直方图
- 格式:doc
- 大小:13.50 KB
- 文档页数:1
直方图一、直方图的定义:1、什么是直方图为了容易的看出如长度、重量、硬度、时间等计量值的数据分布情况,所用来表示的图形。
直方图是将所收集的测定值或数据之全距分为几个相等的区间作为横轴,并将各区间内之测定值所出现次数积累而成的面积,用柱子排列起来的图形,故也称为柱状图。
2、使用直方图的目的(1)了解数据分布的形态。
(2)研究和分析过程能力。
(3)过程分析和控制。
(4)判断数据的真实性。
(5)计划产品的不良率。
(6)求分布的平均值与标准差。
(7)确定控制规格界限。
(8)与规格或标准值比较。
(9)调查是否混入两个以上的不同总体。
(10)了解设计、管理是否符合过程管理。
3、术语(1)频数分布。
将许多的复杂数据依其差异的幅度分成若干组,在各组内列入测量值的出现频率,既为频数分布。
(2)相对频数。
各组出线的频数除以全部的频数,即为相对频数。
(3)积累频数(f)。
自频数分布的测定值较小的一端将其频数累积计算,即为累计频数。
(4)全距(R)。
在所有数据中最大值和最小值的差,即为全距。
(5)组距(h)。
全距/组数=组距(6)算术平均数(X)。
数据的总和除以数据总和为之,通常以X表示。
X= X1+X2+X3+…+X nN(7)中位数(X)。
将数据由小至大依序排列,位居中央的数称为中位数。
若过偶位数时,则取中央两数据的平均值。
(8)众数(MODE)。
频数分布中出现频数最多的组的值。
(9)组中点一组数据中最大值与最小值的平均值。
(上组界+下组界)/2=组中点(11)标准差(S)S = h x Σfu2 -(Σfu)2nn-1二、直方图的制作1、直方图的制作方法步骤1:搜集数据并记录搜集数据时,对于抽样分布必须特别注意,不可取部分样品,应就全部均匀的加以随机抽样。
所搜集样本个数应大于50以上。
步骤2:找出数据中最大值(L)与最小值(S)先从各行(或列)求出最大值、最小值,再予比较。
步骤3:求全距(R)最大值(L)-最小值(S)=全距(R)步骤4:决定组数①组数过少,固然可得到相当简单的表格,但失去频数分布的本质与意义;组数过多,虽然表列详尽,但无法达到简化的目的。
直方图科技名词定义中文名称:直方图英文名称:Histogram定义:将一个变量的不同等级的相对频数用矩形块标绘的图表(每一矩形的面积对应于频数)。
应用学科:大气科学(一级学科);天气学(二级学科)本内容由全国科学技术名词审定委员会审定公布百科名片统计直方图直方图(Histogram)又称柱状图、质量分布图。
是一种统计报告图,由一系列高度不等的纵向条纹或线段表示数据分布的情况。
一般用横轴表示数据类型,纵轴表示分布情况。
直方图法的涵义在质量管理中,如何预测并监控产品质量状况?如何对质量波动进行分析?直方图就是一目了然地把这些问题图表化处理的工具。
它通过对收集到的貌似无序的数据进行处理,来反映产品质量的分布情况,判断和预测产品质量及不合格率。
直方图又称质量分布图,柱状图,它是表示资料变化情况的一种主要工具。
用直方图可以的资料,解析出规则性,比较直观地看出产品质量特性的分布状态,对於资分布状况一目了然,便於判断其总体质量分布情况。
在制作直方图时,牵涉学的概念,首先要对资料进行分组,因此如何合理分组是其中的关键问题。
按组距相等的原则进行的两个关键数位是分组数和组距。
是一种几何形图表,它是根据从生产过程中收集来的质量数据分布情况,画成以组距为底边、以频数为高度的一系列连接起来的直方型矩形图,如图所示。
作直方图的目的就是通过观察图的形状,判断生产过程是否稳定,预测生产过程的质量。
