,从中随机选取两位选手参加市里的决赛,请用列表法或树状图的方法,求所选两位选手来自同一学校的概率.考点:条形统计图;扇形统计图;中位数;众数;列表法与树状图法.分析:(1)先设甲学校学生获得100分的人数为x,根据甲、乙两学校参加数学竞赛的学生人数相等,可得出方程,解出x的值,继而可得出甲校选手所得分数的中位数,及乙校选手所得分数的众数;(2)列出树状图后,求解即可得出所选两位选手来自同一学校的概率.解答:解:(1)先设甲学校学生获得100分的人数为x,由题意得,x=(x+2+3+5)×,解得:x=2,即获得100分的人数有2人.故可得甲校选手所得分数的中位数是90分;乙校选手所得分数的众数80分.(2)则两位选手来自同一学校的概率==.点评:本题考查了条形统计图及扇形统计图的知识,要求同学们有一定的读图能力,能在条形统计图及扇形统计图中得到解题需要用到的信息,有一定难度.15.(2012•)若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1﹣x2|====;参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为直角三角形时,求b2﹣4ac的值;(2)当△ABC为等边三角形时,求b2﹣4ac的值.考点:抛物线与x轴的交点;根与系数的关系;等腰三角形的性质;等边三角形的性质.专题:压轴题.分析:(1)当△ABC为直角三角形时,由于AC=BC,所以△ABC为等腰直角三角形,过C作CE⊥AB于E,则AB=2CE.根据本题定理和结论,得到AB=,根据顶点坐标公式,得到CE=||=,列出方程,解方程即可求出b2﹣4ac的值;(2)当△ABC为等边三角形时,解直角△ACE,得CE=AE=,据此列出方程,解方程即可求出b2﹣4ac的值.解答:解:(1)当△ABC为直角三角形时,过C作CE⊥AB于E,则AB=2CE.∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,则|b2﹣4ac|=b2﹣4ac.∵a>0,∴AB=,又∵CE=||=,∴,∴,∴,∵b2﹣4ac>0,∴b2﹣4ac=4;(2)当△ABC为等边三角形时,由(1)可知CE=,∴,∵b2﹣4ac>0,∴b2﹣4ac=12.点评:本题考查了等腰直角三角形、等边三角形的性质,抛物线与x轴的交点及根与系数的关系定理,综合性较强,难度中等.16.(2013•威海)如图,在平面直角坐标系中,直线y=x+与直线y=x交于点A,点B在直线y=x+上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.(1)求点A,B的坐标;(2)求抛物线的函数表达式及顶点E的坐标;(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)由直线y=x+与直线y=x交于点A,列出方程组,通过解该方程组即可求得点A的坐标;根据∠BOA=90°得到直线OB的解析式为y=﹣x,则,通过解该方程组来求点B的坐标即可;(2)把点A、B、O的坐标分别代入已知二次函数解析式,列出关于系数a、b、c的方程组,通过解方程组即可求得该抛物线的解析式;(3)如图,作DN⊥x轴于点N.欲证明OD与CF平行,只需证明同位角∠CMN与∠DON相等即可.解答:解:(1)由直线y=x+与直线y=x交于点A,得,解得,,∴点A的坐标是(3,3).∵∠BOA=90°,∴OB⊥OA,∴直线OB的解析式为y=﹣x.又∵点B在直线y=x+上,∴,解得,,∴点B的坐标是(﹣1,1).综上所述,点A、B的坐标分别为(3,3),(﹣1,1).(2)由(1)知,点A、B的坐标分别为(3,3),(﹣1,1).∵抛物线y=ax2+bx+c过点A,O,B,∴,解得,,∴该抛物线的解析式为y=x2﹣x,或y=(x﹣)2﹣.∴顶点E的坐标是(,﹣);(3)OD与CF平行.理由如下:由(2)知,抛物线的对称轴是x=.∵直线y=x与抛物线的对称轴交于点C,∴C(,).设直线BC的表达式为y=kx+b(k≠0),把B(﹣1,1),C(,)代入,得,解得,,∴直线BC的解析式为y=﹣x+.∵直线BC与抛物线交于点B、D,∴﹣x+=x2﹣x,解得,x1=,x2=﹣1.把x1=代入y=﹣x+,得y1=,∴点D的坐标是(,).如图,作DN⊥x轴于点N.则tan∠DON==.∵FE∥x轴,点E的坐标为(,﹣).∴点F的纵坐标是﹣.把y=﹣代入y=x+,得x=﹣,∴点F的坐标是(﹣,﹣),∴EF=+=.∵CE=+=,∴tan∠CFE==,∴∠CFE=∠DON.又∵FE∥x轴,∴∠CMN=∠CFE,∴∠CMN=∠DON,∴OD∥CF,即OD与CF平行.点评:本题考查了二次函数综合题.其中涉及到的知识点有:待定系数法求二次函数解析式,一次函数与二次函数交点问题,平行线的判定以及锐角三角函数的定义等知识点.此题难度较大.17.(2012•江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.18.(2013•)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.点评:此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.19.(2013•)如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.考点:旋转的性质;等腰三角形的性质;等腰梯形的判定.专题:压轴题.分析:(1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;(2)由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,根据全等三角形证明方法得出即可;(3)分别根据①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,②当点E的像E′与点N重合时,求出α即可.解答:(1)证明:∵AB=BC,∠A=36°,20.(2013•)如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a≠0)上.(1)求抛物线的解析式.(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标.(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应)考点:二次函数综合题.专题:压轴题.分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;(3)首先求出直线A′B的解析式,进而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标.解答:解:(1)∵A(3,0)、B(4,4)、O(0,0)在抛物线y=ax2+bx+c (a≠0)上.∴,解得:,故抛物线的解析式为:y=x2﹣3x;(2)设直线OB的解析式为y=k1x( k1≠0),由点B(4,4)得4=4 k1,解得k1=1.∴直线OB的解析式为y=x,∠AOB=45°.∵B(4,4),∴点B向下平移m个单位长度的点B′的坐标为(4,0),故m=4.∴平移m个单位长度的直线为y=x﹣4.解方程组解得:,∴点D的坐标为(2,﹣2).(3)∵直线OB的解析式y=x,且A(3,0).∵点A关于直线OB的对称点A′的坐标为(0,3).设直线A′B的解析式为y=k2x+3,此直线过点B(4,4).∴4k2+3=4,解得 k2=.∴直线A′B的解析式为y=x+3.∵∠NBO=∠ABO,∴点N在直线A′B上,设点N(n,n+3),又点N在抛物线y=x2﹣3x上,∴n+3=n2﹣3n.解得 n1=﹣,n2=4(不合题意,舍去),∴点N的坐标为(﹣,).如图,将△NOB沿x轴翻折,得到△N1OB1,则 N1(﹣,﹣),B1(4,﹣4).∴O、D、B1都在直线y=﹣x上.过D点做DP1∥N1B1,∵△P1OD∽△NOB,∴△P1OD∽△N1OB1,∴P1为O N1的中点.∴==,∴点P1的坐标为(﹣,﹣).将△P1OD沿直线y=﹣x翻折,可得另一个满足条件的点到x轴距离等于P1到y轴距离,点到y轴距离等于P1到x轴距离,∴此点坐标为:(,).综上所述,点P的坐标为(﹣,﹣)和(,).点评:此题主要考查了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键.。