(3)球壳带总电荷Q,因而
1 R2d
2 R2d Q
RR3 R
RR2 R
0
由这些边界条件得 a 0,b Q Q1 ,
c Q1 ,d Q1
40 40
4 0 R1
4 0
其中
Q1
R11
R31 R21
R31
Q
利用这些值,得电势的解
若问题具有球对称性
a b
R
2. 柱坐标一般用于二维问题
二维问题的解:
( A0 B0 ln r)(C0 D0 )
( Anrn Bnrn )(Cn cos n Dn sin n )
n
或写成: A0 B0 ln r C0 D0 ln r
而 d dl dx dy dz
x y z
所以 E
由以上讨论可知,若空间中所有电荷分布都
给定,则电场强度和电势均可求出。但实际情况
往往并不是所有电荷都能预先给定,因此,必须
求电荷与电场相互作用的微分方程。
二、静电势的微分方程和边值关系
1. 泊松(Poisson)方程
) cos
m
n,m
(cnm R n
dnm R n 1
)Pnm (cos ) sin
m
anm, bnm, cnm, dnm为积分常数,在具体问题中由边 界条件确定。
若问题具有轴对称性,取此轴为极轴,通解为
n
(an Rn
bn R n 1
)Pn
(cos
)
其中 P0 cos 1, P1cos cos,