具体来说,作直方图的目的有:①判断一批已加工完毕的产品;②验证工序的稳定性;③为计算工序能力搜集有关数据。
直方图将数据根据差异进行分类,特点是明察秋毫地掌握差异。
直方图的绘制方法①集中和记录数据,求出其最大值和最小值。
数据的数量应在100个以上,在数量不多的情况下,至少也应在50个以上。
我们把分成组的个数称为组数,每一个组的两个端点的差称为组距。
②将数据分成若干组,并做好记号。
分组的数量在5-12之间较为适宜。
③计算组距的宽度。
用最大值和最小值之差去除组数,求出组距的宽度。
直方图有关知识点总结归纳一、直方图的基本概念1. 直方图的定义直方图是一种以长方形条表示数据频数分布的图形,它将数据按照不同的取值范围分组,并用矩形的高度来表示每个组别的频数,通常横轴表示数据取值范围,纵轴表示频数或频率。
2. 直方图的用途直方图主要用于展示数据的分布情况和频数分布,可以直观地反映出数据的特征。
通过观察直方图,可以了解数据的中心趋势、离散程度等重要信息,对数据的分析和解释具有重要意义。
3. 直方图与柱状图的区别直方图和柱状图都是用长方形条表示数据,但它们之间有一些明显的区别。
直方图用于展示连续变量的频数分布,通常没有间隔,而柱状图则用于展示分类变量的数据,通常有间隔。
二、直方图的绘制方法1. 数据分组绘制直方图之前,首先需要对数据进行分组处理。
一般来说,直方图的分组方式有简单随意分组、等宽分组和等频分组等方法,根据不同数据的分布情况选择合适的分组方式。
2. 绘制坐标轴在绘制直方图时,需要绘制横轴和纵轴,横轴通常表示数据的取值范围,纵轴表示频数或频率。
在绘制时需注意选择合适的刻度和轴标签,使得图形清晰易懂。
3. 绘制长方形条根据数据分组的结果,按照每个组别的频数或频率,在对应的位置上绘制长方形条,长方形条的高度代表了该组别的频数或频率。
4. 添加标题和标签最后,需要添加标题和标签,说明直方图的含义和数据的来源,使得图形更加完整和明了。
三、直方图的特点1. 易于理解直方图通过直观的图形展示了数据的分布情况,能够直观地反映出数据的特征,便于人们理解和分析数据。
2. 反映数据分布直方图能够清晰地展示数据的分布情况,包括数据的中心趋势、离散程度等重要信息,有助于人们对数据的特征有更深入的了解。
3. 对比不同组别直方图可以直接对比不同组别的频数或频率,帮助人们了解不同组别之间的差异和相似之处。
4. 难以变换直方图通常用于展示分布情况,不易对数据进行变换,因此在选择分组方式和绘制时需谨慎考虑。
什么是直方图直方图(Histogram)也叫柱状图,是一种统计报告图,由一系列高度不等的纵向条纹表示数据分布的情况。
假设我们有一堆硬币,如下图所示,我们想知道一共有多少钱。
我们当然可以一枚一枚地数,但这样如果硬币多了可能会搞乱,因此我们需要先把硬币分类,然后分别统计每种硬币的数量。
把统计的结果图示出来,就成了直方图。
下图的横向数轴标示出硬币的面额(Kind of Coins),纵向标示出硬币的数量(Number of Coins)。
图像的直方图以灰度图为例,假设我们的图中一共只有0,1,2,3,4,5,6,7这8种灰度,0代表黑色,7代表白色,其它数字代表0~7之间不同深浅的灰度。
统计的结果如下,横轴标示灰度级别(0~7),纵轴标示每种灰度的数量。
Photoshop(PS)中的显示。
直方图统计数据Photoshop CS提供了动态的直方图面板,CS之前的版本要通过图象>直方图来察看。
横轴标示亮度值(0~255),纵轴标示每种像素的数量。
像素(Pixels) - 图像的大小,图像的像素总数。
[5*3=15]色阶、数量、百分位这三项根据鼠标指针的位置来显示横坐标当前位置的统计数据。
色阶(Level) - 鼠标指针所在位置的亮度值,亮度值范围是0~255。
[181]数量(Count) - 鼠标指针所在位置的像素数量。
[4]百分位(Percentile) - 从最左边到鼠标指针位置的所有像素数量÷图像像素总数。
[(1+2+1+2+3+4)/15 = 13/15 = 0.8667 = 86.67%]当鼠标拖动,选中直方图的一段范围时,色阶、数量、百分位将显示选中范围的统计数据。
下面举个简单的例子来说明平均值、标准偏差、中间值。
例如图像A只有4个像素,亮度分别是200、50、100、200。
平均值(算术平均数,Mean,Average) - 图像的平均亮度值,高于128偏亮,低于128偏暗。
图像直方图知识点总结1. 直方图的概念直方图是一种统计图形,是将图像中各个灰度级别的像素数量统计出来后,以灰度级别为横坐标,像素数量为纵坐标绘制成的图形。
直方图能够直观地展示图像中像素的分布情况,可以反映图像亮度的均匀性、对比度等信息。
通过直方图,我们可以了解到图像中的主要亮度分布情况,并据此进行图像的处理。
2. 直方图的特性直方图主要包括以下几个特性:(1)灰度级别:直方图横坐标表示了图像的灰度级别,通常在0-255之间,其中0表示最暗的像素,255表示最亮的像素。
(2)像素数量:直方图纵坐标表示了该灰度级别下的像素数量,能够反映出图像中各个灰度级别的像素分布情况。
(3)峰值:直方图中的峰值表示了图像中主要的亮度分布情况,峰值越高则表示该亮度级别下的像素越多。
(4)对比度:直方图的分布情况能够反映出图像的对比度,对比度越大则直方图中的峰值越明显。
3. 直方图的应用直方图在图像处理中有着广泛的应用,主要包括以下几个方面:(1)图像增强:通过对直方图进行均衡化等处理,可以增强图像的对比度,使图像更加清晰。
(2)图像分割:通过直方图可以找到图像中不同区域的亮度分布情况,从而进行图像的分割处理。
(3)图像压缩:通过对直方图进行统计分析,可以找到图像中重复出现的像素,从而进行有效的图像压缩。
(4)图像识别:通过对直方图进行特征提取,可以对图像进行识别和分类。
4. 直方图均衡化直方图均衡化是一种常用的图像增强方法,通过对图像的直方图进行调整,使得图像的像素分布更加均匀,提高了图像的对比度和视觉效果。
直方图均衡化主要包括以下几个步骤:(1)计算灰度频率:首先需要统计图像中各个灰度级别的频率,得到原始直方图。
(2)计算累积频率:对原始直方图进行累积求和等处理,得到各个灰度级别的累积频率。
(3)灰度映射:根据累积频率进行灰度级别的映射,得到新的直方图。
(4)图像重构:根据新的直方图对图像像素进行重构,得到均衡化后的图像。
数学直方图知识点总结直方图是一种用来表示数据分布的图形,它以长方形的高度来表示相应的数据频数或频率。
直方图可以清晰地显示数据的分布规律和特点,因此在统计学中有着广泛的应用。
在本文中,我将对直方图的相关知识点进行总结,包括直方图的构成要素、绘制方法、应用场景等方面进行详细介绍。
一、直方图的构成要素1. 数据频数和频率直方图是由一系列长方形组成的,每个长方形的高度代表相应数据的频数或频率。
频数是指某个数值在数据集中出现的次数,而频率是指该数值在数据集中出现的频率。
频数和频率是直方图的基本构成要素,它们能够直观地反映数据的分布情况。
在绘制直方图时,我们通常选择频率作为纵轴的标度,以便更好地比较不同数据集之间的分布情况。
2. 数据区间直方图的横轴通常表示数据的区间范围,每个长方形代表一个数据区间。
在确定数据区间时,我们需要根据数据的大小和分布情况来选择合适的区间宽度,以便更好地呈现数据的分布规律。
通常情况下,数据区间的宽度应该尽量相同,这样才能使直方图更加准确地显示数据的分布情况。
3. 坐标轴和标题直方图通常由横轴、纵轴和标题组成。
横轴表示数据的区间范围,纵轴表示数据的频率或频数,而标题则说明直方图所表示的数据集名称或相关信息。
正确设置坐标轴和标题对于理解直方图所要传达的信息非常重要,因此在绘制直方图时,我们需要注重这些构成要素的设置。
二、直方图的绘制方法1. 确定数据区间在绘制直方图前,我们首先要确定数据的区间范围。
通常情况下,我们需要根据数据的分布情况选择合适的区间宽度,然后确定各个数据区间的范围。
在确定数据区间时,我们需要确保每个区间的宽度尽量相同,以便更好地呈现数据的分布规律。
2. 绘制长方形绘制直方图时,我们需要根据数据的频率或频数来确定每个长方形的高度。
一般来说,长方形的高度代表相应数据的频率或频数,而长方形的宽度则代表数据的区间范围。
在绘制长方形时,我们需要确保相邻的长方形之间没有空隙,以便更好地显示数据的分布情况。
高三直方图知识点直方图是一种常用的统计图表,用于展示数据的分布情况。
在高三数学中,直方图是一个重要的知识点,学习直方图的概念和应用能够帮助学生更好地理解和分析数据。
以下是关于高三直方图知识点的详细介绍。
一、直方图的定义和构成要素直方图是一种统计图表,用矩形条形图表示数据的分布情况。
直方图由若干个等宽的矩形条组成,其中矩形条的高度表示相应数据的频数或频率。
直方图的构成要素包括:1. 数据的分组区间:将数据按照一定的区间范围进行分组,每个组称为一个统计区间或类别。
2. 统计区间的宽度:统计区间的宽度应该相等,并且适当选择,既要反映数据的细节,又要保证统计条的数量适中。
3. 频数或频率:统计每个统计区间内的数据个数,称为频数;频数除以总个数就是频率,表示数据在该统计区间内的占比。
二、直方图的绘制步骤绘制直方图一般分为以下几个步骤:1. 确定统计区间:根据数据的范围和特点,选择适当的统计区间。
要求每个统计区间宽度相等,且将数据范围完全包含在内。
2. 统计频数或频率:统计数据落在各个统计区间内的频数或频率。
3. 绘制矩形条:选择一定的比例尺,在坐标轴上绘制矩形条,矩形条的宽度为统计区间的宽度,高度表示频数或频率。
4. 添加坐标轴和标题:添加x轴和y轴,分别表示统计区间和频数或频率,添加适当的标题,使图表更加清晰易懂。
三、直方图的应用直方图在实际问题中有着广泛的应用,对于数据的分布情况分析具有重要意义。
以下是直方图常见的应用场景:1. 数据分布的可视化:通过直方图可以直观地了解数据的分布情况,判断数据是否呈现正态分布、偏态分布等。
2. 数据的统计特征分析:通过直方图可以观察数据的中心趋势、离散程度、偏态等统计特征。
3. 数据的比较和对比:可以通过绘制多个直方图来比较不同数据集之间的分布情况,发现差异和规律。
4. 预测和决策支持:直方图可以帮助分析人员进行数据预测和制定决策,例如市场调研、人口统计等领域。
总结:直方图作为一种常用的统计图表,是高三数学中的重要知识点。
直方图直方图是一种直观地展示数据分布特征的(一组)矩形图。
按照数据分组方法的不同,可以绘制两类直方图:等概直方图和等距直方图。
与等概直方图相比,等距直方图的应用更为广泛,在实际展示的各类研究报告中,人们见到的多为等距直方图。
因此,除非特别标明,直方图通常就是指等距直方图。
等距直方图的图形为直角坐标系中若干个顺序排列的高低不等的矩形(矩形的高低可能相等,其排列也可能间断),各矩形的底边相等(等距),均为设定的数据区间,矩形的高表示全部数据落入各相应区间内的频数或频率。
所以等距直方图又可细分为等距频数直方图和等距频率直方图。
一. 直方图的作用直方图可以帮助研究人员或项目小组对来自科研、生产、服务或其他诸多过程的大量计量值数据进行加工整理,以发现杂乱无章的数据背后蕴藏的统计规律性,并籍此对过程特性的总体分布特征进行统计推断。
具体说来,直方图的作用包括:1. 显示质量波动的状态;2. 较直观的传递有关过程质量状况的信息,即对数据分布的正态性进行粗略检验;3. 掌握过程的状况,从而确定在什么地方进行质量改进工作;4. 用以调查过程能力和设备能力。
二. 常见直方图的形态常见的几种数据波动形态的直方图如图1所示。
图1 常见的直方图形态三. 直方图的绘制和使用程序直方图的绘制和使用通常包括五个基本步骤:1. 确定过程特性的度量标准(数据应是计量值数据)。
2. 采集数据。
如果计划寻找过程特性的分布模式并计算分布中心和散差的形状,通常需要收集50到100个数据项。
可以考虑收集一个特定时期的数据,如某天、某周、某工作班次等。
3. 整理、绘制数据的频数(频率)分布表。
绘制频数(频率)分布表的步骤如下:(1)计算所收集的数据的个数;(2)计算整个样本的极差(R);(3)确定数据的分组数(k)并计算组距(h)和各组组界;(4)绘制频数分布表,如表2所示。
表1 频数分布表分组组界组中值组内数据项统计频数累积频数1 10.005~10.075 10.04 正丅7 72 10.075~10.145 10.11 正正丅12 193 10.0145~10.215 10.18 正正正正20 394 10.215~10.285 10.25 正正正正正丅27 665 10.285~10.355 10.32 正正正正一21 876 10.355~10.425 10.39 正正一11 987 10.425~10.495 10.46 丅 2 1004. 根据频数或频率分布表作直方图(如图2所示):(1)按数据值比例画横坐标;(2)按频数(频率)值比例画纵坐标(3)按照纵坐标画出每个小矩形的高度(4)在直方图上表明公差范围T、样本量n、样本平均数、样本标准差s,以及的位置等。
直方图
简称:
典型应用对象:
定义:是一种对数据分布情况的图形表示,是一种二维统计图表,它的两个坐标分别是统计样本和该样本对应的某个属性的度量,以长条图(bar)的形式具体表现。
以统计的方式呈现分布之中间趋向及散布的形状,不考虑时间的影响。
变体:
发明人:
主要发明人介绍:
发展01:源自希腊语
发展02:1895年,直方图术语由英国统计学家卡尔·皮尔逊创立
概念01:归一化直方图:把直方图上每个属性的计数除以所有属性的计数之和,就得到了归一化直方图。
每个属性对应计数都是0到1之间的一个数(百分比)。
概念02:多维直方图:由二维图扩展到更高维度。
概念03:图像直方图:是用以表示数字图像中亮度分布的直方图,标绘了图像中每个亮度值的像素数。
概念04:颜色/亮度直方图:指图像中颜色分布的图形表示。
数字图像的颜色直方图覆盖该图像的整个色彩空间,标绘各个颜色区间中的像素数。
概念05:质量直方图:在质量管理领域中,质量分布图是根据从生产过程中收集来的质量数据分布情况,画成以组距为底边、以频数为高度的一系列连接起来的直方图。
概念06:堆叠直方图:适合将数量上的变化趋势以“堆叠”的方式比较,堆叠直方图呈现各项目的总累积数值
概念07:数据类型有锯齿型,偏峰型,陡壁型,平顶型,双峰型,孤岛型。
直方图是一种用于表示数字图像中像素灰度分布的统计图表。
它将图像的灰度范围划分为若干个等级,并统计每个等级中像素的数量,从而形成一个柱状图。
直方图的横坐标表示灰度等级,通常从最暗的黑色(0)到最亮的白色(255)进行划分。
纵坐标表示对应灰度等级的像素数量。
通过观察直方图,可以了解图像中不同灰度级别的像素分布情况。
直方图可以提供以下信息:
1. 图像的整体对比度:直方图的形状可以反映图像的整体对比度。
如果直方图的分布集中在较窄的灰度范围内,说明图像的对比度较低;如果直方图的分布较为分散,说明图像的对比度较高。
2. 像素分布情况:直方图可以显示图像中不同灰度级别的像素数量,从而了解图像的亮度分布。
如果某个灰度级别的像素数量较多,说明该灰度在图像中占据较大的比例。
3. 图像的曝光情况:通过观察直方图的左右端点,可以判断图像的曝光情况。
如果直方图的左侧截断,说明图像可能存在欠曝光;如果右侧截断,说明图像可能存在过曝光。
4. 色彩平衡:对于彩色图像,可以分别查看每个颜色通道的直方图,以评估图像的色彩平衡情况。
在图像处理中,直方图可以用于图像增强、对比度调整、色彩平衡等操作的参考。
它是一种简单而直观的工具,帮助我们了解数字图像的统计特征。
(三)直方图的观察与分析
1.观察直方图的形状、判断质量分布状态
作完直方图后,首先要认真观察直方图的整体形状,看其是否是属于正常型直方图。
正常型直方图就是中间高,两侧底,左右接近对称的图形,如图2(a)所示。
出现非正常型直方图时,表明生产过程或收集数据作图有问题。
这就要求进一步分析判断,找出原因,从而采取措施加以纠正。
凡属非正常型直方图,其图形分布有各种不同缺陷,归纳起来一般有五种类型,如图8所示。
(1) 折齿型(图2(b)),是由于分组组数不当或者组距确定不当出现的直方图。
(2) 左(或右)缓坡型(图2(c)),主要是由于操作中对上限(或下限)控制太严造成的。
(3) 孤岛型(图2(d)),是原材料发生变化,或者临时他人顶班作业造成的。
(4) 双峰型(图2(e)),是由于用两种不同方法或两台设备或两组工人进行生产,然后把两方面数据混在一起整理产生的。
(5) 绝壁型(图2(f)),是由于数据收集不正常,可能有意识地去掉下限以下的数据,或是在检测过程中存在某种人为因素所造成的。
工程质量控制的统计分析方法-直方图法
图2常见的直方图图形
(a)正常型;(b)折齿型;(C)左缓坡型;(d)孤岛型(e)双峰型;(f)绝壁型
2.将直方图与质量标准比较,判断实际生产过程能力
作出直方图后,除了观察直方图形状,分析质量分布状态外,再将正常型直方图与质量标准比较,从而判断实际生产过程能力。
正常型直方图与质量标准相比较,一般有如图3所示六种情况。
图3中:
T--表示质量标准要求界限;
B—表示实际质量特征分布范围。
工程质量控制的统计分析方法-直方图法
图3实际质量分析与标准比较
(1) 图3( a),B在T中间,质量分布中心x与质量标准中心M重合,实际数据分布与质量标准相比较两边还有一定余地。
这样的生产过程质量是很理想的,说明生产过程处于正常的稳定状态。
在这种情况下生产出来的产品可认为全都是合格品。
(2) 图3(b),B虽然落在T内,但质量分布中x与T的中心M不重合,偏向一边。
这样如果生产状态一旦发生变化,就可能超出质量标准下限而出现不合格品。
出现这样情况时应迅速采取措施,使直方图移到中间来。
(3) 图3(c),B在T中间,且B的范围接近T的范围,没有余地,生产过程一旦发生小的变化,产品的质量特性值就可能超出质量标准。
出现这种情况时,必须立即采取措施,以缩小质量分布范围。
(4) 图3( d),B在T中间,但两边余地太大,说明加工过于精细,不经济。
在这种情况下,可以对原材料、设备、工艺、操作等控制要求适当放宽些,有目的地使B扩大,从而有利于降低成本。
(5) 图3(e),质量分布范围B已超出标准下限之外,说明已出现不合格品。
此时必须采取措施进行调整,使质量分布位于标准之内。
(6) 图3(f),质量分布范围完全超出了质量标准上、下界限,散差太大,产生许多废品,说明过程能力不足,应提高过程能力,使质量分布范围B缩小。